Search results for: fraud prevention and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5000

Search results for: fraud prevention and detection

4280 Cooperative Spectrum Sensing Using Hybrid IWO/PSO Algorithm in Cognitive Radio Networks

Authors: Deepa Das, Susmita Das

Abstract:

Cognitive Radio (CR) is an emerging technology to combat the spectrum scarcity issues. This is achieved by consistently sensing the spectrum, and detecting the under-utilized frequency bands without causing undue interference to the primary user (PU). In soft decision fusion (SDF) based cooperative spectrum sensing, various evolutionary algorithms have been discussed, which optimize the weight coefficient vector for maximizing the detection performance. In this paper, we propose the hybrid invasive weed optimization and particle swarm optimization (IWO/PSO) algorithm as a fast and global optimization method, which improves the detection probability with a lesser sensing time. Then, the efficiency of this algorithm is compared with the standard invasive weed optimization (IWO), particle swarm optimization (PSO), genetic algorithm (GA) and other conventional SDF based methods on the basis of convergence and detection probability.

Keywords: cognitive radio, spectrum sensing, soft decision fusion, GA, PSO, IWO, hybrid IWO/PSO

Procedia PDF Downloads 467
4279 The Role of Emotion in Attention Allocation

Authors: Michaela Porubanova

Abstract:

In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.

Keywords: attention, emotion, flicker task, IAPS

Procedia PDF Downloads 354
4278 Choking among Babies, Toddlers and Children with Special Needs: A Review of Mechanisms, Implications, Incidence, and Recommendations of Professional Prevention Guidelines

Authors: Ella Abaev, Shany Segal, Miri Gabay

Abstract:

Background: Choking is a blockage of airways that prevents efficient breathing and air flow to the lungs. Choking may be partial or full and is an emergency situation. Complete or prolonged choking leads to apnea, lack of oxygen in the tissues of the body and brain, and can cause death. There are three mechanisms of choking: obstruction of internal respiratory tracts by food or object aspiration, any material that blocks or covers external air passages, external pressure on the neck or trapping between objects. Children's airways are narrower than that of adults and therefore the risk of choking is greater, due to the aspiration of food and other foreign bodies into the lungs. In the Child Development Center at Safra Children’s Hospital, Tel Hashomer in Israel are treated infants, toddlers, and children aged 0-18 years with various developmental disabilities. Due to the increase in reports of ‘almost an event’ of choking in the past year and the serious consequences of choking event, it was decided to give an emphasis to the issue. Incidence and methods: The number of reports of ‘almost an event’ or a choking event was examined at the center during the years 2013-2018 and a thorough research work was conducted on the subject in order to build a prevention program. Findings: Between 2013 and 2018 the center reported about ten cases of ‘almost choking events’. In the middle of 2018 alone three cases of ‘almost an event’ were reported. Objective: Providing knowledge leads to awareness raise, change of perception, change in behavior and prevention. The center employs more than 130 staff members from various sectors so that it is the work of multi-professional teams to promote the quality and safety of the treatment. The familiarity of the staff with risk factors, prevention guidelines, identification of choking signs, and treatment are most important and significant in determining the outcome of a choking event. Conclusions and recommendations: After in-depth research work was carried out in cooperation with the Risk Management Unit on the subject of choking, which include a description of the definitions, mechanisms, risk factors, treatment methods and extensive recommendations for prevention (e.g. using treatment and stimulation accessories with standards association stamps and adjustment of the type of food and the way it is served to match to the child's age and the ability to swallow). The expected stages of development and emphasis on the population of children with special needs were taken into account. The research findings will be published by the staff and parents of the patients, professional publications, and lectures and there is an expectation to decrease the number of choking events in the next years.

Keywords: children with special needs, choking, educational system, prevention guidelines

Procedia PDF Downloads 179
4277 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location

Authors: Longfei Wang, Selçuk Köse

Abstract:

Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.

Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise

Procedia PDF Downloads 391
4276 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers

Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage

Abstract:

The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.

Keywords: STD, machine learning, NLP, artificial intelligence

Procedia PDF Downloads 81
4275 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome

Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya

Abstract:

Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically, significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.

Keywords: mammography, early detection, genetic screening, breast cancer

Procedia PDF Downloads 562
4274 Real-Time Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Human Papillomavirus 16 in Oral Squamous Cell Carcinoma

Authors: Suharni Mohamad Suharni Mohamad, Nurul Izzati Hamzan Nurul Izzati Hamzan, Norhayu Abdul Rahman Norhayu Abdul Rahman, Siti Suraiya Md Noor Siti Suraiya Md Noor

Abstract:

Human papillomavirus (HPV) is an important risk factor for development of oral cancer. HPV16 is the most common type found in HPV-positive squamous cell carcinoma. In the present study, we established a real-time loop-mediated isothermal amplification (real-time LAMP) for detection of HPV16. A set of six primers was specially designed to recognize eight distinct sequences of HPV16-E6. Detection and quantification was achieved by real-time monitoring using a real-time turbidimeter based on threshold time required for turbidity in the LAMP reaction. LAMP reagents (MgSO4, dNTPs, Bst polymerase concentrations) and various incubation times and temperatures were optimized. The sensitivity was determined using 10-fold serial dilutions of HPV16 standard strain. The specificity of was evaluated using other HPV genotypes. The optimized method was established with specifically designed primers by real-time detection in approximately 30 min at 65°C. The limit of detection of HPV16 using the LAMP assay was 10 pg/ml that could be detected in 30 min. The LAMP assay was 10 times more sensitive than the conventional PCR in detecting HPV16. No cross-reactivity with other HPV genotypes was observed. This quantitative real-time LAMP assay may improve diagnostic potential for the detection and quantification of HPV16 in clinical samples and epidemiological studies due to its rapidity, simplicity, high sensitivity and specificity. This assay will be further evaluated with HPV DNAs of saliva from patients with oral squamous cell carcinoma. Acknowledgement: This study was financially supported by the ScienceFund Grant, Ministry of Science, Technology and Innovation (305/PPSG/6113219).

Keywords: Oral Squamous Cell Carcinoma (OSCC), Human Papillomavirus 16 (HPV16), Loop-Mediated Isothermal Amplification (LAMP), rapid detection

Procedia PDF Downloads 406
4273 Design and Implementation of a Counting and Differentiation System for Vehicles through Video Processing

Authors: Derlis Gregor, Kevin Cikel, Mario Arzamendia, Raúl Gregor

Abstract:

This paper presents a self-sustaining mobile system for counting and classification of vehicles through processing video. It proposes a counting and classification algorithm divided in four steps that can be executed multiple times in parallel in a SBC (Single Board Computer), like the Raspberry Pi 2, in such a way that it can be implemented in real time. The first step of the proposed algorithm limits the zone of the image that it will be processed. The second step performs the detection of the mobile objects using a BGS (Background Subtraction) algorithm based on the GMM (Gaussian Mixture Model), as well as a shadow removal algorithm using physical-based features, followed by morphological operations. In the first step the vehicle detection will be performed by using edge detection algorithms and the vehicle following through Kalman filters. The last step of the proposed algorithm registers the vehicle passing and performs their classification according to their areas. An auto-sustainable system is proposed, powered by batteries and photovoltaic solar panels, and the data transmission is done through GPRS (General Packet Radio Service)eliminating the need of using external cable, which will facilitate it deployment and translation to any location where it could operate. The self-sustaining trailer will allow the counting and classification of vehicles in specific zones with difficult access.

