Search results for: regularized regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3243

Search results for: regularized regression

2523 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 160
2522 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 241
2521 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India

Authors: Palash Bandyopadhyay

Abstract:

Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.

Keywords: financial performance, crude oil and natural gas companies, India, linear regression

Procedia PDF Downloads 322
2520 Asset Pricing Puzzle and GDP-Growth: Pre and Post Covid-19 Pandemic Effect on Pakistan Stock Exchange

Authors: Mohammad Azam

Abstract:

This work is an endeavor to empirically investigate the Gross Domestic Product-Growth as mediating variable between various factors and portfolio returns using a broad sample of 522 financial and non-financial firms enlisted on Pakistan Stock Exchange between January-1993 and June-2022. The study employs the Structural Equation modeling and Ordinary Least Square regression to determine the findings before and during the Covid-19 epidemiological situation, which has not received due attention by researchers. The analysis reveals that market and investment factors are redundant, whereas size and value show significant results, whereas Gross Domestic Product-Growth performs significant mediating impact for the whole time frame. Using before Covid-19 period, the results reveal that market, value, and investment are redundant, but size, profitability, and Gross Domestic Product-Growth are significant. During the Covid-19, the statistics indicate that market and investment are redundant, though size and Gross Domestic Product-Growth are highly significant, but value and profitability are moderately significant. The Ordinary Least Square regression shows that market and investment are statistically insignificant, whereas size is highly significant but value and profitability are marginally significant. Using the Gross Domestic Product-Growth augmented model, a slight growth in R-square is observed. The size, value and profitability factors are recommended to the investors for Pakistan Stock Exchange. Conclusively, in the Pakistani market, the Gross Domestic Product-Growth indicates a feeble moderating effect between risk-premia and portfolio returns.

Keywords: asset pricing puzzle, mediating role of GDP-growth, structural equation modeling, COVID-19 pandemic, Pakistan stock exchange

Procedia PDF Downloads 71
2519 Low-Cost Image Processing System for Evaluating Pavement Surface Distress

Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa

Abstract:

Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.

Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means

Procedia PDF Downloads 181
2518 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 346
2517 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma

Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren

Abstract:

We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.

Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values

Procedia PDF Downloads 152
2516 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore

Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan

Abstract:

Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.

Keywords: ethnicity, gestational diabetes, healthcare, pregnancy

Procedia PDF Downloads 225
2515 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification

Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg

Abstract:

The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.

Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort

Procedia PDF Downloads 189
2514 An Exploratory Study on 'Sub-Region Life Circle' in Chinese Big Cities Based on Human High-Probability Daily Activity: Characteristic and Formation Mechanism as a Case of Wuhan

Authors: Zhuoran Shan, Li Wan, Xianchun Zhang

Abstract:

With an increasing trend of regionalization and polycentricity in Chinese contemporary big cities, “sub-region life circle” turns to be an effective method on rational organization of urban function and spatial structure. By the method of questionnaire, network big data, route inversion on internet map, GIS spatial analysis and logistic regression, this article makes research on characteristic and formation mechanism of “sub-region life circle” based on human high-probability daily activity in Chinese big cities. Firstly, it shows that “sub-region life circle” has been a new general spatial sphere of residents' high-probability daily activity and mobility in China. Unlike the former analysis of the whole metropolitan or the micro community, “sub-region life circle” has its own characteristic on geographical sphere, functional element, spatial morphology and land distribution. Secondly, according to the analysis result with Binary Logistic Regression Model, the research also shows that seven factors including land-use mixed degree and bus station density impact the formation of “sub-region life circle” most, and then analyzes the index critical value of each factor. Finally, to establish a smarter “sub-region life circle”, this paper indicates that several strategies including jobs-housing fit, service cohesion and space reconstruction are the keys for its spatial organization optimization. This study expands the further understanding of cities' inner sub-region spatial structure based on human daily activity, and contributes to the theory of “life circle” in urban's meso-scale.

