Search results for: system approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28121

Search results for: system approach

27401 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 616
27400 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem

Abstract:

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

Keywords: connectivism, learning analytics, lifelong learning, social semantic web

Procedia PDF Downloads 215
27399 Unsupervised Reciter Recognition Using Gaussian Mixture Models

Authors: Ahmad Alwosheel, Ahmed Alqaraawi

Abstract:

This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.

Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model

Procedia PDF Downloads 380
27398 Assessing Livelihood Vulnerability to Climate Change and Adaptation Strategies in Rajanpur District, Pakistan

Authors: Muhammad Afzal, Shahbaz Mushtaq, Duc-Anh-An-Vo, Kathryn Reardon Smith, Thanh Ma

Abstract:

Climate change has become one of the most challenging environmental issues in the 21st century. Climate change-induced natural disasters, especially floods, are the major factors of livelihood vulnerability, impacting millions of individuals worldwide. Evaluating and mitigating the effects of floods requires an in-depth understanding of the relationship between vulnerability and livelihood capital assets. Using an integrated approach, sustainable livelihood framework, and system thinking approach, the study developed a conceptual model of a generalized livelihood system in District Rajanpur, Pakistan. The model visualizes the livelihood vulnerability system as a whole and identifies the key feedback loops likely to influence the livelihood vulnerability. The study suggests that such conceptual models provide effective communication and understanding tools to stakeholders and decision-makers to anticipate the problem and design appropriate policies. It can also serve as an evaluation technique for rural livelihood policy and identify key systematic interventions. The key finding of the study reveals that household income, health, and education are the major factors behind the livelihood vulnerability of the rural poor of District Rajanpur. The Pakistani government tried to reduce the livelihood vulnerability of the region through different income, health, and education programs, but still, many changes are required to make these programs more effective especially during the flood times. The government provided only cash to vulnerable and marginalized families through income support programs, but this study suggests that along with the cash, the government must provide seed storage facilities and access to crop insurance to the farmers. Similarly, the government should establish basic health units in villages and frequent visits of medical mobile vans should be arranged with advanced medical lab facilities during and after the flood.

Keywords: livelihood vulnerability, rural communities, flood, sustainable livelihood framework, system dynamics, Pakistan

Procedia PDF Downloads 50
27397 Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose

Authors: Ünal Kızıl, Levent Genç, Sefa Aksu, Ahmet Tapınç

Abstract:

The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a Diagnose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained.

Keywords: air quality, electronic nose, environmental quality, gas sensor

Procedia PDF Downloads 444
27396 A Methodological Approach to Digital Engineering Adoption and Implementation for Organizations

Authors: Sadia H. Syeda, Zain H. Malik

Abstract:

As systems continue to become more complex and the interdependencies of processes and sub-systems continue to grow and transform, the need for a comprehensive method of tracking and linking the lifecycle of the systems in a digital form becomes ever more critical. Digital Engineering (DE) provides an approach to managing an authoritative data source that links, tracks, and updates system data as it evolves and grows throughout the system development lifecycle. DE enables the developing, tracking, and sharing system data, models, and other related artifacts in a digital environment accessible to all necessary stakeholders. The DE environment provides an integrated electronic repository that enables traceability between design, engineering, and sustainment artifacts. The DE activities' primary objective is to develop a set of integrated, coherent, and consistent system models for the program. It is envisioned to provide a collaborative information-sharing environment for various stakeholders, including operational users, acquisition personnel, engineering personnel, and logistics and sustainment personnel. Examining the processes that DE can support in the systems engineering life cycle (SELC) is a primary step in the DE adoption and implementation journey. Through an analysis of the U.S Department of Defense’s (DoD) Office of the Secretary of Defense (OSD’s) Digital Engineering Strategy and their implementation, examples of DE implementation by the industry and technical organizations, this paper will provide descriptions of the current DE processes and best practices of implementing DE across an enterprise. This will help identify the capabilities, environment, and infrastructure needed to develop a potential roadmap for implementing DE practices consistent with its business strategy. A capability maturity matrix will be provided to assess the organization’s DE maturity emphasizing how all the SELC elements interlink to form a cohesive ecosystem. If implemented, DE can increase efficiency and improve the systems engineering processes' quality and outcomes.