Keywords: intelligent transportation system, object detection, vehicle couting, vehicle classification, video processing

Procedia PDF Downloads 322
4272 Best Practice for Post-Operative Surgical Site Infection Prevention

Authors: Scott Cavinder

Abstract:

Surgical site infections (SSI) are a known complication to any surgical procedure and are one of the most common nosocomial infections. Globally it is estimated 300 million surgical procedures take place annually, with an incidence of SSI’s estimated to be 11 of 100 surgical patients developing an infection within 30 days after surgery. The specific purpose of the project is to address the PICOT (Problem, Intervention, Comparison, Outcome, Time) question: In patients who have undergone cardiothoracic or vascular surgery (P), does implementation of a post-operative care bundle based on current EBP (I) as compared to current clinical agency practice standards (C) result in a decrease of SSI (O) over a 12-week period (T)? Synthesis of Supporting Evidence: A literature search of five databases, including citation chasing, was performed, which yielded fourteen pieces of evidence ranging from high to good quality. Four common themes were identified for the prevention of SSI’s including use and removal of surgical dressings; use of topical antibiotics and antiseptics; implementation of evidence-based care bundles, and implementation of surveillance through auditing and feedback. The Iowa Model was selected as the framework to help guide this project as it is a multiphase change process which encourages clinicians to recognize opportunities for improvement in healthcare practice. Practice/Implementation: The process for this project will include recruiting postsurgical participants who have undergone cardiovascular or thoracic surgery prior to discharge at a Northwest Indiana Hospital. The patients will receive education, verbal instruction, and return demonstration. The patients will be followed for 12 weeks, and wounds assessed utilizing the National Healthcare Safety Network//Centers for Disease Control (NHSN/CDC) assessment tool and compared to the SSI rate of 2021. Key stakeholders will include two cardiovascular surgeons, four physician assistants, two advance practice nurses, medical assistant and patients. Method of Evaluation: Chi Square analysis will be utilized to establish statistical significance and similarities between the two groups. Main Results/Outcomes: The proposed outcome is the prevention of SSIs in the post-op cardiothoracic and vascular patient. Implication/Recommendation(s): Implementation of standardized post operative care bundles in the prevention of SSI in cardiovascular and thoracic surgical patients.

Keywords: cardiovascular, evidence based practice, infection, post-operative, prevention, thoracic, surgery

Procedia PDF Downloads 83
4271 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 284
4270 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 534
4269 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 209
4268 Technology for Good: Deploying Artificial Intelligence to Analyze Participant Response to Anti-Trafficking Education

Authors: Ray Bryant

Abstract:

3Strands Global Foundation (3SGF), a non-profit with a mission to mobilize communities to combat human trafficking through prevention education and reintegration programs, launched a groundbreaking study that calls out the usage and benefits of artificial intelligence in the war against human trafficking. Having gathered more than 30,000 stories from counselors and school staff who have gone through its PROTECT Prevention Education program, 3SGF sought to develop a methodology to measure the effectiveness of the training, which helps educators and school staff identify physical signs and behaviors indicating a student is being victimized. The program further illustrates how to recognize and respond to trauma and teaches the steps to take to report human trafficking, as well as how to connect victims with the proper professionals. 3SGF partnered with Levity, a leader in no-code Artificial Intelligence (AI) automation, to create the research study utilizing natural language processing, a branch of artificial intelligence, to measure the effectiveness of their prevention education program. By applying the logic created for the study, the platform analyzed and categorized each story. If the story, directly from the educator, demonstrated one or more of the desired outcomes; Increased Awareness, Increased Knowledge, or Intended Behavior Change, a label was applied. The system then added a confidence level for each identified label. The study results were generated with a 99% confidence level. Preliminary results show that of the 30,000 stories gathered, it became overwhelmingly clear that a significant majority of the participants now have increased awareness of the issue, demonstrated better knowledge of how to help prevent the crime, and expressed an intention to change how they approach what they do daily. In addition, it was observed that approximately 30% of the stories involved comments by educators expressing they wish they’d had this knowledge sooner as they can think of many students they would have been able to help. Objectives Of Research: To solve the problem of needing to analyze and accurately categorize more than 30,000 data points of participant feedback in order to evaluate the success of a human trafficking prevention program by using AI and Natural Language Processing. Methodologies Used: In conjunction with our strategic partner, Levity, we have created our own NLP analysis engine specific to our problem. Contributions To Research: The intersection of AI and human rights and how to utilize technology to combat human trafficking.

