Search results for: local cluster detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9424

Search results for: local cluster detection

8704 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 254
8703 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite

Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher

Abstract:

In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.

Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection

Procedia PDF Downloads 164
8702 The Impact of Artificial Intelligence on Food Nutrition

Authors: Antonyous Fawzy Boshra Girgis

Abstract:

Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.

Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 40
8701 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 375
8700 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy

Authors: Grishma D. Solanki, Karshan Kandoriya

Abstract:

In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.

Keywords: copy-move image forgery, digital forensics, image forensics, image forgery

Procedia PDF Downloads 288
8699 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review

Authors: Ng Liang Shen, Hau Yuan Wen

Abstract:

Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.

Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS

Procedia PDF Downloads 376
8698 Hierarchical Cluster Analysis of Raw Milk Samples Obtained from Organic and Conventional Dairy Farming in Autonomous Province of Vojvodina, Serbia

Authors: Lidija Jevrić, Denis Kučević, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Milica Karadžić

Abstract:

In the present study, the Hierarchical Cluster Analysis (HCA) was applied in order to determine the differences between the milk samples originating from a conventional dairy farm (CF) and an organic dairy farm (OF) in AP Vojvodina, Republic of Serbia. The clustering was based on the basis of the average values of saturated fatty acids (SFA) content and unsaturated fatty acids (UFA) content obtained for every season. Therefore, the HCA included the annual SFA and UFA content values. The clustering procedure was carried out on the basis of Euclidean distances and Single linkage algorithm. The obtained dendrograms indicated that the clustering of UFA in OF was much more uniform compared to clustering of UFA in CF. In OF, spring stands out from the other months of the year. The same case can be noticed for CF, where winter is separated from the other months. The results could be expected because the composition of fatty acids content is greatly influenced by the season and nutrition of dairy cows during the year.

Keywords: chemometrics, clustering, food engineering, milk quality

Procedia PDF Downloads 280
8697 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth

Authors: Hatem Hajri, Mohamed-Cherif Rahal

Abstract:

Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.

Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter

Procedia PDF Downloads 171
8696 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 307
8695 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography

Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz

Abstract:

Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.

Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology

Procedia PDF Downloads 220
8694 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: local interconnect network, controller, transceiver, processor

Procedia PDF Downloads 288
8693 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi

Abstract:

This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 283
8692 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks

Authors: N. Nalini, Lokesh B. Bhajantri

Abstract:

In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.

Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology

Procedia PDF Downloads 452
8691 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)

Authors: Jainendra Singh, Zaheeruddin

Abstract:

A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.

Keywords: wireless sensor network, energy efficiency, clustering, routing

Procedia PDF Downloads 264
8690 The Potential of Kepulauan Seribu as Marine-Based Eco-Geotourism Site: The Study of Carbonate Platform as Geotourism Object in Kepulauan Seribu, Jakarta

Authors: Barry Majeed, Eka Febriana, Seto Julianto

Abstract:

Kepulauan Seribu National Parks is a marine preservation region in Indonesia. It is located in 5°23' - 5°40' LS, 106°25' - 106°37' BT North of Jakarta City. Covered with area 107,489 ha, Kepulauan Seribu has a lot of tourism spots such as cluster islands, fringing reef and many more. Kepulauan Seribu is also nominated as Strategic Tourism Region In Indonesia (KSPN). So, these islands have a lot of potential sides more than preservation function as a national park, hence the development of sustainable geotourism. The aim of this study is for enhancing the development of eco-geotourism in Kepulauan Seribu. This study concern for three main aspect of eco-geotourism such as tourism, form and process. Study for the tourism aspect includes attractions, accommodations, tours, activities, interpretation, and planning & management in Kepulauan Seribu. Study for the form aspect focused on the carbonate platform situated between two islands. Primarily in carbonate reef such as head coral, branchy coral, platy coral that created the carbonate sequence in Kepulauan Seribu. Study for the process aspect primarily discussed the process of forming of carbonate from carbonate factory later becomes Kepulauan Seribu. Study for the regional geology of Kepulauan Seribu has been conducted and suggested that Kepulauan Seribu lithologies are mainly quarternary limestone. In this study, primary data was taken from an observation of quarternary carbonate platform between two islands from Hati Island, Macan Island, Bulat Island, Ubi Island and Kelapa Island. From this observation, the best routes for tourist have been made from Island to Island. Qualitative methods such as depth interview to the local people in purposive sampling also have been made. Finally, this study also giving education about geological site – carbonate sequence - in Kepulauan Seribu for the local wisdom so that this study can support the development of sustainable eco-geotourism in Kepulauan Seribu.