Keywords: digital engineering, digital environment, digital maturity model, single source of truth, systems engineering life-cycle

Procedia PDF Downloads 92
27395 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

Authors: A. Zanj, F. He

Abstract:

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Keywords: multi-physical domain, conduction model, port based modeling, dynamic interaction, physical modeling

Procedia PDF Downloads 273
27394 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC

Procedia PDF Downloads 496
27393 Control of Sensors in Metering System of Fluid

Authors: A. Harrouz, O. Harrouz, A. Benatiallah

Abstract:

This paper is to review the essential definitions, roles, and characteristics of communication of metering system. We discuss measurement, data acquisition, and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: data acquisition, dynamic metering system, reference standards, metrological control

Procedia PDF Downloads 492
27392 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks

Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad

Abstract:

In this paper, we proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach reducing the probability of network attacks.

Keywords: network security, intrusion detection, honeypot, snort, nmap

Procedia PDF Downloads 567
27391 Cosmetic Recommendation Approach Using Machine Learning

Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake

Abstract:

The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.

Keywords: content-based filtering, cosmetics, machine learning, recommendation system

Procedia PDF Downloads 134
27390 Evaluating Closed-List Proportional Representation System and Its Compatibility in Contemporary Indonesian Election

Authors: Ridho Al-Hamdi, Sakir, Tanto Lailam

Abstract:

During the democratic period of 1999-present, Indonesia has consistently applied a List Proportional Representation (List PR) system in the parliamentary election. Between 1999 and 2004, it adopted a closed-list proportional representation (CLPR) system. In the meantime, it employed open-list proportional representation (OLPR) system from 2009 to 2019. Recently, some parties intended to propose the application of CLPR while others are still consistent in adopting OLPR. An unfinished debate is taking place. Thus, this article aims to evaluate the application of CLPR in Indonesia and, in turn, analyze its compatibility in contemporary parliamentary election system. From a methodological standpoint, it is qualitative research by applying a case study approach. Data-gathering relies on field data, mainly focus group discussion (FGD) and in-depth interviews with political parties, electoral management bodies (EMBs), NGO activists, and scholars spread in six provinces and nine regencies/cities across the country. Using SWOT analysis and the compatibility of CLPR and embedded democracy framework, the finding demonstrates that CLPR is no longer relevant for contemporary Indonesian elections. This paper recommends OLPR by considering that CLPR has numerous weaknesses and threats that can jeopardize embedded democracy. More importantly, CLPR can remove inclusive suffrage significantly.

Keywords: closed-list proportional representation, embedded democracy, Indonesia, parliamentary election

Procedia PDF Downloads 158
27389 Enhanced Face Recognition with Daisy Descriptors Using 1BT Based Registration

Authors: Sevil Igit, Merve Meric, Sarp Erturk

Abstract:

In this paper, it is proposed to improve Daisy descriptor based face recognition using a novel One-Bit Transform (1BT) based pre-registration approach. The 1BT based pre-registration procedure is fast and has low computational complexity. It is shown that the face recognition accuracy is improved with the proposed approach. The proposed approach can facilitate highly accurate face recognition using DAISY descriptor with simple matching and thereby facilitate a low-complexity approach.

Keywords: face recognition, Daisy descriptor, One-Bit Transform, image registration

Procedia PDF Downloads 367
27388 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach

Authors: Munaf Rashid

Abstract:

For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.

Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook

Procedia PDF Downloads 474
27387 Design a Network for Implementation a Hospital Information System

Authors: Abdulqader Rasool Feqi Mohammed, Ergun Erçelebi̇

Abstract:

A large number of hospitals from developed countries are adopting hospital information system to bring efficiency in hospital information system. The purpose of this project is to research on new network security techniques in order to enhance the current network security structure of save a hospital information system (HIS). This is very important because, it will avoid the system from suffering any attack. Security architecture was optimized but there are need to keep researching on best means to protect the network from future attacks. In this final project research, security techniques were uncovered to produce best network security results when implemented in an integrated framework.

Keywords: hospital information system, HIS, network security techniques, internet protocol, IP, network

Procedia PDF Downloads 440
27386 The Development and Provision of a Knowledge Management Ecosystem, Optimized for Genomics

Authors: Matthew I. Bellgard

Abstract:

The field of bioinformatics has made, and continues to make, substantial progress and contributions to life science research and development. However, this paper contends that a systems approach integrates bioinformatics activities for any project in a defined manner. The application of critical control points in this bioinformatics systems approach may be useful to identify and evaluate points in a pathway where specified activity risk can be reduced, monitored and quality enhanced.