Keywords: sub-region life circle, characteristic, formation mechanism, human activity, spatial structure

Procedia PDF Downloads 299
2513 Information Communication Technology (ICT) Using Management in Nursing College under the Praboromarajchanok Institute

Authors: Suphaphon Udomluck, Pannathorn Chachvarat

Abstract:

Information Communication Technology (ICT) using management is essential for effective decision making in organization. The Concerns Based Adoption Model (CBAM) was employed as the conceptual framework. The purposes of the study were to assess the situation of Information Communication Technology (ICT) using management in College of Nursing under the Praboromarajchanok Institute. The samples were multi – stage sampling of 10 colleges of nursing that participated include directors, vice directors, head of learning groups, teachers, system administrator and responsible for ICT. The total participants were 280; the instrument used were questionnaires that include 4 parts, general information, Information Communication Technology (ICT) using management, the Stage of concern Questionnaires (SoC), and the Levels of Use (LoU) ICT Questionnaires respectively. Reliability coefficients were tested; alpha coefficients were 0.967for Information Communication Technology (ICT) using management, 0.884 for SoC and 0.945 for LoU. The data were analyzed by frequency, percentage, mean, standard deviation, Pearson Product Moment Correlation and Multiple Regression. They were founded as follows: The high level overall score of Information Communication Technology (ICT) using management and issue were administration, hardware, software, and people. The overall score of the Stage of concern (SoC)ICTis at high level and the overall score of the Levels of Use (LoU) ICTis at moderate. The Information Communication Technology (ICT) using management had the positive relationship with the Stage of concern (SoC)ICTand the Levels of Use (LoU) ICT(p < .01). The results of Multiple Regression revealed that administration hardwear, software and people ware could predict SoC of ICT (18.5%) and LoU of ICT (20.8%).The factors that were significantly influenced by SoCs were people ware. The factors that were significantly influenced by LoU of ICT were administration hardware and people ware.

Keywords: information communication technology (ICT), management, the concerns-based adoption model (CBAM), stage of concern(SoC), the levels of use(LoU)

Procedia PDF Downloads 315
2512 Investigation of the Effect of Lecturers' Attributes on Students' Interest in Learning Statistic Ghanaian Tertiary Institutions

Authors: Samuel Asiedu-Addo, Jonathan Annan, Yarhands Dissou Arthur

Abstract:

The study aims to explore the relational effect of lecturers’ personal attribute on student’s interest in statistics. In this study personal attributes of lecturers’ such as lecturer’s dynamism, communication strategies and rapport in the classroom as well as applied knowledge during lecture were examined. Here, exploratory research design was used to establish the effect of lecturer’s personal attributes on student’s interest. Data were analyzed by means of confirmatory factor analysis and structural equation modeling (SEM) using the SmartPLS 3 program. The study recruited 376 students from the faculty of technical and vocational education of the University of Education Winneba Kumasi campus, and Ghana Technology University College as well as Kwame Nkrumah University of science and Technology. The results revealed that personal attributes of an effective lecturer were lecturer’s dynamism, rapport, communication and applied knowledge contribute (52.9%) in explaining students interest in statistics. Our regression analysis and structural equation modeling confirm that lecturers personal attribute contribute effectively by predicting student’s interest of 52.9% and 53.7% respectively. The paper concludes that the total effect of a lecturer’s attribute on student’s interest is moderate and significant. While a lecturer’s communication and dynamism were found to contribute positively to students’ interest, they were insignificant in predicting students’ interest. We further showed that a lecturer’s personal attributes such as applied knowledge and rapport have positive and significant effect on tertiary student’s interest in statistic, whilst lecturers’ communication and dynamism do not significantly affect student interest in statistics; though positively related.

