Search results for: threshold detecting
822 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 117821 Dynamic Correlations and Portfolio Optimization between Islamic and Conventional Equity Indexes: A Vine Copula-Based Approach
Authors: Imen Dhaou
Abstract:
This study examines conditional Value at Risk by applying the GJR-EVT-Copula model, and finds the optimal portfolio for eight Dow Jones Islamic-conventional pairs. Our methodology consists of modeling the data by a bivariate GJR-GARCH model in which we extract the filtered residuals and then apply the Peak over threshold model (POT) to fit the residual tails in order to model marginal distributions. After that, we use pair-copula to find the optimal portfolio risk dependence structure. Finally, with Monte Carlo simulations, we estimate the Value at Risk (VaR) and the conditional Value at Risk (CVaR). The empirical results show the VaR and CVaR values for an equally weighted portfolio of Dow Jones Islamic-conventional pairs. In sum, we found that the optimal investment focuses on Islamic-conventional US Market index pairs because of high investment proportion; however, all other index pairs have low investment proportion. These results deliver some real repercussions for portfolio managers and policymakers concerning to optimal asset allocations, portfolio risk management and the diversification advantages of these markets.Keywords: CVaR, Dow Jones Islamic index, GJR-GARCH-EVT-pair copula, portfolio optimization
Procedia PDF Downloads 256820 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention
Authors: Avinash Malladhi
Abstract:
Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory
Procedia PDF Downloads 93819 Effect of Gaseous Imperfections on the Supersonic Flow Parameters for Air in Nozzles
Authors: Merouane Salhi, Toufik Zebbiche
Abstract:
When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas doesn’t remain perfect. Its state equation change and it becomes for a real gas. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermodynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for the molecular size and intermolecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure
Procedia PDF Downloads 447818 Comparative Analysis of Edge Detection Techniques for Extracting Characters
Authors: Rana Gill, Chandandeep Kaur
Abstract:
Segmentation of images can be implemented using different fundamental algorithms like edge detection (discontinuity based segmentation), region growing (similarity based segmentation), iterative thresholding method. A comprehensive literature review relevant to the study gives description of different techniques for vehicle number plate detection and edge detection techniques widely used on different types of images. This research work is based on edge detection techniques and calculating threshold on the basis of five edge operators. Five operators used are Prewitt, Roberts, Sobel, LoG and Canny. Segmentation of characters present in different type of images like vehicle number plate, name plate of house and characters on different sign boards are selected as a case study in this work. The proposed methodology has seven stages. The proposed system has been implemented using MATLAB R2010a. Comparison of all the five operators has been done on the basis of their performance. From the results it is found that Canny operators produce best results among the used operators and performance of different edge operators in decreasing order is: Canny>Log>Sobel>Prewitt>Roberts.Keywords: segmentation, edge detection, text, extracting characters
Procedia PDF Downloads 426817 Determinants of the Welfare of Itinerant Palm Oil Marketers in Akwa Ibom State, Nigeria
Authors: Obasi Igwe Oscar, Udokure Ubong James, Echebiri Raphael Ndubuisi
Abstract:
The study examined the determinants of the welfare of itinerant palm oil marketers in Akwa Ibom State, Nigeria. Multistage sampling techniques were adopted to select 120 itinerant palm oil marketers for the study. Primary data were obtained using a structured questionnaire. Data were analyzed using the cost and returns formula and multiple regression model. Results showed that itinerant palm oil marketing was profitable and 57.39% efficient. The respondents' monthly expenditure of N111,787.90 on food and non-food items indicated that they live above the extreme poverty threshold of $2.15 per person per day, with a daily spending of over $2. Net income (P<0.05), age (P<0.01), educational level (P<0.01), household size (P<0.01), credit amount (P<0.01), market information (P<0.05), amount of tax paid (P<0.01) and the level of market participation (P<0.05) were the significant determinants of the welfare of itinerant traders in the study area. The study recommended that government and non-governmental organizations should make available marketing facilities and enhance transportation networks to reduce inefficiencies and lower transaction costs for itinerant palm oil traders in Akwa Ibom state.Keywords: determinants, welfare, itinerant, palm oil, marketers
Procedia PDF Downloads 30816 Electron Impact Ionization Cross-Sections for e-C₅H₅N₅ Scattering
Authors: Manoj Kumar
Abstract:
Ionization cross sections of molecules due to electron impact play an important role in chemical processes in various branches of applied physics, such as radiation chemistry, gas discharges, plasmas etching in semiconductors, planetary upper atmospheric physics, mass spectrometry, etc. In the present work, we have calculated the total ionization cross sections for Adenine (C₅H₅N₅), a biologically important molecule, by electron impact in the incident electron energy range from ionization threshold to 2 keV employing a well-known Jain-Khare semiempirical formulation based on Bethe and Möllor cross sections. In the non-availability of the experimental results, the present results are in good agreement qualitatively as well as quantitatively with available theoretical results. The present results drive our confidence for further investigation of complex bio-molecule with better accuracy. Notwithstanding, the present method can deduce reliable cross-sectional data for complex targets with adequate accuracy and may facilitate the acclimatization of calculated cross-sections into atomic molecular cross-section data sets for modeling codes and other applications.Keywords: electron impact ionization cross-sections, oscillator strength, jain-khare semiempirical approach
Procedia PDF Downloads 111815 Modeling of Steady State Creep in Thick-Walled Cylinders under Internal Pressure
Authors: Tejeet Singh, Ishavneet Singh
Abstract:
The present study focused on carrying out the creep analysis in an isotropic thick-walled composite cylindrical pressure vessel composed of aluminum matrix reinforced with silicon-carbide in particulate form. The creep behavior of the composite material has been described by the threshold stress based creep law. The values of stress exponent appearing in the creep law were selected as 3, 5 and 8. The constitutive equations were developed using well known von-Mises yield criteria. Models were developed to find out the distributions of creep stress and strain rate in thick-walled composite cylindrical pressure vessels under internal pressure. In order to obtain the stress distributions in the cylinder, the equilibrium equation of the continuum mechanics and the constitutive equations are solved together. It was observed that the radial stress, tangential stress and axial stress increases along with the radial distance. The cross-over was also obtained almost at the middle region of cylindrical vessel for tangential and axial stress for different values of stress exponent. The strain rates were also decreasing in nature along the entire radius.Keywords: steady state creep, composite, cylinder, pressure
Procedia PDF Downloads 417814 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 200813 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 25812 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 53811 Development of an NIR Sorting Machine, an Experimental Study in Detecting Internal Disorder and Quality of Apple Fruitpple Fruit
Authors: Eid Alharbi, Yaser Miaji
Abstract:
The quality level for fresh fruits is very important for the fruit industries. In presents study, an automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.Keywords: mechatronics, NIR, fruit quality, spectroscopic technology, mechatronic design
Procedia PDF Downloads 390810 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme
Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh
Abstract:
The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry
Procedia PDF Downloads 490809 A Study on Using Network Coding for Packet Transmissions in Wireless Sensor Networks
Authors: Rei-Heng Cheng, Wen-Pinn Fang
Abstract:
A wireless sensor network (WSN) is composed by a large number of sensors and one or a few base stations, where the sensor is responsible for detecting specific event information, which is sent back to the base station(s). However, how to save electricity consumption to extend the network lifetime is a problem that cannot be ignored in the wireless sensor networks. Since the sensor network is used to monitor a region or specific events, how the information can be reliably sent back to the base station is surly important. Network coding technique is often used to enhance the reliability of the network transmission. When a node needs to send out M data packets, it encodes these data with redundant data and sends out totally M + R packets. If the receiver can get any M packets out from these M + R packets, it can decode and get the original M data packets. To transmit redundant packets will certainly result in the excess energy consumption. This paper will explore relationship between the quality of wireless transmission and the number of redundant packets. Hopefully, each sensor can overhear the nearby transmissions, learn the wireless transmission quality around it, and dynamically determine the number of redundant packets used in network coding.Keywords: energy consumption, network coding, transmission reliability, wireless sensor networks
Procedia PDF Downloads 391808 Development of a Highly Flexible, Sensitive and Stretchable Polymer Nanocomposite for Strain Sensing
Authors: Shaghayegh Shajari, Mehdi Mahmoodi, Mahmood Rajabian, Uttandaraman Sundararaj, Les J. Sudak
Abstract:
Although several strain sensors based on carbon nanotubes (CNTs) have been reported, the stretchability and sensitivity of these sensors have remained as a challenge. Highly stretchable and sensitive strain sensors are in great demand for human motion monitoring and human-machine interface. This paper reports the fabrication and characterization of a new type of strain sensors based on a stretchable fluoropolymer / CNT nanocomposite system made via melt-mixing technique. Electrical and mechanical characterizations were obtained. The results showed that this nanocomposite sensor has high stretchability up to 280% of strain at an optimum level of filler concentration. The piezoresistive properties and the strain sensing mechanism of the strain sensor were investigated using Electrochemical Impedance Spectroscopy (EIS). High sensitivity was obtained (gauge factor as large as 12000 under 120% applied strain) in particular at the concentrations above the percolation threshold. Due to the tunneling effect, a non- linear piezoresistivity was observed at high concentrations of CNT loading. The nanocomposites with good conductivity and lightweight could be a promising candidate for strain sensing applications.Keywords: carbon nanotubes, fluoropolymer, piezoresistive, strain sensor
Procedia PDF Downloads 296807 Clustering Color Space, Time Interest Points for Moving Objects
Authors: Insaf Bellamine, Hamid Tairi
Abstract:
Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering
Procedia PDF Downloads 378806 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, NDT, artificial defect, ultrasonic testing
Procedia PDF Downloads 475805 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction
Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong
Abstract:
The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm
Procedia PDF Downloads 149804 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria
Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli
Abstract:
Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.Keywords: remote sensing, boutaleb, diversity, forest
Procedia PDF Downloads 560803 Model Evaluation of Nanosecond, High-Intensity Electric Pulses Induced Cellular Apoptosis
Authors: Jiahui Song, Ravindra Joshi
Abstract:
High-intensity, nanosecond, pulsed electric fields have been shown to be useful non-thermal tools capable of producing a variety of specific cellular responses. While reversible and temporary changes are often desired based on electromanipulation, irreversible effects can also be important objectives. These include elimination of tumor cells and bacterial decontamination. A simple model-based rate-equation treatment of the various cellular biochemical processes was used to qualitatively predict the pulse number-dependent caspase activation and cell survival trends. The model incorporated the caspase-8 associated extrinsic pathway, the delay inherent in its activation, cytochrome c release, and the internal feedback mechanism between caspase-3 and Bid. Results were roughly in keeping with the experimental cell-survival data. A pulse-number threshold was predicted followed by a near-exponential fall-off. The intrinsic pathway was shown to be much weaker as compared to the extrinsic mechanism for electric pulse induced cell apoptosis. Also, delays of about an hour are predicted for detectable molecular concentration increases following electrical pulsing.Keywords: apoptosis, cell survival, model, pathway
Procedia PDF Downloads 237802 Hierarchical Scheme for Detection of Rotating Mimo Visible Light Communication Systems Using Mobile Phone Camera
Authors: Shih-Hao Chen, Chi-Wai Chow
Abstract:
Multiple-input and multiple-output (MIMO) scheme can extend the transmission capacity for the light-emitting-diode (LED) visible light communication (VLC) system. The MIMO VLC system using the popular mobile-phone camera as the optical receiver (Rx) to receive MIMO signal from n x n Red-Green-Blue (RGB) LED array is desirable. The key step of decoding the received RGB LED array signals is detecting the direction of received array signals. If the LED transmitter (Tx) is rotated, the signal may not be received correctly and cause an error in the received signal. In this work, we propose and demonstrate a novel hierarchical transmission scheme which can reduce the computation complexity of rotation detection in LED array VLC system. We use the n x n RGB LED array as the MIMO Tx. A novel two dimension Hadamard coding scheme is proposed and demonstrated. The detection correction rate is above 95% in the indoor usage distance. Experimental results confirm the feasibility of the proposed scheme.Keywords: Visible Light Communication (VLC), Multiple-input and multiple-output (MIMO), Red-Green-Blue (RGB), Hadamard coding scheme
Procedia PDF Downloads 419801 Improving Monitoring and Fault Detection of Solar Panels Using Arduino Mega in WSN
Authors: Ali Al-Dahoud, Mohamed Fezari, Thamer Al-Rawashdeh, Ismail Jannoud
Abstract:
Monitoring and detecting faults on a set of Solar panels, using a wireless sensor network (WNS) is our contribution in this paper, This work is part of the project we are working on at Al-Zaytoonah University. The research problem has been exposed by engineers and technicians or operators dealing with PV panels maintenance, in order to monitor and detect faults within solar panels which affect considerably the energy produced by the solar panels. The proposed solution is based on installing WSN nodes with appropriate sensors for more often occurred faults on the 45 solar panels installed on the roof of IT faculty. A simulation has been done on nodes distribution and a study for the design of a node with appropriate sensors taking into account the priorities of the processing faults. Finally, a graphic user interface is designed and adapted to telemonitoring panels using WSN. The primary tests of hardware implementation gave interesting results, the sensors calibration and interference transmission problem have been solved. A friendly GUI using high level language Visial Basic was developed to carry out the monitoring process and to save data on Exel File.Keywords: Arduino Mega microcnotroller, solar panels, fault-detection, simulation, node design