Keywords: AI, technology, human trafficking, prevention

Procedia PDF Downloads 59
4267 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 177
4266 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 179
4265 Damage Detection in a Cantilever Beam under Different Excitation and Temperature Conditions

Authors: A. Kyprianou, A. Tjirkallis

Abstract:

Condition monitoring of structures in service is very important as it provides information about the risk of damage development. One of the essential constituents of structural condition monitoring is the damage detection methodology. In the context of condition monitoring of in service structures a damage detection methodology analyses data obtained from the structure while it is in operation. Usually, this means that the data could be affected by operational and environmental conditions in a way that could mask the effects of a possible damage on the data. This, depending on the damage detection methodology, could lead to either false alarms or miss existing damages. In this article a damage detection methodology that is based on the Spatio-temporal continuous wavelet transform (SPT-CWT) analysis of a sequence of experimental time responses of a cantilever beam is proposed. The cantilever is subjected to white and pink noise excitation to simulate different operating conditions. In addition, in order to simulate changing environmental conditions, the cantilever is subjected to heating by a heat gun. The response of the cantilever beam is measured by a high-speed camera. Edges are extracted from the series of images of the beam response captured by the camera. Subsequent processing of the edges gives a series of time responses on 439 points on the beam. This sequence is then analyzed using the SPT-CWT to identify damage. The algorithm proposed was able to clearly identify damage under any condition when the structure was excited by white noise force. In addition, in the case of white noise excitation, the analysis could also reveal the position of the heat gun when it was used to heat the structure. The analysis could identify the different operating conditions i.e. between responses due to white noise excitation and responses due to pink noise excitation. During the pink noise excitation whereas damage and changing temperature were identified it was not possible to clearly identify the effect of damage from that of temperature. The methodology proposed in this article for damage detection enables the separation the damage effect from that due to temperature and excitation on data obtained from measurements of a cantilever beam. This methodology does not require information about the apriori state of the structure.

Keywords: spatiotemporal continuous wavelet transform, damage detection, data normalization, varying temperature

Procedia PDF Downloads 279
4264 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 290
4263 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework

Authors: Annu Sheokand, Vinay Kumar

Abstract:

Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.

Keywords: detection limit, doping, MOF, sensitivity, sensor

Procedia PDF Downloads 13
4262 A Descriptive Study to Assess the Knowledge Regarding Prevention and Management of Methicillin-Resistant Staphylococcus Aureus (MRSA) Infections Among Nursing Officers in a Selected Hospital, Bengaluru

Authors: Maneesha Pahlani, Najmin Sultana

Abstract:

A hospital is one of the most suitable places for acquiring an infection because it harbors a high population of virulent strains of microorganisms that may be resistant to antibiotics, especially the prevalence of Methicillin-Resistant Staphylococcus Aureus (MRSA) infections. The hospital-acquired infection has become a global challenge. In developed countries, healthcare-associated infections occur in 5-15% of hospitalized clients, affecting 9-37% of those admitted to intensive care units (ICU). A non-experimental descriptive study was conducted among 50 nursing officers working in a selected hospital in Bangalore to assess the nursing officers’ level of knowledge regarding the prevention and management of MRSA infections and to associate the pre-test knowledge mean scores of nursing officers with selected socio-demographic variables. Data was collected using a structured questionnaire consisting of socio-demographic data and a structured questionnaire on knowledge regarding the prevention and management of MRSA infections. The data was analyzed in terms of frequencies and percentages for the analysis of demographic variables and computing chi-square to determine the association between knowledge means scores and selected demographic variables. The study findings revealed that the nursing officer had an overall good level of knowledge (63.05%) regarding the prevention and management of MRSA infections, and there is no significant association found between the level of knowledge mean scores for prevention and management of MRSA infection with the selected socio-demographic variables. However, the categorization of knowledge items showed that the nursing officer must thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance for effective nursing care to patients with MRSA infections. The conclusions drawn from the study findings showed that it is necessary that the nursing officer thoroughly receive education on correct guidance and information regarding MRSA infection control policy, including measures and practices on hygiene precautions and information regarding antibiotic resistance to provide effective nursing care to patients with MRSA infection as they constantly care for the patient who can be at risk for multi-drug resistance organisms to reduce the risk of MRSA infection in hospital care settings as well community settings.