Keywords: student interest, effective teacher, personal attributes, regression and SEM

Procedia PDF Downloads 358
2511 Risk of Androgen Deprivation Therapy-Induced Metabolic Syndrome-Related Complications for Prostate Cancer in Taiwan

Authors: Olivia Rachel Hwang, Yu-Hsuan Joni Shao

Abstract:

Androgen Deprivation Therapy (ADT) has been a primary treatment for patients with advanced prostate cancer. However, it is associated with numerous adverse effects related to Metabolic Syndrome (MetS), including hypertension, diabetes, hyperlipidaemia, heart diseases and ischemic strokes. However, complications associated with ADT for prostate cancer in Taiwan is not well documented. The purpose of this study is to utilize the data from NHIRD (National Health Insurance Research Database) to examine the trajectory changes of MetS-related complications in men receiving ADT. The risks of developing complications after the treatment were analyzed with multivariate Cox regression model. Covariates including in the model were the complications before the diagnosis of prostate cancer, the age, and the year at cancer diagnosis. A total number of 17268 patients from 1997-2013 were included in this study. The exclusion criteria were patients with any other types of cancer or with the existing MetS-related complications. Changes in MetS-related complications were observed among two treatment groups: 1) ADT (n=9042), and 2) non-ADT (n=8226). The ADT group appeared to have an increased risk in hypertension (hazard ratio 1.08, 95% confidence interval 1.03-1.13, P = 0.001) and hyperlipidemia (hazard ratio 1.09, 95% confidence interval 1.01-1.17, P = 0.02) when compared with non-ADT group in the multivariate Cox regression analyses. In the risk of diabetes, heart diseases, and ischemic strokes, ADT group appeared to have an increased but not significant hazard ratio. In conclusion, ADT was associated with an increased risk in hypertension and hyperlipidemia in prostate cancer patients in Taiwan. The risk of hypertension and hyperlipidemia should be considered while deciding on ADT, especially those with the known history of hypertension and hyperlipidemia.

Keywords: androgen deprivation therapy, ADT, complications, metabolic syndrome, MetS, prostate cancer

Procedia PDF Downloads 286
2510 CO₂ Absorption Studies Using Amine Solvents with Fourier Transform Infrared Analysis

Authors: Avoseh Funmilola, Osman Khalid, Wayne Nelson, Paramespri Naidoo, Deresh Ramjugernath

Abstract:

The increasing global atmospheric temperature is of great concern and this has led to the development of technologies to reduce the emission of greenhouse gases into the atmosphere. Flue gas emissions from fossil fuel combustion are major sources of greenhouse gases. One of the ways to reduce the emission of CO₂ from flue gases is by post combustion capture process and this can be done by absorbing the gas into suitable chemical solvents before emitting the gas into the atmosphere. Alkanolamines are promising solvents for this capture process. Vapour liquid equilibrium of CO₂-alkanolamine systems is often represented by CO₂ loading and partial pressure of CO₂ without considering the liquid phase. The liquid phase of this system is a complex one comprising of 9 species. Online analysis of the process is important to monitor the concentrations of the liquid phase reacting and product species. Liquid phase analysis of CO₂-diethanolamine (DEA) solution was performed by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. A robust Calibration was performed for the CO₂-aqueous DEA system prior to an online monitoring experiment. The partial least square regression method was used for the analysis of the calibration spectra obtained. The models obtained were used for prediction of DEA and CO₂ concentrations in the online monitoring experiment. The experiment was performed with a newly built recirculating experimental set up in the laboratory. The set up consist of a 750 ml equilibrium cell and ATR-FTIR liquid flow cell. Measurements were performed at 400°C. The results obtained indicated that the FTIR spectroscopy combined with Partial least square method is an effective tool for online monitoring of speciation.

Keywords: ATR-FTIR, CO₂ capture, online analysis, PLS regression

Procedia PDF Downloads 195
2509 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 103
2508 Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

Authors: Hanifeh Imanian, Morteza Kolahdoozan

Abstract:

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Keywords: dispersion, marine environment, mathematical-statistical relationship, oil spill

Procedia PDF Downloads 232
2507 Use of Real Time Ultrasound for the Prediction of Carcass Composition in Serrana Goats

Authors: Antonio Monteiro, Jorge Azevedo, Severiano Silva, Alfredo Teixeira

Abstract:

The objective of this study was to compare the carcass and in vivo real-time ultrasound measurements (RTU) and their capacity to predict the composition of Serrana goats up to 40% of maturity. Twenty one females (11.1 ± 3.97 kg) and Twenty one males (15.6 ± 5.38 kg) were utilized to made in vivo measurements with a 5 MHz probe (ALOKA 500V scanner) at the 9th-10th, 10th-11th thoracic vertebrae (uT910 and uT1011, respectively), at the 1st- 2nd, 3rd-4th, and 4th-5th lumbar vertebrae (uL12, ul34 and uL45, respectively) and also at the 3rd-4th sternebrae (EEST). It was recorded the images of RTU measurements of Longissimus thoracis et lumborum muscle (LTL) depth (EM), width (LM), perimeter (PM), area (AM) and subcutaneous fat thickness (SFD) above the LTL, as well as the depth of tissues of the sternum (EEST) between the 3rd-4th sternebrae. All RTU images were analyzed using the ImageJ software. After slaughter, the carcasses were stored at 4 ºC for 24 h. After this period the carcasses were divided and the left half was entirely dissected into muscle, dissected fat (subcutaneous fat plus intermuscular fat) and bone. Prior to the dissection measurements equivalent to those obtained in vivo with RTU were recorded. Using the Statistica 5, correlation and regression analyses were performed. The prediction of carcass composition was achieved by stepwise regression procedure, with live weight and RTU measurements with and without transformation of variables to the same dimension. The RTU and carcass measurements, except for SFD measurements, showed high correlation (r > 0.60, P < 0.001). The RTU measurements and the live weight, showed ability to predict carcass composition on muscle (R2 = 0.99, P < 0.001), subcutaneous fat (R2 = 0.41, P < 0.001), intermuscular fat (R2 = 0.84, P < 0.001), dissected fat (R2 = 0.71, P < 0.001) and bone (R2 = 0.94, P < 0.001). The transformation of variables allowed a slight increase of precision, but with the increase in the number of variables, with the exception of subcutaneous fat prediction. In vivo measurements by RTU can be applied to predict kid goat carcass composition, from 5 measurements of RTU and the live weight.

Keywords: carcass, goats, real time, ultrasound

Procedia PDF Downloads 259
2506 Effects of Crisis-Induced Emotions on in-Crisis Protective Behavior and Post-Crisis Perception: An Analysis of Survey Data for the 2015 Middle East Respiratory Syndrome in South Korea

Authors: Myoungsoon You, Heejung Son

Abstract:

Background: In the current study, we investigated the effects of emotions induced by an infectious disease outbreak on the various protective behaviors taken during the crisis and on the perception after the crisis. The investigation was based on two psychological theories of appraisal tendency and action tendency. Methods: A total of 900 participants in South Korea who experienced the 2015 Middle East Respiratory Syndrome outbreak were sampled by a professional survey agency. To assess the influence of the emotions fear and anger, a regression approach was used. The effect of emotions on various protective behaviors and perceptions was observed using a hierarchical regression method. Results: Fear and anger induced by the infectious disease outbreak were both associated with increased protective behaviors during the crisis. However, the differences between the emotions were observed. While protective behaviors with avoidance tendency (adherence to recommendations, self-mitigation), were raised by both fear and anger, protective behaviors with approach tendency (information-seeking) were increased by anger, but not fear. Regarding the effect of emotion on the risk perception after the crisis, only fear was associated with a higher level of risk perception. Conclusions: This study confirmed the role of emotions in crisis protective behaviors and post-crisis perceptions regarding an infectious disease outbreak. These findings could enhance understanding of the public’s protective behaviors during infectious disease outbreaks and afterward risk perception corresponding to emotions. The results also suggested strategies for communicating with the public that takes into account emotions that are prominently induced by crises associated with disease outbreaks.

