Search results for: long-term storage container
1531 City-Wide Simulation on the Effects of Optimal Appliance Scheduling in a Time-of-Use Residential Environment
Authors: Rudolph Carl Barrientos, Juwaln Diego Descallar, Rainer James Palmiano
Abstract:
Household Appliance Scheduling Systems (HASS) coupled with a Time-of-Use (TOU) pricing scheme, a form of Demand Side Management (DSM), is not widely utilized in the Philippines’ residential electricity sector. This paper’s goal is to encourage distribution utilities (DUs) to adopt HASS and TOU by analyzing the effect of household schedulers on the electricity price and load profile in a residential environment. To establish this, a city based on an implemented survey is generated using Monte Carlo Analysis (MCA). Then, a Binary Particle Swarm Optimization (BPSO) algorithm-based HASS is developed considering user satisfaction, electricity budget, appliance prioritization, energy storage systems, solar power, and electric vehicles. The simulations were assessed under varying levels of user compliance. Results showed that the average electricity cost, peak demand, and peak-to-average ratio (PAR) of the city load profile were all reduced. Therefore, the deployment of the HASS and TOU pricing scheme is beneficial for both stakeholders.Keywords: appliance scheduling, DSM, TOU, BPSO, city-wide simulation, electric vehicle, appliance prioritization, energy storage system, solar power
Procedia PDF Downloads 991530 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes
Authors: Ahmed Al-Adaileh
Abstract:
Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process
Procedia PDF Downloads 2021529 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 3411528 Estimating Pile Toe Levels for Capacity Assessment of Piers and Wharves in the Philippines
Authors: Ailvy Faith Zamora, Serj Donn David, Michael Anderson
Abstract:
There are a number of decades-old piers and wharves in Manila, Philippines, that are currently being used for container and bulk cargo handling port operations. These structures fulfill a very important role in the economy and hence have undergone rehabilitation and assessment of capacity to accommodate current and future operational requirements. The capacity assessment would include structural and pile geotechnical evaluation. Unfortunately, old marine structures in the Philippines may not have a complete set of as-built information. In certain instances, critical information, such as pile toe levels, is missing in the documentation. A combination of direct tests, geophysical tests, and numerical analysis/modelling has been performed to estimate existing pile toe levels of open-type piers and anchored quay wall wharves in Manila. These techniques were applied to both concrete and steel piles. This paper presents the tools utilized, testing setup, and techniques used for estimating toe levels of existing piles for certain structures, including the challenges encountered and applied solutions.Keywords: geophysical testing, pile toe level, structural assessment, piers, wharves
Procedia PDF Downloads 1291527 Preservative Potentials of Piper Guineense on Roma Tomato (Solanum lycopersicum) Fruit
Authors: Grace O. Babarinde, Adegoke O.Gabriel, Rahman Akinoso, Adekanye Bosede R.
Abstract:
Health risks associated with the use of synthetic chemicals to control post-harvest losses in fruit calls for use of natural biodegradable compounds. The potential of Piper guineense as postharvest preservative for Roma tomato (Solanum lycopersicum L.) was investigated. Freshly harvested red tomato (200 g) was dipped into five concentrations (1, 2, 3, 4 and 5% w/v) of P. guineense aqueous extract, while untreated fruits served as control. The samples were stored under refrigeration and analysed at 5-day interval for physico-chemical properties. P. guineense essential oil (EO) was characterised using GC-MS and its tomato preservative potential was evaluated. Percentage weight loss (PWL) in extract-treated tomato ranged from 0.0-0.68% compared to control (0.3-19.97%) during storage. Values obtained for firmness ranged from 8.23-16.88 N and 8.4 N in extract-treated and control. pH reduced from 5.4 to 4.5 and 3.7 in extract-treated and untreated samples, respectively. Highest value of Total Soluble Solid (1.8 °Brix) and maximum retention of Ascorbic acid (13.0 mg/100 g) were observed in 4% P. guineense-treated samples. Predominant P. guineense EO components were zingiberene (9.9%), linalool (10.7%), β-caryophyllene (12.6%), 1, 5-Heptadiene, 6-methyl-2-(4-methyl-3-cyclohexene-l-yl) (16.4%) and β-sesquiphellandrene (23.7%). Tomatoes treated with EO had lower PWL (5.2%) and higher firmness (14.2 N) than controls (15.3% and 11.9 N) respectively. The result indicates that P. guineense can be incorporated in to post harvest technology of Roma tomato fruit.Keywords: aqueous extract, essential oil, piper guineense, Roma tomato, storage condition
Procedia PDF Downloads 4761526 Assessment of Rock Masses Performance as a Support of Lined Rock Cavern for Isothermal Compressed Air Energy Storage
Authors: Vathna Suy, Ki-Il Song
Abstract:
In order to store highly pressurized gas such as an isothermal compressed air energy storage, Lined Rock Caverns (LRC) are constructed underground and supported by layers of concrete, steel and rock masses. This study aims to numerically investigate the performance of rock masses which serve as a support of Lined Rock Cavern subjected to high cyclic pressure loadings. FLAC3D finite different software is used for the simulation since the software can effectively model the behavior of concrete lining and steel plate with its built-in structural elements. Cyclic pressure loadings are applied onto the inner surface of the cavern which then transmitted to concrete, steel and eventually to the surrounding rock masses. Changes of stress and strain are constantly monitored throughout all the process of loading operations. The results at various monitoring locations are then extracted and analyzed to assess the response of the rock masses, specifically on its ability to absorb energy during loadings induced by the changes of cyclic pressure loadings inside the cavern. By analyzing the obtained data of stress-strain relation and taking into account the behavior of materials under the effect of strain-dependency, conclusions on the performance of rock masses subjected to high cyclic loading conditions are drawn.Keywords: cyclic loading, FLAC3D, lined rock cavern (LRC), strain-dependency
Procedia PDF Downloads 2451525 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis
Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal
Abstract:
Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage
Procedia PDF Downloads 1551524 Design of a Service-Enabled Dependable Integration Environment
Authors: Fuyang Peng, Donghong Li
Abstract:
The aim of information systems integration is to make all the data sources, applications and business flows integrated into the new environment so that unwanted redundancies are reduced and bottlenecks and mismatches are eliminated. Two issues have to be dealt with to meet such requirements: the software architecture that supports resource integration, and the adaptor development tool that help integration and migration of legacy applications. In this paper, a service-enabled dependable integration environment (SDIE), is presented, which has two key components, i.e., a dependable service integration platform and a legacy application integration tool. For the dependable platform for service integration, the service integration bus, the service management framework, the dependable engine for service composition, and the service registry and discovery components are described. For the legacy application integration tool, its basic organization, functionalities and dependable measures taken are presented. Due to its service-oriented integration model, the light-weight extensible container, the service component combination-oriented p-lattice structure, and other features, SDIE has advantages in openness, flexibility, performance-price ratio and feature support over commercial products, is better than most of the open source integration software in functionality, performance and dependability support.Keywords: application integration, dependability, legacy, SOA
Procedia PDF Downloads 3601523 Optimized Marketing of Bidirectional Charging Capacities for Commercial Freight Transport
Authors: Luzie Krings
Abstract:
The electrification of the transport sector is increasingly recognized as a vital strategy for decarbonization. However, integrating electric vehicles (EVs) into the energy grid poses challenges due to decentralized power units and the intermittent nature of renewable energy sources. Vehicle-to-grid (V2G) technology offers a compelling solution by enabling EVs to function as mobile storage units, providing system services, reducing grid congestion, and offering economic incentives. This potential is particularly significant in freight transport, which accounts for 38% of transport-related emissions. The aggregated use of energy storage in this sector can facilitate grid stability and renewable energy integration. Despite this, existing optimization methods for energy markets frequently overlook operational constraints, such as fixed schedules and state-of-charge requirements, while redispatch markets remain underutilized. This study introduces a risk-averse optimization model for marketing EV flexibilities across multiple energy markets in Germany. Using a linear optimization framework, the model incorporates technical, regulatory, and user constraints. EVs are modeled as energy storage units, and the integration of renewable energy sources, such as photovoltaic (PV) and wind energy, is evaluated. To benchmark performance, unidirectional charging with dynamic tariffs is used as the reference scenario. The research examines four distinct logistics depot fleets, each with varying capacities and schedules, to simulate commercial EV operations. The methodology employs a multi-market optimization model that integrates Day-Ahead, Intraday, and Redispatch energy markets, each with specific trading conditions and temporal offsets. The tool, developed using the Python-based library energy pilot by Fraunhofer IEE, also explores scenarios where proprietary renewable energy sources are incorporated to maximize benefits. By accounting for charging schedules, market requirements, and technical constraints, the study aims to enhance grid stability and improve economic outcomes and integration of renewable energies. The findings highlight the