Keywords: bioinformatics, food security, personalized medicine, systems approach

Procedia PDF Downloads 422
27385 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 338
27384 Reactive Power Cost Evaluation with FACTS Devices in Restructured Power System

Authors: A. S. Walkey, N. P. Patidar

Abstract:

It is not always economical to provide reactive power using synchronous alternators. The cost of reactive power can be minimized by optimal placing of FACTS devices in power systems. In this paper a Particle Swarm Optimization- Sequential Quadratic Programming (PSO-SQP) algorithm is applied to minimize the cost of reactive power generation along with real power generation to alleviate the bus voltage violations. The effectiveness of proposed approach tested on IEEE-14 bus systems. In this paper in addition to synchronous generators, an opportunity of FACTS devices are also proposed to procure the reactive power demands in the power system.

Keywords: reactive power, reactive power cost, voltage security margins, capability curve, FACTS devices

Procedia PDF Downloads 506
27383 Hypergraph for System of Systems modeling

Authors: Haffaf Hafid

Abstract:

Hypergraphs, after being used to model the structural organization of System of Sytems (SoS) at macroscopic level, has recent trends towards generalizing this powerful representation at different stages of complex system modelling. In this paper, we first describe different applications of hypergraph theory, and step by step, introduce multilevel modeling of SoS by means of integrating Constraint Programming Langages (CSP) dealing with engineering system reconfiguration strategy. As an application, we give an A.C.T Terminal controlled by a set of Intelligent Automated Vehicle.

Keywords: hypergraph model, structural analysis, bipartite graph, monitoring, system of systems, reconfiguration analysis, hypernetwork

Procedia PDF Downloads 488
27382 Decentralized Data Marketplace Framework Using Blockchain-Based Smart Contract

Authors: Meshari Aljohani, Stephan Olariu, Ravi Mukkamala

Abstract:

Data is essential for enhancing the quality of life. Its value creates chances for users to profit from data sales and purchases. Users in data marketplaces, however, must share and trade data in a secure and trusted environment while maintaining their privacy. The first main contribution of this paper is to identify enabling technologies and challenges facing the development of decentralized data marketplaces. The second main contribution is to propose a decentralized data marketplace framework based on blockchain technology. The proposed framework enables sellers and buyers to transact with more confidence. Using a security deposit, the system implements a unique approach for enforcing honesty in data exchange among anonymous individuals. Before the transaction is considered complete, the system has a time frame. As a result, users can submit disputes to the arbitrators which will review them and respond with their decision. Use cases are presented to demonstrate how these technologies help data marketplaces handle issues and challenges.

Keywords: blockchain, data, data marketplace, smart contract, reputation system

Procedia PDF Downloads 158
27381 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 325
27380 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: air conditioning system, GPC, dead time, air supply control

Procedia PDF Downloads 527
27379 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 152
27378 Prediction of Compressive Strength in Geopolymer Composites by Adaptive Neuro Fuzzy Inference System

Authors: Mehrzad Mohabbi Yadollahi, Ramazan Demirboğa, Majid Atashafrazeh

Abstract:

Geopolymers are highly complex materials which involve many variables which makes modeling its properties very difficult. There is no systematic approach in mix design for Geopolymers. Since the amounts of silica modulus, Na2O content, w/b ratios and curing time have a great influence on the compressive strength an ANFIS (Adaptive neuro fuzzy inference system) method has been established for predicting compressive strength of ground pumice based Geopolymers and the possibilities of ANFIS for predicting the compressive strength has been studied. Consequently, ANFIS can be used for geopolymer compressive strength prediction with acceptable accuracy.

Keywords: geopolymer, ANFIS, compressive strength, mix design

Procedia PDF Downloads 853
27377 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 119
27376 The Transformation of the Workplace through Robotics, Artificial Intelligence, and Automation

Authors: Javed Mohammed

Abstract:

Robotics is the fastest growing industry in the world, poised to become the largest in the next decade. The use of robots requires design, application and implementation of the appropriate safety controls in order to avoid creating hazards to production personnel, programmers, maintenance specialists and systems engineers. The increasing use of artificial intelligence (AI) and related technologies in the workplace are dramatically changing the employment landscape. The impact of robotics technology on workplace policy is dramatic and complex. The robotics revolution calls for a comprehensive approach to job training, and retraining, to mitigate worker displacement and enable workers to benefit from the new jobs that the technology will generate. It calls for a thoughtful, forward-thinking approach by lawmakers, regulators and employers to prepare for the oncoming transformation of the workplace and workforce.