Keywords: crisis communication, emotion, infectious disease outbreak, protective behavior, risk perception

Procedia PDF Downloads 275
2505 Economics of Milled Rice Marketing in Gombe Metropolis, Gombe State, Nigeria

Authors: Suleh Yusufu Godi, Ado Makama Adamu

Abstract:

Marketing involves all the legal, physical, and economic services which are necessary in moving products from producer to consumers. The more efficient the marketing functions are performed the better the marketing system for the farmers, marketing agents, and the society at large. Rice marketing ensures the flow of product from producers to consumers in the form, time and place of need. Therefore, this study examined profitability of milled rice marketing in Gombe metropolis, Gombe State. Data were collected using structured questionnaires from ninety randomly selected rice marketers in Gombe metropolis. The data were analyzed using descriptive statistics, farm budget technique and regression analysis. The study revealed the total rice marketing cost incurred by rice marketers to be N6, 610,214.70. This gave an average of N73, 446.83 per marketer and N37.30 per Kilogram of rice. The Gross Income for rice marketers in Gombe metropolis was N15, 064,600.00. This value gave an average of N167, 384.44 per rice marketer or N85.00 per kilogram of rice. The study also revealed net income for all rice marketers to be N8, 454,385.30. This gave an average of N93, 937.61 per rice marketer or N47.70 per Kilogram of rice. The study further revealed a marketing margin, marketing efficiency and return per naira invested on rice marketing to be 39.30%, 150.16% and N0.56, respectively. The result of regression analysis shows that age, sex and cost of transportation are positive and significantly affect marketing margin of rice marketers in Gombe Metropolis. However, the main constraints to rice marketing in Gombe metropolis include inadequate electricity, capital, high transportation cost, instability of prices and low patronage among others. The study recommends provision of adequate electrical power supply in the State especially the State capital and also encouraging rice marketers in Gombe metropolis to form cooperative societies so as to have easy access to credit facilities especially from the formal sources.

Keywords: rice marketers, milled rice, cost and return, marketing margin, efficiency, profitability

Procedia PDF Downloads 77
2504 Multiplying Vulnerability of Child Health Outcome and Food Diversity in India

Authors: Mukesh Ravi Raushan

Abstract:

Despite consideration of obesity as a deadly public health issue contributing 2.6 million deaths worldwide every year developing country like India is facing malnutrition and it is more common than in Sub-Saharan Africa. About one in every three malnourished children in the world lives in India. The paper assess the nutritional health among children using data from total number of 43737 infant and young children aged 0-59 months (µ = 29.54; SD = 17.21) of the selected households by National Family Health Survey, 2005-06. The wasting was measured by a Z-score of standardized weight-for-height according to the WHO child growth standards. The impact of education with place of residence was found to be significantly associated with the complementary food diversity score (CFDS) in India. The education of mother was positively associated with the CFDS but the degree of performance was lower in rural India than their counterpart from urban. The result of binary logistic regression on wasting with WHO seven types of recommended food for children in India suggest that child who consumed the milk product food (OR: 0.87, p<0.0001) were less likely to be malnourished than their counterparts who did not consume, whereas, in case of other food items as the child who consumed food product of seed (OR: 0.75, p<0.0001) were less likely to be malnourished than those who did not. The nutritional status among children were negatively associated with the protein containing complementary food given the child as those child who received pulse in last 24 hour were less likely to be wasted (OR: 0.87, p<0.00001) as compared to the reference categories. The frequency to feed the indexed child increases by 10 per cent the expected change in child health outcome in terms of wasting decreases by 2 per cent in India when place of residence, education, religion, and birth order were controlled. The index gets improved as the risk for malnutrition among children in India decreases.

Keywords: CFDS, food diversity index, India, logistic regression

Procedia PDF Downloads 260
2503 The Relationships among Learning Emotion, Major Satisfaction, Learning Flow, and Academic Achievement in Medical School Students

Authors: S. J. Yune, S. Y. Lee, S. J. Im, B. S. Kam, S. Y. Baek

Abstract:

This study explored whether academic emotion, major satisfaction, and learning flow are associated with academic achievement in medical school. We know that emotion and affective factors are important factors in students' learning and performance. Emotion has taken the stage in much of contemporary educational psychology literature, no longer relegated to secondary status behind traditionally studied cognitive constructs. Medical school students (n=164) completed academic emotion, major satisfaction, and learning flow online survey. Academic performance was operationalized as students' average grade on two semester exams. For data analysis, correlation analysis, multiple regression analysis, hierarchical multiple regression analyses and ANOVA were conducted. The results largely confirmed the hypothesized relations among academic emotion, major satisfaction, learning flow and academic achievement. Positive academic emotion had a correlation with academic achievement (β=.191). Positive emotion had 8.5% explanatory power for academic achievement. Especially, sense of accomplishment had a significant impact on learning performance (β=.265). On the other hand, negative emotion, major satisfaction, and learning flow did not affect academic performance. Also, there were differences in sense of great (F=5.446, p=.001) and interest (F=2.78, p=.043) among positive emotion, boredom (F=3.55, p=.016), anger (F=4.346, p=.006), and petulance (F=3.779, p=.012) among negative emotion by grade. This study suggested that medical students' positive emotion was an important contributor to their academic achievement. At the same time, it is important to consider that some negative emotions can act to increase one’s motivation. Of particular importance is the notion that instructors can and should create learning environment that foster positive emotion for students. In doing so, instructors improve their chances of positively impacting students’ achievement emotions, as well as their subsequent motivation, learning, and performance. This result had an implication for medical educators striving to understand the personal emotional factors that influence learning and performance in medical training.

Keywords: academic achievement, learning emotion, learning flow, major satisfaction

Procedia PDF Downloads 267
2502 Comparison of Cervical Length Using Transvaginal Ultrasonography and Bishop Score to Predict Succesful Induction

Authors: Lubena Achmad, Herman Kristanto, Julian Dewantiningrum

Abstract:

Background: The Bishop score is a standard method used to predict the success of induction. This examination tends to be subjective with high inter and intraobserver variability, so it was presumed to have a low predictive value in terms of the outcome of labor induction. Cervical length measurement using transvaginal ultrasound is considered to be more objective to assess the cervical length. Meanwhile, this examination is not a complicated procedure and less invasive than vaginal touché. Objective: To compare transvaginal ultrasound and Bishop score in predicting successful induction. Methods: This study was a prospective cohort study. One hundred and twenty women with singleton pregnancies undergoing induction of labor at 37 – 42 weeks and met inclusion and exclusion criteria were enrolled in this study. Cervical assessment by both transvaginal ultrasound and Bishop score were conducted prior induction. The success of labor induction was defined as an ability to achieve active phase ≤ 12 hours after induction. To figure out the best cut-off point of cervical length and Bishop score, receiver operating characteristic (ROC) curves were plotted. Logistic regression analysis was used to determine which factors best-predicted induction success. Results: This study showed significant differences in terms of age, premature rupture of the membrane, the Bishop score, cervical length and funneling as significant predictors of successful induction. Using ROC curves found that the best cut-off point for prediction of successful induction was 25.45 mm for cervical length and 3 for Bishop score. Logistic regression was performed and showed only premature rupture of membranes and cervical length ≤ 25.45 that significantly predicted the success of labor induction. By excluding premature rupture of the membrane as the indication of induction, cervical length less than 25.3 mm was a better predictor of successful induction. Conclusion: Compared to Bishop score, cervical length using transvaginal ultrasound was a better predictor of successful induction.

Keywords: Bishop Score, cervical length, induction, successful induction, transvaginal sonography

Procedia PDF Downloads 324
2501 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 375
2500 The Inherent Flaw in the NBA Playoff Structure

Authors: Larry Turkish

Abstract:

Introduction: The NBA is an example of mediocrity and this will be evident in the following paper. The study examines and evaluates the characteristics of the NBA champions. As divisions and playoff teams increase, there is an increase in the probability that the champion originates from the mediocre category. Since it’s inception in 1947, the league has been mediocre and continues to this day. Why does a professional league allow any team with a less than 50% winning percentage into the playoffs? As long as the finances flow into the league, owners will not change the current algorithm. The objective of this paper is to determine if the regular season has meaning in finding an NBA champion. Statistical Analysis: The data originates from the NBA website. The following variables are part of the statistical analysis: Rank, the rank of a team relative to other teams in the league based on the regular season win-loss record; Winning Percentage of a team based on the regular season; Divisions, the number of divisions within the league and Playoff Teams, the number of playoff teams relative to a particular season. The following statistical applications are applied to the data: Pearson Product-Moment Correlation, Analysis of Variance, Factor and Regression analysis. Conclusion: The results indicate that the divisional structure and number of playoff teams results in a negative effect on the winning percentage of playoff teams. It also prevents teams with higher winning percentages from accessing the playoffs. Recommendations: 1. Teams that have a winning percentage greater than 1 standard deviation from the mean from the regular season will have access to playoffs. (Eliminates mediocre teams.) 2. Eliminate Divisions (Eliminates weaker teams from access to playoffs.) 3. Eliminate Conferences (Eliminates weaker teams from access to the playoffs.) 4. Have a balanced regular season schedule, (Reduces the number of regular season games, creates equilibrium, reduces bias) that will reduce the need for load management.

Keywords: alignment, mediocrity, regression, z-score

Procedia PDF Downloads 128
2499 The Relation between Coping Strategies with Stress and Mental Health Situation in Flying Addicted Family of Self Introducer and Private

Authors: Farnoush Haghanipour

Abstract:

Recent research studies relation between coping strategies with stress and mental health situation in flying addicted family of self-introducer and private, Units of Guilan province. For this purpose 251 family (parent, spouse), that referred to private and self-introducer centers to break out of drug are selected in random sampling form. Research method was cross sectional-descriptive and purpose of research was fixing of between kinds of coping strategies with stress and mental health condition with attention to demographic variables. Therefore to collection of information, coping strategies questionnaire (CSQ) and mental health questionnaire (GHQ) was used and finally data analyzed by descriptive statistical methods (average, standard deviation) and inferential statistical correlation coefficient and regression. Study of correlation coefficient between mental healths with problem focused emotional focused and detachment strategies in level more than %99 is confirmed. Also mental health with avoidant focused hasn't correlation in other words relation is between mental health with problem focused strategies (r= 0/34) and emotional focused with mental health (r=0.52) and detachment with mental health (r= 0.18) in meaningful level 0.05. And also relation is between emotional focused strategies and mental health (r= 0.034) that is meaningless in Alpha 0.05. Also relation between problem processed coping strategies and mental health situation with attention to demographic variable is meaningful and relation level verified in confidence level more than 0.99. And result of anticipation equation regression statistical test has most a have in problem focused coping strategy, mental health, but relation of the avoidant emotional, detachment strategy with mental health was meaningless with attention to demographic variables.

Keywords: stress, coping strategy with stress, mental health, self introducer and private

Procedia PDF Downloads 308
2498 Business Survival During Economic Crises: A Comparison Between Family and Non-family Firms

Authors: A. Hayrapetyan, A. Simon, P. Marques, G. Renart

Abstract:

Business survival is a question of greatest interest for any economy. Firm characteristics that can explain or predict performance and, ultimately, business survival become of the greatest significance, as the sustainable longevity of any business can mean health for the future of the country. Family Firms (FFs) are one of the most ubiquitous forms of business worldwide, as more than half of European firms (60%) are considered as family firms. Therefore, the inherent characteristics of FFs are one of the possible explanatory variables for firm survival because FFs have strategic goals that differentiate them from other types of businesses. Although there is literature on the performance of FFs across generations, there are fewer studies on the factors that impact the survival of family and non-family FFs, as there is a lack of data on failed firms. To address this gap, this paper explores the differential survival of family firms versus non-family firms with a representative sample of companies of the region of Catalonia (Northeast of Spain) that were adhoc classified as family or nonfamily firms, as well as classified as failed or surviving, since no census data for family firms or for failed firms is available in Spain. By using the COX regression model on a representative sample of 629 family and non-family firms, this study investigates to what extent financial ratios, such as Liquidity, Solvency Rate can impact business survival, taking into consideration the socioemotional side of family firms, as well as revealing the differences between family and non-family firms. The findings show that the liquidity rate is significant for non-family firm survival, whereas not for family firms. On the other hand, FFs can benefit while having a higher solvency rate. Ultimately, this paper discovers that FFs increase their chances of survival when they are small, as the growth in size starts negatively impacting the socioemotional objectives of the firm. This study proves the existence of significant differences between family and non-family firms’ survival during economic crises, suggesting that the prioritization of emotional wealth creates distinct conditions for both types of firms.