economic, environmental, and grid-related advantages of optimizing EV flexibility. Compared to the reference scenario of unidirectional charging, bidirectional strategies delivered an approximate economic benefit of 20%. Furthermore, the integration of proprietary renewable energy sources increased by 15%, demonstrating the potential for environmental gains. The study revealed that the duration of a single charging cycle has a greater impact on economic benefits than the total daily charging time spread across multiple cycles. This underscores the marketing potential of vehicles with extended idle times rather than frequent charging cycles. In conclusion, optimizing energy trading through flexible EV portfolios and efficient charging infrastructure offers substantial cost savings, particularly by increasing the number of charging stations and extending charging cycle durations. By leveraging multiple marketing options, high investment costs can be offset through enhanced revenues. Further gains could be achieved by simultaneously optimizing all trading options, though this approach introduces risks from price volatility and unreliable redispatch capacities. As electrified trucks are modeled as energy storage units, the study's findings are applicable to other forms of energy storage, offering a scalable and transferable framework for future energy systems.Keywords: electric vehicles, energy markets, energy storage, energy grid
Procedia PDF Downloads 01522 Experimental Quantification and Modeling of Dissolved Gas during Hydrate Crystallization: CO₂ Hydrate Case
Authors: Amokrane Boufares, Elise Provost, Veronique Osswald, Pascal Clain, Anthony Delahaye, Laurence Fournaison, Didier Dalmazzone
Abstract:
Gas hydrates have long been considered as problematic for flow assurance in natural gas and oil transportation. On the other hand, they are now seen as future promising materials for various applications (i.e. desalination of seawater, natural gas and hydrogen storage, gas sequestration, gas combustion separation and cold storage and transport). Nonetheless, a better understanding of the crystallization mechanism of gas hydrate and of their formation kinetics is still needed for a better comprehension and control of the process. To that purpose, measuring the real-time evolution of the dissolved gas concentration in the aqueous phase during hydrate formation is required. In this work, CO₂ hydrates were formed in a stirred reactor equipped with an Attenuated Total Reflection (ATR) probe coupled to a Fourier Transform InfraRed (FTIR) spectroscopy analyzer. A method was first developed to continuously measure in-situ the CO₂ concentration in the liquid phase during solubilization, supersaturation, hydrate crystallization and dissociation steps. Thereafter, the measured concentration data were compared with those of equilibrium concentrations. It was observed that the equilibrium is instantly reached in the liquid phase due to the fast consumption of dissolved gas by the hydrate crystallization. Consequently, it was shown that hydrate crystallization kinetics is limited by the gas transfer at the gas-liquid interface. Finally, we noticed that the liquid-hydrate equilibrium during the hydrate crystallization is governed by the temperature of the experiment under the tested conditions.Keywords: gas hydrate, dissolved gas, crystallization, infrared spectroscopy
Procedia PDF Downloads 2831521 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture
Authors: S. Teimouri, S. Abbasi
Abstract:
Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.Keywords: prebiotic, inulin, casein, stabilization, stevioside
Procedia PDF Downloads 2741520 Uses and Manufacturing of Beech Corrugated Plywood
Authors: Prochazka Jiri, Beranek Tomas, Podlena Milan, Zeidler Ales
Abstract:
The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications.Keywords: corrugated plywood, veneer, beech plywood, ISO shipping container, I-joist
Procedia PDF Downloads 3381519 Evaluation of Oxidative Changes in Soybean Oil During Shelf-Life by Physico-Chemical Methods and Headspace-Liquid Phase Microextraction (HS-LPME) Technique
Authors: Maryam Enteshari, Kooshan Nayebzadeh, Abdorreza Mohammadi
Abstract:
In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV), and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4˚C between p-AV and TBA (r2=0.99).Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil
Procedia PDF Downloads 4041518 The Effect of Probiotic Bacteria on Aflatoxin M1 Detoxification in Phosphate Buffer Saline
Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Mevlude Kizil
Abstract:
Aflatoxin M1 (AFM1) is a major toxic and carcinogenic molecule in milk and milk products. Therefore, it poses a risk for public health. Probiotics can be biological agent to remove AFM1. The aim of this study is to evaluate the effect of probiotic bacteria on AFM1 detoxification in phosphate buffer saline. The PBS samples artificially contaminated with AFM1 at concentration 100 pg/ml were prepared with probiotics bacteria that including monoculture (L. plantarum, B. bifidum ATCC, B. animalis ATCC 27672) and binary culture (L. bulgaricus + S. thermophiles, B. bifidum ATCC + B. animalis ATCC 27672, L. plantarum+B. bifidum ATCC, L. plantarum+ B. animalis ATCC 27672). The samples were incubated at 37°C for 4 hours and stored for 1, 5 and 10 days. The toxin was measured by the ELISA. The highest levels of AFM1 binding ability (63.6%) in PBS were detected yoghurt starter bacteria, while L. plantarum had the lowest levels of AFM1 binding ability (35.5%) in PBS. In addition, it was found that there was significant effect of storage on AFM1 binding ability in all groups except the one including B. animalis (p < 0.05). Consequently, results demonstrate that AFM1 detoxification by probiotic bacteria has a potential application to reduce toxin concentrations in yoghurt. Moreover, probiotic strains can react with itself as synergic or antagonist.Keywords: aflatoxin M1, ELISA, probiotics, storage