Keywords: MRSA, nursing officers, knowledge, preventive and management

Procedia PDF Downloads 69
4261 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 196
4260 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 389
4259 Old and New Paradigms for Pre-Earthquake Prevention and Post-Earthquake Regeneration of Territories in Crisis in Italy

Authors: Maria Angela Bedini, Fabio Bronzini

Abstract:

Most of the Italian territory is at seismic risk. Many earthquakes have hit Italy, and devastating effects have been generated. The specific objective of the research is to distinguish the negative approaches that have generated unacceptable social situations of marginalization, abandonment, and economic regression, from positive methodological approaches. On the basis of the different situations examined, the study proposes strategies and guidelines to obtain the best possible results, in Italy or abroad, in the event of new earthquakes. At national and international level, many theoretical studies address the aspects of prevention, while the comparisons, carried out in this study, between the techniques and the operative procedures applied and the results obtained are rare. The adopted methodology compares the different pre-earthquake urban-planning approaches, for the emergency (temporary urban planning), and for the post-earthquake (socio-economic-territorial processes) in Italy. Attention is placed on the current consolidated planning and programming acquisitions, pre and post-earthquake. The main results of the study concern the prospects in Italy of protection from seismic risks in the next decades. An integrated settlement system for a new economic and social model, aimed at the rebirth of territories in crisis, is proposed. Finally, the conclusions describe the disciplinary positions, procedures and the fundamental points generally shared by the scientific community for each approach, in order to identify the strategic choices and the disciplinary and management paths that will be followed in the coming decades.

Keywords: post-earthquake, seismic emergency, seismic prevention, urban planning interventions in Italy

Procedia PDF Downloads 128
4258 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 117
4257 MindFlow: A Collective Intelligence-Based System for Helping Stress Pattern Diagnosis

Authors: Andres Frederic

Abstract:

We present the MindFlow system supporting the detection and the diagnosis of stresses. The heart of the system is a knowledge synthesis engine allowing occupational health stakeholders (psychologists, occupational therapists and human resource managers) to formulate queries related to stress and responding to users requests by recommending a pattern of stress if one exists. The stress pattern diagnosis is based on expert knowledge stored in the MindFlow stress ontology including stress feature vector. The query processing may involve direct access to the MindFlow system by occupational health stakeholders, online communication between the MindFlow system and the MindFlow domain experts, or direct dialog between a occupational health stakeholder and a MindFlow domain expert. The MindFlow knowledge model is generic in the sense that it supports the needs of psychologists, occupational therapists and human resource managers. The system presented in this paper is currently under development as part of a Dutch-Japanese project and aims to assist organisation in the quick diagnosis of stress patterns.

Keywords: occupational stress, stress management, physiological measurement, accident prevention

Procedia PDF Downloads 430
4256 Barnard Feature Point Detector for Low-Contractperiapical Radiography Image

Authors: Chih-Yi Ho, Tzu-Fang Chang, Chih-Chia Huang, Chia-Yen Lee

Abstract:

In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method.

