Search results for: data driven business
27102 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 5527101 Driving Performance Improvement in Mini Markets: The Impact of Talent Management, Business Skills, and Technology Adoption in Johannesburg and Cape Town, South Africa
Authors: Fedil Jemal Ahmed
Abstract:
This conference abstract paper presents a study that aimed to explore the impact of talent management and business skills on performance improvement in mini markets located in Johannesburg and Cape Town, South Africa. Mini markets are small retail stores that play a crucial role in providing essential goods and services to communities. However, due to their small size, they often face significant challenges in terms of resources and management. The study conducted interviews with mini market owners and managers in Johannesburg and Cape Town to understand their approach to talent management, business skills, and their impact on business performance. The results showed that effective talent management practices, including recruitment, training, and retention, along with strong business skills, had a significant positive impact on business performance in mini markets. Furthermore, the study found that the use of technology, such as point of sale systems and inventory management software, can also contribute to business performance improvement in mini markets. The results suggest that mini market owners and managers should prioritize talent management, business skills, and invest in technology to improve their business performance. Comparing the improvements made by mini markets in Johannesburg and Cape Town to those made by others, the study found that the adoption of effective talent management practices and strong business skills were key factors in driving performance improvement. Mini market owners and managers who invested in these areas were better equipped to manage their resources, enhance their customer service, and increase their profitability. When comparing the personal experiences of the fedil jemal who improved their business performance from a small market to a large one, they found that effective talent management practices and strong business skills were crucial in achieving success. Through the adoption of effective talent management practices, the fedil was able to attract and retain top talent, ensuring that the business was managed effectively. Furthermore, the fedil invested in improving their business skills, such as financial management, marketing, and customer service, which helped to increase their revenue and profitability. In terms of technology adoption, the author found that the use of point-of-sale systems and inventory management software were essential in managing their inventory and improving their customer service. By investing in technology, the fedil was able to streamline their operations and enhance their overall business performance. In conclusion, this study provides valuable insights into the importance of talent management, business skills, and technology adoption in improving business performance in mini markets. It highlights the need for mini market owners and managers to prioritize these areas and invest in them to enhance their business performance. The findings of this study have practical implications for mini market owners and managers who are looking to improve their business performance and compete in a highly competitive market. By adopting effective talent management practices, developing strong business skills, and investing in technology, mini market owners and managers can improve their operations and increase their profitability.Keywords: talent management, business skills, technology adoption, mini markets
Procedia PDF Downloads 9927100 Why Trust Matters for Women Entrepreneurs: Insights from Malaysia
Authors: Suraini Mohd Rhouse, Noor Lela Ahmad, Nek Kamal Yeop Yunus, Rosfizah Md Taib
Abstract:
This article aims to explore the importance of trust to women entrepreneurs. In particular, the research uses a social constructionist lens to examine ways in which women entrepreneurs construct trust in relation to their various stakeholders. A semi-structured interview was used to gather the data. The findings suggest women highlight the importance of trust in order to establish customer satisfaction that can further develop customer loyalty. In addition, aspect of trust with the employees is seen as vital for building organizational commitment to the business organization. Women also see the trust dimension in terms of their relationships with financial providers in order to gain approval for financial resources. This article contributes to the literature on the value of trust to women’s business environments.Keywords: qualitative, social constructionist, trust, women entrepreneurship
Procedia PDF Downloads 55727099 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 28527098 Determinants of Access to Finance to All Enterprise
Authors: Dilang Thouk Tharjiath
Abstract:
This study seeks to examine determinants of access to finance: the case of micro and small enterprises in bonga town. It identifies the sector as the key to unlocking the economic potentials of the country. For the achievement of the objective of the study simple random and stratified sampling has been used to select 179 respondents, primary and secondary data were used, primary data were collected through face to face interview and preparing questionnaire and secondary data were collected through reviewing firms record and reports, quantitative research approach were used and the data obtained were analyzed using descriptive research design. Access to finance is one of the key obstacles of MSE’s not only when starting the business project but also when operating. Identifying the major determinants of access to finance is therefore quite crucial. Based on descriptive result the financiers specially formal financiers tend to grant credit easily for enterprises which are located near to town, having operators with higher educational level, experienced and with a positive attitudes towards or fulfill their lending procedures, and a firm having collateralized asset, prepare business plan, maintain accounting practice ,large and old enough. Finally the study recommended that As Educational level of entrepreneurs has significant effect on access to credit from bank and the managers or owners education level is low in Bonga town the concerned bodies of both the government and non-governmental institutions in collaboration with Bonga town MSE development office are recommended to create awareness and facilitate the provision of additional training for those with lower educational level.Keywords: credit, entrepreneur, enterprise, manager