Keywords: carbonate factory, carbonate platform, geotourism, Kepulauan Seribu

Procedia PDF Downloads 186
8689 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images

Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai

Abstract:

In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.

Keywords: Harris corner, infrared image, feature detection, registration, matching

Procedia PDF Downloads 304
8688 Assessment of the Electrical, Mechanical, and Thermal Nociceptive Thresholds for Stimulation and Pain Measurements at the Bovine Hind Limb

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Three nociceptive thresholds of thermal, electrical, and mechanical thresholds commonly use to evaluate the local anesthesia in many species, for instance, cow, horse, cat, dog, rabbit, and so on. Due to the lack of investigations to evaluate and/or validate such those nociceptive thresholds, our plan was the comparison of two-foot local anesthesia methods of Intravenous Regional Anesthesia (IVRA) and our modified four-point Nerve Block Anesthesia (NBA). Materials and Methods: Eight healthy nonpregnant nondairy Holstein Frisian cows in a cross-over study design were selected for this study. All cows divided into two different groups to receive two local anesthesia techniques of IVRA and our modified four-point NBA. Three thermal, electrical, and mechanical force and pinpricks were applied to evaluate the quality of local anesthesia methods before and after local anesthesia application. Results: The statistical evaluation demonstrated that our four-point NBA has a qualification to select as a standard foot local anesthesia. However, the recorded results of our study revealed no significant difference between two groups of local anesthesia techniques of IVRA and modified four-point NBA related to quality and duration of anesthesia stimulated by electrical, mechanical and thermal nociceptive stimuli. Conclusion and discussion: All three nociceptive threshold stimuli of electrical, mechanical and heat nociceptive thresholds can be applied to measure and evaluate the efficacy of foot local anesthesia of dairy cows. However, our study revealed no superiority of those three nociceptive methods to evaluate the duration and quality of bovine foot local anesthesia methods. Veterinarians to investigate the duration and quality of their selected anesthesia method can use any of those heat, mechanical, and electrical methods.

Keywords: mechanical, thermal, electrical threshold, IVRA, NBA, hind limb, dairy cow

Procedia PDF Downloads 245
8687 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts

Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao

Abstract:

The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.

Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair

Procedia PDF Downloads 120
8686 Time of Week Intensity Estimation from Interval Censored Data with Application to Police Patrol Planning

Authors: Jiahao Tian, Michael D. Porter

Abstract:

Law enforcement agencies are tasked with crime prevention and crime reduction under limited resources. Having an accurate temporal estimate of the crime rate would be valuable to achieve such a goal. However, estimation is usually complicated by the interval-censored nature of crime data. We cast the problem of intensity estimation as a Poisson regression using an EM algorithm to estimate the parameters. Two special penalties are added that provide smoothness over the time of day and day of the week. This approach presented here provides accurate intensity estimates and can also uncover day-of-week clusters that share the same intensity patterns. Anticipating where and when crimes might occur is a key element to successful policing strategies. However, this task is complicated by the presence of interval-censored data. The censored data refers to the type of data that the event time is only known to lie within an interval instead of being observed exactly. This type of data is prevailing in the field of criminology because of the absence of victims for certain types of crime. Despite its importance, the research in temporal analysis of crime has lagged behind the spatial component. Inspired by the success of solving crime-related problems with a statistical approach, we propose a statistical model for the temporal intensity estimation of crime with censored data. The model is built on Poisson regression and has special penalty terms added to the likelihood. An EM algorithm was derived to obtain maximum likelihood estimates, and the resulting model shows superior performance to the competing model. Our research is in line with the smart policing initiative (SPI) proposed by the Bureau Justice of Assistance (BJA) as an effort to support law enforcement agencies in building evidence-based, data-driven law enforcement tactics. The goal is to identify strategic approaches that are effective in crime prevention and reduction. In our case, we allow agencies to deploy their resources for a relatively short period of time to achieve the maximum level of crime reduction. By analyzing a particular area within cities where data are available, our proposed approach could not only provide an accurate estimate of intensities for the time unit considered but a time-variation crime incidence pattern. Both will be helpful in the allocation of limited resources by either improving the existing patrol plan with the understanding of the discovery of the day of week cluster or supporting extra resources available.

Keywords: cluster detection, EM algorithm, interval censoring, intensity estimation

Procedia PDF Downloads 66
8685 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems

Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi

Abstract:

The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.

Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks

Procedia PDF Downloads 353
8684 Community Radio as a Catalyst for Local Empowerment and Development in Rivers State: A Case Study of Local Government Areas

Authors: Akpobome Harrison

Abstract:

Community radio serves as a potent vehicle for amplifying local voices and driving community progress worldwide. It facilitates grassroots communication, empowers residents, and significantly contributes to social, cultural, and economic development. This study investigates the pivotal roles of community radio in elevating local voices and advancing development within Emuoha, Obio-Akpor, and Ikwerre Local Government Areas in Rivers State. Employing a quantitative methodology, the research involved random sampling of respondents via questionnaires. The findings underscore the transformative power of community radio in promoting local voices and fostering development, particularly within Rivers State. Moreover, community radio platforms empower marginalized populations, providing them with a voice and an opportunity to actively participate in the media landscape, share their stories, and express their concerns. This empowerment holds the potential to enhance civic engagement and communal harmony. Community radio stations often prioritize local news, events, and subjects that may not receive adequate coverage in mainstream media, thus facilitating the dissemination of vital community information, including local news, weather updates, and emergency alerts. In light of these observations, this paper advocates for the encouragement of community radio by both the state government and private media entities to facilitate seamless information dissemination. Additionally, the paper highlights the significant role played by the use of Pidgin English as a communication tool, particularly in providing understanding and a voice to marginalized individuals in rural communities.

Keywords: community radio, local voices, marginalized populations, information dissemination, pidgin english, grassroots communication

Procedia PDF Downloads 66
8683 A Preliminary Study on the Tagal Eco-Tourism and Empowerment for Local Community

Authors: Christiana Jonut

Abstract:

The study addresses tagal as an ecotourism product that is uniquely for Sabah. It is a community based tourism venture that is influenced by the Dusun ethic’s traditional law. The traditional principle of tagal is focused primarily on individual exploitation of riverine resources and it was transformed into a community participation in the riverine conservation to foster the growth or survival of ecotourism. It manages a river into a sustainable manner. A smart partnership system between the community and the authority particularly the Department of Fisheries Sabah, tagal has successfully become an instrument to protect, revive and manage the river fish resources. In 2015, Sabah Fisheries Department added 536 tagal sites. Most tagal sites were turned into a community based tourism venture. They generate income through jobs creation for the purpose of uplifting the local’s economic level. Tagal ecotourism sites also increase environmental awareness of the local people to love their culture, tradition and environment. This venture also promotes the sustainability of the eco-tourism. The objective of this study is to explore the issues and contexts of empowerment of the local people in managing a successful tagal ecotourism. This study further explains how community capacity building is the major influence of empowerment of the local community. The methodology approach used is qualitative where interview is chosen as the data collection method. This is a literature review of exploring empowerment of the local community through various community capacity building initiatives that would motivate the local people to be actively involved in the tagal.

Keywords: capacity building, Tagal, ecotourism, empowerment, Sabah

Procedia PDF Downloads 358
8682 Information in Public Domain: How Far It Measures Government's Accountability

Authors: Sandip Mitra

Abstract:

Studies on Governance and Accountability has often stressed the need to release Data in public domain to increase transparency ,which otherwise act as an evidence of performance. However, inefficient handling, lack of capacity and the dynamics of transfers (especially fund transfers) are important issues which need appropriate attention. E-Governance alone can not serve as a measure of transparency as long as a comprehensive planning is instituted. Studies on Governance and public exposure has often triggered public opinion in favour or against any government. The root of the problem (especially in local governments) lies in the management of the governance. The participation of the people in the local government functioning, the networks within and outside the locality, synergy with various layers of Government are crucial in understanding the activities of any government. Unfortunately, data on such issues are not released in the public domain .If they are at all released , the extraction of information is often hindered for complicated designs. A Study has been undertaken with a few local Governments in India. The data has been analysed to substantiate the views.

Keywords: accountability, e-governance, transparency, local government

Procedia PDF Downloads 436
8681 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 309
8680 Signal Processing of the Blood Pressure and Characterization

Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig

Abstract:

In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.

Keywords: blood pressure, SBP, DBP, detection algorithm

Procedia PDF Downloads 439
8679 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 144
8678 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System

Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale

Abstract:

In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.

Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine

Procedia PDF Downloads 72
8677 A Construction Management Tool: Determining a Project Schedule Typical Behaviors Using Cluster Analysis

Authors: Natalia Rudeli, Elisabeth Viles, Adrian Santilli

Abstract:

Delays in the construction industry are a global phenomenon. Many construction projects experience extensive delays exceeding the initially estimated completion time. The main purpose of this study is to identify construction projects typical behaviors in order to develop a prognosis and management tool. Being able to know a construction projects schedule tendency will enable evidence-based decision-making to allow resolutions to be made before delays occur. This study presents an innovative approach that uses Cluster Analysis Method to support predictions during Earned Value Analyses. A clustering analysis was used to predict future scheduling, Earned Value Management (EVM), and Earned Schedule (ES) principal Indexes behaviors in construction projects. The analysis was made using a database with 90 different construction projects. It was validated with additional data extracted from literature and with another 15 contrasting projects. For all projects, planned and executed schedules were collected and the EVM and ES principal indexes were calculated. A complete linkage classification method was used. In this way, the cluster analysis made considers that the distance (or similarity) between two clusters must be measured by its most disparate elements, i.e. that the distance is given by the maximum span among its components. Finally, through the use of EVM and ES Indexes and Tukey and Fisher Pairwise Comparisons, the statistical dissimilarity was verified and four clusters were obtained. It can be said that construction projects show an average delay of 35% of its planned completion time. Furthermore, four typical behaviors were found and for each of the obtained clusters, the interim milestones and the necessary rhythms of construction were identified. In general, detected typical behaviors are: (1) Projects that perform a 5% of work advance in the first two tenths and maintain a constant rhythm until completion (greater than 10% for each remaining tenth), being able to finish on the initially estimated time. (2) Projects that start with an adequate construction rate but suffer minor delays culminating with a total delay of almost 27% of the planned time. (3) Projects which start with a performance below the planned rate and end up with an average delay of 64%, and (4) projects that begin with a poor performance, suffer great delays and end up with an average delay of a 120% of the planned completion time. The obtained clusters compose a tool to identify the behavior of new construction projects by comparing their current work performance to the validated database, thus allowing the correction of initial estimations towards more accurate completion schedules.

Keywords: cluster analysis, construction management, earned value, schedule

Procedia PDF Downloads 265
8676 Analysis of Local Food Sources in Ethiopia

Authors: Bereket Amare Mulu

Abstract:

Ethiopia is one of the countries that consists of a huge variety of botanical resources as compared to the world. The agroclimatic is suitable for a variety of plants to grow effectively throughout the year. Sources of food plants are basic items for people in the world. Production of food items is a prior activity and needs more resources and attention to produce a huge amount of production. The local food is rich in nutrition and healthful foods. The local food is fresh and not exposed to infections easily. The community can easily get the food items in their surroundings. The local food sources are not expensive when it is compared to the other proceed food items, and it is affordable to the community purchasing power. The food is very tasty and palatable capacity by the whole community categories. The basic problems in Ethiopia are the community experiences some of the common food source items. On the contrary, inefficient food production, low economic growth, and climate variability affected food production. This leads to serious food shortages and acute health problems. The objective of the study is to identify local food sources and analyze the advantage and benefits of local food sources. Casava is one of the root crop plants in Ethiopia and easily adapts to any type of agroecology in every place in the country. 50 community members have been identified to prepare casava in different forms of food items. They have prepared in the forms of Bread, Injera, Porridge, Boiled casava, fried chips Casava, and Cocktails. The prepared food items have been exposed to the community as a food festival to eat and taste how much interesting Even though there is a cultural barrier to eating the food items, the community had the food and tasted it the food. The result showed that community awareness is still not addressed the benefits of local food sources yet. The local food has high nutritional value and healthful foods. The local food sources are fresh and easily produced in every place of the country.

Keywords: bread, cassava, injera, nutrition

Procedia PDF Downloads 104
8675 Evaluating the Cost of Quality: A Case Study of a South African Foundry Business

Authors: Chipo Mugova, Zuko Mjobo

Abstract:

The aim of this study was to evaluate the cost of quality (COQ) at a local foundry business to identify the contribution of its units and processes to quality costs within the foundry’s operations. The foundry selected for detailed case study is one of major businesses that have been targeted by the government to produce components for building and re-furbishing wagons and trains. The study aimed at identifying areas in the foundry’s processes in which investment needs to be made to reduce quality costs. This is in alignment with government’s vision of promoting local business to support local markets leading to creation of jobs, and hence reduction of unemployment rate in South Africa. The methodology adopted used cost of quality models. Results from the study indicated that internal failure costs were significantly higher than all other cost of quality categories, taking more than 60% of the business’s income.

Keywords: appraisal costs, cost of quality, failure costs, local content, prevention costs

Procedia PDF Downloads 341