Procedia PDF Downloads 465800 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern
Procedia PDF Downloads 182799 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 112798 Searchable Encryption in Cloud Storage
Authors: Ren Junn Hwang, Chung-Chien Lu, Jain-Shing Wu
Abstract:
Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.Keywords: fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption
Procedia PDF Downloads 383797 Solutions for Strengthening China-Japan-South Korea (CJK) Trilateral Cooperation: Focusing on the Management of Historical Conflicts
Authors: Yongmei Li, Chang-Gun Park
Abstract:
China-Japan-South Korea (CJK) trilateral cooperation has experienced historical challenges in recent years, which negatively influenced the development of their relationship. Results of the interviews with three citizens on trilateral relations illustrate that most people are concerned with the historical conflicts among CJK. This paper specifically focuses on managing historical issues, including comfort women issues, territorial disputes, and divergence in historical education. Accordingly, the effectiveness of management of tensions productively provides a method for detecting historical concerns, managing issues, and connecting the three countries and citizens through advocating for fair media reporting, effective network institutionalization, and active local government cooperation. Furthermore, this paper contributes to providing government solutions for reinforcing the CJK partnership. It specially involves history education, East Asian identity and mutual trust establishment, East Asia intra-regional exchange programs, and reorganization of the role of the Trilateral Cooperation Secretariat (TCS).Keywords: China-Japan-South Korea, trilateral cooperation, government solutions, effectiveness of management, historical conflicts
Procedia PDF Downloads 112796 A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation
Authors: Xu Han, Shanxiong Chen, Shiyu Zhu, Xiaoyu Lin, Fujia Zhao, Dingwang Wang
Abstract:
Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books.Keywords: CCS concepts, computing methodologies, interest point, salient region detections, image segmentation
Procedia PDF Downloads 132795 Modeling Usage Patterns of Mobile App Service in App Market Using Hidden Markov Model
Authors: Yangrae Cho, Jinseok Kim, Yongtae Park
Abstract:
Mobile app service ecosystem has been abruptly emerged, explosively grown, and dynamically transformed. In contrast with product markets in which product sales directly cause increment in firm’s income, customer’s usage is less visible but more valuable in service market. Especially, the market situation with cutthroat competition in mobile app store makes securing and keeping of users as vital. Although a few service firms try to manage their apps’ usage patterns by fitting on S-curve or applying other forecasting techniques, the time series approaches based on past sequential data are subject to fundamental limitation in the market where customer’s attention is being moved unpredictably and dynamically. We therefore propose a new conceptual approach for detecting usage pattern of mobile app service with Hidden Markov Model (HMM) which is based on the dual stochastic structure and mainly used to clarify unpredictable and dynamic sequential patterns in voice recognition or stock forecasting. Our approach could be practically utilized for app service firms to manage their services’ lifecycles and academically expanded to other markets.Keywords: mobile app service, usage pattern, Hidden Markov Model, pattern detection
Procedia PDF Downloads 336794 Spatial Patterns and Temporal Evolution of Octopus Abundance in the Mauritanian Zone
Authors: Dedah Ahmed Babou, Nicolas Bez
Abstract:
The Min-Max autocorrelation factor (MAF) approach makes it possible to express in a space formed by spatially independent factors, spatiotemporal observations. These factors are ordered in decreasing order of spatial autocorrelation. The starting observations are thus expressed in the space formed by these factors according to temporal coordinates. Each vector of temporal coefficients expresses the temporal evolution of the weight of the corresponding factor. Applying this approach has enabled us to achieve the following results: (i) Define a spatially orthogonal space in which the projections of the raw data are determined; (ii) Define a limit threshold for the factors with the strongest structures in order to analyze the weight, and the temporal evolution of these different structures (iii) Study the correlation between the temporal evolution of the persistent spatial structures and that of the observed average abundance (iv) Propose prototypes of campaigns reflecting a high vs. low abundance (v) Propose a classification of campaigns that highlights seasonal and/or temporal similarities. These results were obtained by analyzing the octopus yield during the scientific campaigns of the oceanographic vessel Al Awam during the period 1989-2017 in the Mauritanian exclusive economic zone.Keywords: spatiotemporal , autocorrelation, kriging, variogram, Octopus vulgaris
Procedia PDF Downloads 147793 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing
Authors: Reena Murali, David Peter S.
Abstract:
The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA
Procedia PDF Downloads 526