Procedia PDF Downloads 3301517 A Theoretical Study of and Phase Change Material Layered Roofs under Specific Climatic Regions in Turkey and the United Kingdom
Authors: Tugba Gurler, Irfan Kurtbas
Abstract:
Roof influences considerably energy demand of buildings. In order to reduce this energy demand, various solutions have been proposed, such as roofs with variable thermal insulation, cool roofs, green roofs, heat exchangers and ventilated roofs, and phase change material (PCM) layered roofs. PCMs suffer from relatively low thermal conductivity despite of their promise of the energy-efficiency initiatives for thermal energy storage (TES). This study not only presents the thermal performance of the concrete roof with PCM layers but also evaluates the products with different design configurations and thicknesses under Central Anatolia Region, Turkey and Nottinghamshire, UK weather conditions. System design limitations and proposed prediction models are discussed in this study. A two-dimensional numerical model has been developed, and governing equations have been solved at each time step. Upper surfaces of the roofs have been modelled with heat flux conditions, while lower surfaces of the roofs with boundary conditions. In addition, suitable roofs have been modeled under symmetry boundary conditions. The results of the designed concrete roofs with PCM layers have been compared with common concrete roofs in Turkey. The UK and the numerical modeling results have been validated with the data given in the literature.Keywords: phase change material, regional energy demand, roof layers, thermal energy storage
Procedia PDF Downloads 1021516 NextCovps: Design and Stress Analysis of Dome Composite Overwrapped Pressure Vessels using Geodesic Trajectory Approach
Authors: Ammar Maziz, Prateek Gupta, Thiago Vasconcellos Birro, Benoit Gely
Abstract:
Hydrogen as a sustainable fuel has the highest energy density per mass as compared to conventional non-renewable sources. As the world looks to move towards sustainability, especially in the sectors of aviation and automotive, it becomes important to address the issue of storage of hydrogen as compressed gas in high-pressure tanks. To improve the design for the efficient storage and transportation of Hydrogen, this paper presents the design and stress analysis of Dome Composite Overwrapped Pressure Vessels (COPVs) using the geodesic trajectory approach. The geodesic trajectory approach is used to optimize the dome design, resulting in a lightweight and efficient structure. Python scripting is employed to implement the mathematical modeling of the COPV, and after validating the model by comparison to the published paper, stress analysis is conducted using Abaqus commercial code. The results demonstrate the effectiveness of the geodesic trajectory approach in achieving a lightweight and structurally sound dome design, as well as the accuracy and reliability of the stress analysis using Abaqus commercial code. This study provides insights into the design and analysis of COPVs for aerospace applications, with the potential for further optimization and application in other industries.Keywords: composite overwrapped pressure vessels, carbon fiber, geodesic trajectory approach, dome design, stress analysis, plugin python
Procedia PDF Downloads 921515 Integration of a Microbial Electrolysis Cell and an Oxy-Combustion Boiler
Authors: Ruth Diego, Luis M. Romeo, Antonio Morán
Abstract:
In the present work, a study of the coupling of a Bioelectrochemical System together with an oxy-combustion boiler is carried out; specifically, it proposes to connect the combustion gas outlet of a boiler with a microbial electrolysis cell (MEC) where the CO2 from the gases are transformed into methane in the cathode chamber, and the oxygen produced in the anode chamber is recirculated to the oxy-combustion boiler. The MEC mainly consists of two electrodes (anode and cathode) immersed in an aqueous electrolyte; these electrodes are separated by a proton exchange membrane (PEM). In this case, the anode is abiotic (where oxygen is produced), and it is at the cathode that an electroactive biofilm is formed with microorganisms that catalyze the CO2 reduction reactions. Real data from an oxy-combustion process in a boiler of around 20 thermal MW have been used for this study and are combined with data obtained on a smaller scale (laboratory-pilot scale) to determine the yields that could be obtained considering the system as environmentally sustainable energy storage. In this way, an attempt is made to integrate a relatively conventional energy production system (oxy-combustion) with a