Keywords: feature detection, Barnard detector, registration, periapical radiography image, endodontic treatment

Procedia PDF Downloads 442
4255 Robust and Real-Time Traffic Counting System

Authors: Hossam M. Moftah, Aboul Ella Hassanien

Abstract:

In the recent years the importance of automatic traffic control has increased due to the traffic jams problem especially in big cities for signal control and efficient traffic management. Traffic counting as a kind of traffic control is important to know the road traffic density in real time. This paper presents a fast and robust traffic counting system using different image processing techniques. The proposed system is composed of the following four fundamental building phases: image acquisition, pre-processing, object detection, and finally counting the connected objects. The object detection phase is comprised of the following five steps: subtracting the background, converting the image to binary, closing gaps and connecting nearby blobs, image smoothing to remove noises and very small objects, and detecting the connected objects. Experimental results show the great success of the proposed approach.

Keywords: traffic counting, traffic management, image processing, object detection, computer vision

Procedia PDF Downloads 294
4254 HIV/AIDS Knowledge and Social Integration among Street Children: A Systematic Review

Authors: Dewi Indah Irianti

Abstract:

Introduction: Street children include one of the populations at risk of HIV infection. Their vulnerability to these situations is increased by their lack of understanding of the changes associated with adolescence, the lack of knowledge and skills which could help them to make healthy choices. Social integration increased AIDS knowledge among migrant workers in Thailand. Although social integration has been incorporated into health research in other areas, it has received less attention in AIDS prevention research. This factor has not been integrated into models for HIV prevention. Objectives: The goal of this review is to summarize available knowledge about factors related to HIV/AIDS knowledge and to examine whether social integration was reviewed among street children. Methodology: This study performed a systematic search for English language articles published between January 2006 and March 2016 using the following keywords in various combination: street children, HIV/AIDS knowledge and social integration from the following bibliographic databases: Scopus, ProQuest, JSTOR, ScienceDirect, SpringerLink, EBSCOhost, Sage Publication, Clinical Key, Google Web, and Google Scholar . Results: A total of 10 articles met the inclusion criteria were systematically reviewed. This study reviews the existing quantitative and qualitative literature regarding the HIV/AIDS knowledge of street children in many countries. The study locations were Asia, the Americas, Europe, and Africa. The most determinants associated with HIV/AIDS knowledge among street children are age and sex. In this review, social integration that may be associated with HIV/AIDS knowledge among street children has not been investigated. Conclusion: To the best of the author’s knowledge, this study found that there is no research examining the relationship of social integration with the HIV knowledge among street children. This information may assist in the development of relevant strategies and HIV prevention programs to improve HIV knowledge and decrease risk behaviors among street children.

Keywords: HIV/AIDS knowledge, review, social integration, street children

Procedia PDF Downloads 322
4253 Hand Hygiene Habits of Ghanaian Youths in Accra

Authors: Cecilia Amponsem-Boateng, Timothy B. Oppong, Haiyan Yang, Guangcai Duan

Abstract:

The human palm has been identified as one of the richest habitats for human microbial accommodation making hand hygiene essential to primary prevention of infection. Since the hand is in constant contact with fomites which have been proven to be mostly contaminated, building hand hygiene habits is essential for the prevention of infection. This research was conducted to assess the hand hygiene habits of Ghanaian youths in Accra. This study used a survey as a quantitative method of research. The findings of the study revealed that out of the 254 participants who fully answered the questionnaire, 22% had the habit of washing their hands after outings while only 51.6% had the habit of washing their hands after using the bathroom. However, about 60% of the participants said they sometimes ate with their hands while 28.9% had the habit of eating with the hand very often, a situation that put them at risk of infection from their hands since some participants had poor handwashing habits; prompting the need for continuous education on hand hygiene.

Keywords: hand hygiene, hand hygiene habit, hand washing, hand sanitizer use

Procedia PDF Downloads 108
4252 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 131
4251 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 366