Keywords: COX regression, economy crises, family firm, non-family firm, survival

Procedia PDF Downloads 69
2497 Analysing the Interactive Effects of Factors Influencing Sand Production on Drawdown Time in High Viscosity Reservoirs

Authors: Gerald Gwamba, Bo Zhou, Yajun Song, Dong Changyin

Abstract:

The challenges that sand production presents to the oil and gas industry, particularly while working in poorly consolidated reservoirs, cannot be overstated. From restricting production to blocking production tubing, sand production increases the costs associated with production as it elevates the cost of servicing production equipment over time. Production in reservoirs that present with high viscosities, flow rate, cementation, clay content as well as fine sand contents is even more complex and challenging. As opposed to the one-factor at a-time testing, investigating the interactive effects arising from a combination of several factors offers increased reliability of results as well as representation of actual field conditions. It is thus paramount to investigate the conditions leading to the onset of sanding during production to ensure the future sustainability of hydrocarbon production operations under viscous conditions. We adopt the Design of Experiments (DOE) to analyse, using Taguchi factorial designs, the most significant interactive effects of sanding. We propose an optimized regression model to predict the drawdown time at sand production. The results obtained underscore that reservoirs characterized by varying (high and low) levels of viscosity, flow rate, cementation, clay, and fine sand content have a resulting impact on sand production. The only significant interactive effect recorded arises from the interaction between BD (fine sand content and flow rate), while the main effects included fluid viscosity and cementation, with percentage significances recorded as 31.3%, 37.76%, and 30.94%, respectively. The drawdown time model presented could be useful for predicting the time to reach the maximum drawdown pressure under viscous conditions during the onset of sand production.

Keywords: factorial designs, DOE optimization, sand production prediction, drawdown time, regression model

Procedia PDF Downloads 150
2496 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations

Authors: Nanine Fouche

Abstract:

The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.

Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance

Procedia PDF Downloads 174
2495 A Study on Wage Discrimination Between Young and Middle-Aged Workers in Indian Informal Sector: Evidence from Periodic Labour Force Survey

Authors: Dharshini S.

Abstract:

India is currently experiencing a shift in wage discrimination from gender, caste and religion to different age groups in both formal and informal sectors. In this milieu, this study examines wage discrimination in the informal labour market between young people (15-29 years) and middle-aged people (30-59 years) among regular and casual employees in the Indian informal sector. The data was collected using periodic labour force (PLFS), and the original data was extracted from the National Sample Survey Office (NSSO) under the Ministry of Statistics and Programme Implementation (MOSPI), Government of India. The OLS regression model explores the determinants of wages for both regular and casual employees. Moreover, the Blinder Oaxaca decomposition method is used to explore the explained and unexplained components of this wage discrimination. The younger people (regular and casual employees) get lower wages as compared to middle-aged employees in the informal sector. The regression result follows the human capital theory, where education, job experience and higher occupation help to raise the wage rate of middle-aged people more than young-aged people in regular work. Furthermore, we found the rising trend of wage discrimination between the above groups over the years from 2017-18 to 2022-23. Unexplained factors (discrimination effects) contribute more to the wage differentiation between the young and middle age groups. It indicates that wage discrimination persists among regular and casual employees in the informal labour market, which is not a good sign for the economy. For the betterment of workers who face discrimination for age, the policies and programs should be implemented like other countries such as the U.S.A to stop age discrimination due to stereotypes in India.

Keywords: wage discrimination, young workers, middle workers, Informal sector, blinder oaxaca decomposition, PLFS.

Procedia PDF Downloads 10
2494 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 103