biological system (microbial electrolysis cell), which is a challenge to be addressed in this type of new hybrid scheme. In this way, a novel concept is presented with the basic dimensioning of the necessary equipment and the efficiency of the global process. In this work, it has been calculated that the efficiency of this power-to-gas system based on MEC cells when coupled to industrial processes is of the same order of magnitude as the most promising equivalent routes. The proposed process has two main limitations, the overpotentials in the electrodes that penalize the overall efficiency and the need for storage tanks for the process gases. The results of the calculations carried out in this work show that certain real potentials achieve an acceptable performance. Regarding the tanks, with adequate dimensioning, it is possible to achieve complete autonomy. The proposed system called OxyMES provides energy storage without energetically penalizing the process when compared to an oxy-combustion plant with conventional CO2 capture. According to the results obtained, this system can be applied as a measure to decarbonize an industry, changing the original fuel of the oxy-combustion boiler to the biogas generated in the MEC cell. It could also be used to neutralize CO2 emissions from industry by converting it to methane and then injecting it into the natural gas grid.Keywords: microbial electrolysis cells, oxy-combustion, co2, power-to-gas
Procedia PDF Downloads 1081514 A Simulation Study on the Applicability of Overbooking Strategies in Inland Container Transport
Authors: S. Fazi, B. Behdani
Abstract:
The inland transportation of maritime containers entails the use of different modalities whose capacity is typically booked in advance. Containers may miss their scheduled departure time at a terminal for several reasons, such as delays, change of transport modes, multiple bookings pending. In those cases, it may be difficult for transport service providers to find last minute containers to fill the vacant capacity. Similarly to other industries, overbooking could potentially limit these drawbacks at the cost of a lower service level in case of actual excess of capacity in overbooked rides. However, the presence of multiple modalities may provide the required flexibility in rescheduling and limit the dissatisfaction of the shippers in case of containers in overbooking. This flexibility is known with the term 'synchromodality'. In this paper, we evaluate via discrete event simulation the application of overbooking. Results show that in certain conditions overbooking can significantly increase profit and utilization of high-capacity means of transport, such as barges and trains. On the other hand, in case of high penalty costs and limited no-show, overbooking may lead to an excessive use of expensive trucks.Keywords: discrete event simulation, flexibility, inland shipping, multimodality, overbooking
Procedia PDF Downloads 1341513 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid
Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu
Abstract:
The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction
Procedia PDF Downloads 4321512 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column
Authors: G. Rajapakse, S. Jayasinghe, A. Fleming
Abstract:
This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter
Procedia PDF Downloads 1131511 The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales
Authors: Talal Al-Bazali, S. Mohammad
Abstract:
The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature.Keywords: capillary pressure, shale, temperature, thresshold
Procedia PDF Downloads 3711510 An Electrode Material for Ultracapacitors: Hydrothermal Synthesis of Neodymium Oxide/Manganese Oxide/Nitrogen Doped Reduced Graphene Oxide Ternary Nanocomposites
Authors: K. Saravanan, K. A.Rameshkumar, P. Maadeswaran
Abstract:
The depletion of fossil resources and the rise in global temperatures are two of the most important concerns we confront today. There are numerous renewable energy sources like solar power, tidal power, wind energy, radiant energy, hydroelectricity, geothermal energy, and biomass available to generate the needed energy demand. Engineers and scientists around the world are facing a massive barrier in the development of storage technologies for the energy developed from renewable energy sources. The development of electrochemical capacitors as a future energy storage technology is at the forefront of current research and development. This is due to the fact that the electrochemical capacitors have a significantly higher energy density, a faster charging-discharging rate, and a longer life span than capacitors, and they also have a higher power density than batteries, making them superior to both. In this research, electrochemical capacitors using the Nd2O3/Mn3O4/ N-rGO electrode material is chosen since the of hexagonal and tetragonal crystal structures of Nd2O3 and Mn3O4 and also has cycling stability of 68% over a long time at 50mVs-1 and a high coulombic efficiency of 99.64% at 5 Ag-1. This approach may also be used to create novel electrode materials with improved electrochemical and cyclic stability for high-performance supercapacitors.Keywords: Nd2O3/Mn3O4/N-rGO, nanocomposites, hydrothermal method, electrode material, specific capacitance, use of supercapacitors