Keywords: design, artificial intelligence, programmers, system engineers, robotics, transformation

Procedia PDF Downloads 473
27375 Conceptual Design of a Wi-Fi and GPS Based Robotic Library Using an Intelligent System

Authors: M. S. Sreejith, Steffy Joy, Abhishesh Pal, Beom-Sahng Ryuh, V. R. Sanal Kumar

Abstract:

In this paper an attempt has been made for the design of a robotic library using an intelligent system. The robot works on the ARM microprocessor, motor driver circuit with 5 degrees of freedom with Wi-Fi and GPS based communication protocol. The authenticity of the library books is controlled by RFID. The proposed robotic library system is facilitated with embedded system and ARM. In this library issuance system the previous potential readers’ authentic review reports have been taken into consideration for recommending suitable books to the deserving new users and the issuance of books or periodicals is based on the users’ decision. We have conjectured that the Wi-Fi based robotic library management system would allow fast transaction of books issuance and it also produces quality readers.

Keywords: GPS bsed based Robotic library, library management system, robotic library, Wi-Fi library

Procedia PDF Downloads 307
27374 Climate-Smart Agriculture for Sustainable Maize-Wheat Production: Effects on Crop Productivity, Profitability and Irrigation Water Use

Authors: S. K. Kakraliya, R. D. Jat, H. S. Jat, P. C. Sharma, M. L. Jat

Abstract:

The traditional rice-wheat (RW) system in the IGP of South Asia is tillage, water, energy, and capital intensive. Coupled with more pumping of groundwater over the years to meet the high irrigation water requirement of the RW system has resulted in over-exploitation of groundwater. Replacement of traditional rice with less water crops such as maize under climate-smart agriculture (CSA) based management (tillage, crop establishment and residue management) practices are required to promote sustainable intensification. Furthermore, inefficient nutrient management practices are responsible for low crop yields and nutrient use efficiencies in maize-wheat (MW) system. A 7-year field experiment was conducted in farmer’s participatory strategic research mode at Taraori, Karnal, India to evaluate the effects of tillage and crop establishment (TCE) methods, residue management, mungbean integration, and nutrient management practices on crop yields, water productivity and profitability of MW system. The main plot treatments included four combinations of TCE, residue and mungbean integration [conventional tillage (CT), conventional tillage with mungbean (CT + MB), permanent bed (PB) and permanent bed with MB (PB + MB] with three nutrient management practices [farmer’s fertilizer practice (FFP), recommended dose of fertilizer (RDF) and site-specific nutrient management (SSNM)] using Nutrient Expert® as subplot treatments. System productivity, water use efficiency (WUE) and net returns under PB + MB were significantly increased by 25–30%, 28–31% and 35–40% compared to CT respectively, during seven years of experimentation. The integration of MB in MW system contributed ~25and ~ 28% increases in system productivity and net returns compared with no MB, respectively. SSNM based nutrient management increased the mean (averaged across 7 yrs) system productivity by 12- 15% compared with FFP. The study revealed that CSA based sustainable intensification (PB + MB) and SSNM approach provided opportunities for enhancing crop productivity, WUE and profitability of the MW system in India.

Keywords: Conservation Agriculture, Precision water and nutrient management, Permanent beds, Crop yields

Procedia PDF Downloads 132
27373 BTG-BIBA: A Flexibility-Enhanced Biba Model Using BTG Strategies for Operating System

Authors: Gang Liu, Can Wang, Runnan Zhang, Quan Wang, Huimin Song, Shaomin Ji

Abstract:

Biba model can protect information integrity but might deny various non-malicious access requests of the subjects, thereby decreasing the availability in the system. Therefore, a mechanism that allows exceptional access control is needed. Break the Glass (BTG) strategies refer an efficient means for extending the access rights of users in exceptional cases. These strategies help to prevent a system from stagnation. An approach is presented in this work for integrating Break the Glass strategies into the Biba model. This research proposes a model, BTG-Biba, which provides both an original Biba model used in normal situations and a mechanism used in emergency situations. The proposed model is context aware, can implement a fine-grained type of access control and primarily solves cross-domain access problems. Finally, the flexibility and availability improvement with the use of the proposed model is illustrated.

Keywords: Biba model, break the glass, context, cross-domain, fine-grained

Procedia PDF Downloads 541
27372 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 111