Search results for: synthetic dataset
1492 Family Succession and Cost of Bank Loans: Evidence from China
Authors: Tzu-Ching Weng, Hsin-Yi Chi
Abstract:
This study examines the effect of family succession on the cost of bank loans and non-price contractual terms. We use a unique dataset from China and find that lending banks are likely to charge high-interest rates and offer tight contractual terms, such as loan maturity and collateral requirement, for family succession firms. These findings indicate that information and default risks may arise after subsequent family successions. We also find that family succession firms can reduce the cost of bank loans by hiring top-tier auditors to enhance financial reporting credibility. This finding suggests that professional and high-quality auditors can provide extremely valuable services to family succession firms.Keywords: family succession, cost of bank loans, loan contract terms, top-tier auditor
Procedia PDF Downloads 861491 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 4141490 ISAR Imaging and Tracking Algorithm for Maneuvering Non-ellipsoidal Extended Objects Using Jump Markov Systems
Authors: Mohamed Barbary, Mohamed H. Abd El-azeem
Abstract:
Maneuvering non-ellipsoidal extended object tracking (M-NEOT) using high-resolution inverse synthetic aperture radar (ISAR) observations is gaining momentum recently. This work presents a new robust implementation of the Jump Markov (JM) multi-Bernoulli (MB) filter for M-NEOT, where the M-NEOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on an MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, JM-MB-TBD filter
Procedia PDF Downloads 581489 Corpus Linguistic Methods in a Theoretical Study of Quran Verb Tense and Aspect in Translations from Arabic to English
Authors: Jawharah Alasmari
Abstract:
In inflectional morphology of verb, tense and aspect indicate action’s time either past/present or future and their period whether completed or not. The usage and meaning of tense and aspect differ in Arabic and English, therefore is no simple one -to- one mapping from an Arabic verb inflected form an appropriate English translation depends on a range of features, including immediate and wider context of use. The Quranic Arabic Corpus includes seven alternative expertly crafted English translations of each Arabic verses, which provides a test dataset for the study of appropriate Arabic to English translations of verb tense and aspect. We applied Corpus Linguistics Methods in a theoretical study of exemplary verbs, to elicit candidate verbal contexts which influence the choice of English inflection for each verse.Keywords: Corpus linguistics methods, Arabic verb, tense and aspect, English translations
Procedia PDF Downloads 3911488 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 2421487 A Survey on Genetic Algorithm for Intrusion Detection System
Authors: Prikhil Agrawal, N. Priyanka
Abstract:
With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security
Procedia PDF Downloads 2971486 The Toxicity Effects of HICIDE VD-9 on the Mortality of Lucilia cuprina under Laboratory Conditions
Authors: Mehdi Shahmoradi Moghadam, Saba Kavian, Mehdi Zabihzadeh, Amir Mohammad Alborzi, Reza Sadeghi
Abstract:
Cypermethrin is one of the most widely used synthetic insecticides to control pests in veterinary, industrial and agricultural environments. In the present study, the mortalities of Lucilia Cuprina as the key pest of meat were studied after being exposed to HICIDE VD-9 (a ready-to-use disinfectant/insecticide containing cypermethrin, polyhexanide and quaternary ammonium compounds produced by Dana pharmed lotus Co., Iran) within 15 minutes. The experimental results showed that moralities percentage of egg, larvae and adults of Lucilia Cuprina were 48%, 81% and 70%, respectively. Based on the obtained results, it can be predicted that in addition to controlling the insect pests of blow flies, HICIDE VD-9, as a cost-effective and environmentally friendly disinfectant/insecticide, can be effective against other insects, e.g., biting flies, fleas, midges, mosquitoes and ticks.Keywords: cypermethrin, HICIDE VD-9, Lucilia cuprina, mortality, toxicity
Procedia PDF Downloads 1101485 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 351484 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules
Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez
Abstract:
Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems
Procedia PDF Downloads 4221483 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1901482 ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency
Authors: Afsheen Aman, Zainab Bibi, Shah Ali Ul Qader
Abstract:
Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose.Keywords: immobilization, reusability, thermozymes, xylanase
Procedia PDF Downloads 3741481 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity
Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol
Procedia PDF Downloads 2141480 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo
Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad
Abstract:
Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations
Procedia PDF Downloads 2541479 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus
Authors: J. K. Alhassan, B. Attah, S. Misra
Abstract:
Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. medical dataset is a vital ingredient used in predicting patients health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. The evaluations was done using weka software and found out that DTA performed better than ANN. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. The Root Mean Squared Error (RMSE) of MLP is 0.3913,that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.Keywords: artificial neural network, classification, decision tree algorithms, diabetes mellitus
Procedia PDF Downloads 4081478 Bank Concentration and Industry Structure: Evidence from China
Authors: Jingjing Ye, Cijun Fan, Yan Dong
Abstract:
The development of financial sector plays an important role in shaping industrial structure. However, evidence on the micro-level channels through which this relation manifest remains relatively sparse, particularly for developing countries. In this paper, we compile an industry-by-city dataset based on manufacturing firms and registered banks in 287 Chinese cities from 1998 to 2008. Based on a difference-in-difference approach, we find the highly concentrated banking sector decreases the competitiveness of firms in each manufacturing industry. There are two main reasons: i) bank accessibility successfully fosters firm expansion within each industry, however, only for sufficiently large enterprises; ii) state-owned enterprises are favored by the banking industry in China. The results are robust after considering alternative concentration and external finance dependence measures.Keywords: bank concentration, China, difference-in-difference, industry structure
Procedia PDF Downloads 3881477 A Deep Learning Approach to Subsection Identification in Electronic Health Records
Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan
Abstract:
Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification
Procedia PDF Downloads 2171476 Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum
Authors: Radia Chemlal, Youcef Hamidi, Nabil Mameri
Abstract:
This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject.Keywords: biosurfactant, pseudomonas luteola, whey, antiscorpionic serum, gas oil
Procedia PDF Downloads 1021475 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus
Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay
Abstract:
Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus
Procedia PDF Downloads 1701474 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending
Procedia PDF Downloads 2981473 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 741472 Industrial Wastewater Treatment Improvements Using Limestone
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal
Procedia PDF Downloads 4481471 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process
Authors: Kai Chen, Shuguang Cui, Feng Yin
Abstract:
Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.Keywords: Gaussian process, spectral mixture, non-stationary, convolution
Procedia PDF Downloads 1961470 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset
Authors: Jaiden X. Schraut
Abstract:
Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.Keywords: chest X-ray, deep learning, image segmentation, image classification
Procedia PDF Downloads 1441469 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby
Authors: Jazim Sohail, Filipe Teixeira-Dias
Abstract:
Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI
Procedia PDF Downloads 2171468 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 1011467 A Greener Approach towards the Synthesis of an Antimalarial Drug Lumefantrine
Authors: Luphumlo Ncanywa, Paul Watts
Abstract:
Malaria is a disease that kills approximately one million people annually. Children and pregnant women in sub-Saharan Africa lost their lives due to malaria. Malaria continues to be one of the major causes of death, especially in poor countries in Africa. Decrease the burden of malaria and save lives is very essential. There is a major concern about malaria parasites being able to develop resistance towards antimalarial drugs. People are still dying due to lack of medicine affordability in less well-off countries in the world. If more people could receive treatment by reducing the cost of drugs, the number of deaths in Africa could be massively reduced. There is a shortage of pharmaceutical manufacturing capability within many of the countries in Africa. However one has to question how Africa would actually manufacture drugs, active pharmaceutical ingredients or medicines developed within these research programs. It is quite likely that such manufacturing would be outsourced overseas, hence increasing the cost of production and potentially limiting the full benefit of the original research. As a result the last few years has seen major interest in developing more effective and cheaper technology for manufacturing generic pharmaceutical products. Micro-reactor technology (MRT) is an emerging technique that enables those working in research and development to rapidly screen reactions utilizing continuous flow, leading to the identification of reaction conditions that are suitable for usage at a production level. This emerging technique will be used to develop antimalarial drugs. It is this system flexibility that has the potential to reduce both the time was taken and risk associated with transferring reaction methodology from research to production. Using an approach referred to as scale-out or numbering up, a reaction is first optimized