Procedia PDF Downloads 961509 The Use of Water Resources Yield Model at Kleinfontein Dam
Authors: Lungile Maliba, O. I. Nkwonta, E Onyari
Abstract:
Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model
Procedia PDF Downloads 1391508 Effect of Different Media and Mannitol Concentrations on Growth and Development of Vandopsis lissochiloides (Gaudich.) Pfitz. under Slow Growth Conditions
Authors: J. Linjikao, P. Inthima, A. Kongbangkerd
Abstract:
In vitro conservation of orchid germplasm provides an effective technique for ex situ conservation of orchid diversity. In this study, an efficient protocol for in vitro conservation of Vandopsis lissochiloides (Gaudich.) Pfitz. plantlet under slow growth conditions was investigated. Plantlets were cultured on different strength of Vacin and Went medium (½VW and ¼VW) supplemented with different concentrations of mannitol (0, 2, 4, 6 and 8%), sucrose (0 and 3%) and 50 g/L potato extract, 150 mL/L coconut water. The cultures were incubated at 25±2 °C and maintained under 20 µmol/m2s light intensity for 24 weeks without subculture. At the end of preservation period, the plantlets were subcultured to fresh medium for growth recovery. The results found that the highest leaf number per plantlet could be observed on ¼VW medium without adding sucrose and mannitol while the highest root number per plantlet was found on ½VW added with 3% sucrose without adding mannitol after 24 weeks of in vitro storage. The results showed that the maximum number of leaves (5.8 leaves) and roots (5.0 roots) of preserved plantlets were produced on ¼VW medium without adding sucrose and mannitol. Therefore, ¼VW medium without adding sucrose and mannitol was the best minimum growth conditions for medium-term storage of V. lissochiloides plantlets.Keywords: preservation, vandopsis, germplasm, in vitro
Procedia PDF Downloads 1441507 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.Keywords: antimalarial medicines, counterfeit, substandard, TLC
Procedia PDF Downloads 3201506 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage
Authors: Pranjali Sharma, Swati Neogi
Abstract:
Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance
Procedia PDF Downloads 1471505 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango
Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree
Abstract:
Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4
Procedia PDF Downloads 2111504 Evaluation of NoSQL in the Energy Marketplace with GraphQL Optimization
Authors: Michael Howard
Abstract:
The growing popularity of electric vehicles in the United States requires an ever-expanding infrastructure of commercial DC fast charging stations. The U.S. Department of Energy estimates 33,355 publicly available DC fast charging stations as of September 2023. In 2017, 115,370 gasoline stations were operating in the United States, much more ubiquitous than DC fast chargers. Range anxiety is an important impediment to the adoption of electric vehicles and is even more relevant in underserved regions in the country. The peer-to-peer energy marketplace helps fill the demand by allowing private home and small business owners to rent their 240 Volt, level-2 charging facilities. The existing, publicly accessible outlets are wrapped with a Cloud-connected microcontroller managing security and charging sessions. These microcontrollers act as Edge devices communicating with a Cloud message broker, while both buyer and seller users interact with the framework via a web-based user interface. The database storage used by the marketplace framework is a key component in both the cost of development and the performance that contributes to the user experience. A traditional storage solution is the SQL database. The architecture and query language have been in existence since the 1970s and are well understood and documented. The Structured Query Language supported by the query engine provides fine granularity with user query conditions. However, difficulty in scaling across multiple nodes and cost of its server-based compute have resulted in a trend in the last 20 years towards other NoSQL, serverless approaches. In this study, we evaluate the NoSQL vs. SQL solutions through a comparison of Google Cloud Firestore and Cloud SQL MySQL offerings. The comparison pits Google's serverless, document-model, non-relational, NoSQL against the server-base, table-model, relational, SQL service. The evaluation is based on query latency, flexibility/scalability, and cost criteria. Through benchmarking and analysis of the architecture, we determine whether Firestore can support the energy marketplace storage needs and if the introduction of a GraphQL middleware layer can overcome its deficiencies.Keywords: non-relational, relational, MySQL, mitigate, Firestore, SQL, NoSQL, serverless, database, GraphQL
Procedia PDF Downloads 621503 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks
Authors: Angelina Chiglintseva, Vladislav Shagapov
Abstract:
We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks
Procedia PDF Downloads 3011502 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts
Authors: M. Javanmard
Abstract:
This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.Keywords: shelled walnut, MAP, quality, storage temperature
Procedia PDF Downloads 389