within the laboratory using a single micro-reactor, and in order to increase production volume, the number of reactors employed is simply increased. The overall aim of this research project is to develop and optimize synthetic process of antimalarial drugs in the continuous processing. This will provide a step change in pharmaceutical manufacturing technology that will increase the availability and affordability of antimalarial drugs on a worldwide scale, with a particular emphasis on Africa in the first instance. The research will determine the best chemistry and technology to define the lowest cost manufacturing route to pharmaceutical products. We are currently developing a method to synthesize Lumefantrine in continuous flow using batch process as bench mark. Lumefantrine is a dichlorobenzylidine derivative effective for the treatment of various types of malaria. Lumefantrine is an antimalarial drug used with artemether for the treatment of uncomplicated malaria. The results obtained when synthesizing Lumefantrine in a batch process are transferred into a continuous flow process in order to develop an even better and reproducible process. Therefore, development of an appropriate synthetic route for Lumefantrine is significant in pharmaceutical industry. Consequently, if better (and cheaper) manufacturing routes to antimalarial drugs could be developed and implemented where needed, it is far more likely to enable antimalarial drugs to be available to those in need.Keywords: antimalarial, flow, lumefantrine, synthesis
Procedia PDF Downloads 2031466 Impact of Financial Technology Growth on Bank Performance in Gulf Cooperation Council Region
Authors: Ahmed BenSaïda
Abstract:
This paper investigates the association between financial technology (FinTech) growth and bank performance in the Gulf Cooperation Council (GCC) region. Application is conducted on a panel dataset containing the annual observations of banks covering the period from 2012 to 2021. FinTech growth is set as an explanatory variable on three proxies of bank performance. These proxies are the return on assets (ROA), return on equity (ROE), and net interest margin (NIM). Moreover, several control variables are added to the model, including bank-specific and macroeconomic variables. The results are significant as all the proxies of the bank performance are negatively affected by the growth of FinTech startups. Consequently, banks are urged to proactively invest in FinTech startups and engage in partnerships to avoid the risk of disruption.Keywords: financial technology, bank performance, GCC countries, panel regression
Procedia PDF Downloads 781465 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models
Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini
Abstract:
The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion
Procedia PDF Downloads 1401464 Development of Web-Based Iceberg Detection Using Deep Learning
Authors: A. Kavya Sri, K. Sai Vineela, R. Vanitha, S. Rohith
Abstract:
Large pieces of ice that break from the glaciers are known as icebergs. The threat that icebergs pose to navigation, production of offshore oil and gas services, and underwater pipelines makes their detection crucial. In this project, an automated iceberg tracking method using deep learning techniques and satellite images of icebergs is to be developed. With a temporal resolution of 12 days and a spatial resolution of 20 m, Sentinel-1 (SAR) images can be used to track iceberg drift over the Southern Ocean. In contrast to multispectral images, SAR images are used for analysis in meteorological conditions. This project develops a web-based graphical user interface to detect and track icebergs using sentinel-1 images. To track the movement of the icebergs by using temporal images based on their latitude and longitude values and by comparing the center and area of all detected icebergs. Testing the accuracy is done by precision and recall measures.Keywords: synthetic aperture radar (SAR), icebergs, deep learning, spatial resolution, temporal resolution
Procedia PDF Downloads 911463 Solvent Extraction and Spectrophotometric Determination of Palladium(II) Using P-Methylphenyl Thiourea as a Complexing Agent
Authors: Shashikant R. Kuchekar, Somnath D. Bhumkar, Haribhau R. Aher, Bhaskar H. Zaware, Ponnadurai Ramasami
Abstract:
A precise, sensitive, rapid and selective method for the solvent extraction, spectrophotometric determination of palladium(II) using para-methylphenyl thiourea (PMPT) as an extractant is developed. Palladium(II) forms yellow colored complex with PMPT which shows an absorption maximum at 300 nm. The colored complex obeys Beer’s law up to 7.0 µg ml-1 of palladium. The molar absorptivity and Sandell’s sensitivity were found to be 8.486 x 103 l mol-1cm-1 and 0.0125 μg cm-2 respectively. The optimum conditions for the extraction and determination of palladium have been established by monitoring the various experimental parameters. The precision of the method has been evaluated and the relative standard deviation has been found to be less than 0.53%. The proposed method is free from interference from large number of foreign ions. The method has been successfully applied for the determination of palladium from alloy, synthetic mixtures corresponding to alloy samples.Keywords: solvent extraction, PMPT, Palladium (II), spectrophotometry
Procedia PDF Downloads 461