Procedia PDF Downloads 9027097 Transforming Data Science Curriculum Through Design Thinking
Authors: Samar Swaid
Abstract:
Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.Keywords: data science, design thinking, AI, currculum, transformation
Procedia PDF Downloads 7927096 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube
Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego
Abstract:
The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation
Procedia PDF Downloads 31427095 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 7227094 Adopting a Stakeholder Perspective to Profile Successful Sustainable Circular Business Approaches: A Single Case Study
Authors: Charleen von Kolpinski, Karina Cagarman, Alina Blaute
Abstract:
The circular economy concept is often framed by politicians, scientists and practitioners as being the solution to sustainability problems of our times. However, the focus of these discussions and publications is very often set on environmental and economic aspects. In contrast, the social dimension of sustainability has been neglected and only a few recent and mostly conceptual studies targeted the inclusion of social aspects and the SDGs into circular economy research. All stakeholders of this new circular system have to be included to represent a truly sustainable solution to all the environmental, economic and social challenges caused by the linear economic system. Hence, this empirical research aims to analyse, next to the environmental and economic dimension, also explicitly the social dimension of a sustainable circular business model. This inductive and explorative approach applies the single case study method. A multi-stakeholder view is adopted to shed light on social aspects of the circular business model. Different stakeholder views, tensions between stakeholders and conflicts of interest are detected. In semi-structured interviews with different stakeholders of the company, this study compares the different stakeholder views to profile the success factors of its business model in terms of sustainability implementation and to detect its shortcomings. These findings result in the development of propositions which cover different social aspects of sustainable circular business model implementation. This study is an answer to calls for future empirical research about the social dimension of the circular economy and contributes to sustainable business model thinking in entrepreneurial contexts of the circular economy. It helps identifying all relevant stakeholders and their needs to successfully and inclusively implement a sustainable circular business model. The method of a single case study has some limitations by nature as it only covers one enterprise with its special business model. Therefore, more empirical studies are needed to research sustainable circular business models from multiple stakeholder perspectives, in different countries and industries. Future research can build upon the developed propositions of this study and develop hypotheses to be tested.Keywords: circular economy, single case study, social dimension, sustainable circular business model
Procedia PDF Downloads 17427093 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.Keywords: mathematical sciences, data analytics, advances, unveiling
Procedia PDF Downloads 9227092 Mitigating the Unwillingness of e-Forums Members to Engage in Information Exchange
Authors: Dora Triki, Irena Vida, Claude Obadia
Abstract:
Social networks such as e-Forums or dating sites often face the reluctance of key members to participate. Relying on the conation theory, this study investigates this phenomenon and proposes solutions to mitigate the issue. We show that highly experienced e-Forum members refuse to share business information in a peer to peer information exchange forums. However, forums managers can mitigate this behavior by developing a sentiment of belongingness to the network. Furthermore, by selecting only elite forum participants with ample experience, they can reduce the reluctance of key information providers to engage in information exchange. Our hypotheses are tested with PLS structural equations modeling using survey data from members of a French e-Forum dedicated to the exchange of business information about exporting.Keywords: conation, e-Forum, information exchange, members participation
Procedia PDF Downloads 15727091 IP Management Tools, Strategies, Best Practices, and Business Models for Pharmaceutical Products
Authors: Nerella Srinivas
Abstract:
This study investigates the role of intellectual property (IP) management in pharmaceutical development, focusing on tools, strategies, and business models for leveraging IP effectively. Using a mixed-methods approach, we conducted case studies and qualitative analyses of IP management frameworks within the pharmaceutical sector. Our methodology included a review of IP tools tailored for pharmaceutical applications, strategic IP models for maximizing competitive advantages, and best practices for organizational efficiency. Findings emphasize the importance of understanding IP law and adopting adaptive strategies, illustrating how IP management can drive industry growth.Keywords: intellectual property management, pharmaceutical products, IP tools, IP strategies, best practices, business models, innovation
Procedia PDF Downloads 1127090 Varieties of Capitalism and Small Business CSR: A Comparative Overview
Authors: Stéphanie Looser, Walter Wehrmeyer
Abstract:
Given the limited research on Small and Mediumsized Enterprises’ (SMEs) contribution to Corporate Social Responsibility (CSR) and even scarcer research on Swiss SMEs, this paper helps to fill these gaps by enabling the identification of supranational SME parameters and to make a contribution to the evolving field of these topics. Thus, the paper investigates the current state of SME practices in Switzerland and across 15 other countries. Combining the degree to which SMEs demonstrate an explicit (or business case) approach or see CSR as an implicit moral activity with the assessment of their attributes for “variety of capitalism” defines the framework of this comparative analysis. According to previous studies, liberal market economies, e.g. in the United States (US) or United Kingdom (UK), are aligned with extrinsic CSR, while coordinated market systems (in Central European or Asian countries) evolve implicit CSR agendas. To outline Swiss small business CSR patterns in particular, 40 SME owner-managers were interviewed. The transcribed interviews were coded utilising MAXQDA for qualitative content analysis. A secondary data analysis of results from different countries (i.e., Australia, Austria, Chile, Cameroon, Catalonia (notably a part of Spain that seeks autonomy), China, Finland, Germany, Hong Kong (a special administrative region of China), Italy, Netherlands, Singapore, Spain, Taiwan, UK, US) lays groundwork for this comparative study on small business CSR. Applying the same coding categories (in MAXQDA) for the interview analysis as well as for the secondary data research while following grounded theory rules to refine and keep track of ideas generated testable hypotheses and comparative power on implicit (and the lower likelihood of explicit) CSR in SMEs retrospectively. The paper identifies Swiss small business CSR as deep, profound, “soul”, and an implicit part of the day-to-day business. Similar to most Central European, Mediterranean, Nordic, and Asian countries, explicit CSR is still very rare in Swiss SMEs. Astonishingly, also UK and US SMEs follow this pattern in spite of their strong and distinct liberal market economies. Though other findings show that nationality matters this research concludes that SME culture and its informal CSR agenda are strongly formative and superseding even forces of market economies, nationally cultural patterns, and language. In a world of “big business”, explicit “business case” CSR, and the mantra that “CSR must pay”, this study points to a distinctly implicit small business CSR model built on trust, physical closeness, and virtues that is largely detached from the bottom line. This pattern holds for different cultural contexts and it is concluded that SME culture is stronger than nationality leading to a supra-national, monolithic SME CSR approach. Hence, classifications of countries by their market system or capitalism, as found in the comparative capitalism literature, do not match the CSR practices in SMEs as they do not mirror the peculiarities of their business. This raises questions on the universality and generalisability of management concepts.Keywords: CSR, comparative study, cultures of capitalism, small, medium-sized enterprises
Procedia PDF Downloads 43227089 About the Case Portfolio Management Algorithms and Their Applications
Authors: M. Chumburidze, N. Salia, T. Namchevadze
Abstract:
This work deal with case processing problems in business. The task of strategic credit requirements management of cases portfolio is discussed. The information model of credit requirements in a binary tree diagram is considered. The algorithms to solve issues of prioritizing clusters of cases in business have been investigated. An implementation of priority queues to support case management operations has been presented. The corresponding pseudo codes for the programming application have been constructed. The tools applied in this development are based on binary tree ordering algorithms, optimization theory, and business management methods.Keywords: credit network, case portfolio, binary tree, priority queue, stack
Procedia PDF Downloads 14727088 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations
Authors: Gholamreza Momenzadeh, Forough Nematolahi
Abstract:
The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.Keywords: extended enterprise resource planning, cloud computing, business process, enterprise information integration
Procedia PDF Downloads 22027087 Analysis of Digital Transformation in Banking: The Hungarian Case
Authors: Éva Pintér, Péter Bagó, Nikolett Deutsch, Miklós Hetényi
Abstract:
The process of digital transformation has a profound influence on all sectors of the worldwide economy and the business environment. The influence of blockchain technology can be observed in the digital economy and e-government, rendering it an essential element of a nation's growth strategy. The banking industry is experiencing significant expansion and development of financial technology firms. Utilizing developing technologies such as artificial intelligence (AI), machine learning (ML), and big data (BD), these entrants are offering more streamlined financial solutions, promptly addressing client demands, and presenting a challenge to incumbent institutions. The advantages of digital transformation are evident in the corporate realm, and firms that resist its adoption put their survival at risk. The advent of digital technologies has revolutionized the business environment, streamlining processes and creating opportunities for enhanced communication and collaboration. Thanks to the aid of digital technologies, businesses can now swiftly and effortlessly retrieve vast quantities of information, all the while accelerating the process of creating new and improved products and services. Big data analytics is generally recognized as a transformative force in business, considered the fourth paradigm of science, and seen as the next frontier for innovation, competition, and productivity. Big data, an emerging technology that is shaping the future of the banking sector, offers numerous advantages to banks. It enables them to effectively track consumer behavior and make informed decisions, thereby enhancing their operational efficiency. Banks may embrace big data technologies to promptly and efficiently identify fraud, as well as gain insights into client preferences, which can then be leveraged to create better-tailored products and services. Moreover, the utilization of big data technology empowers banks to develop more intelligent and streamlined models for accurately recognizing and focusing on the suitable clientele with pertinent offers. There is a scarcity of research on big data analytics in the banking industry, with the majority of existing studies only examining the advantages and prospects associated with big data. Although big data technologies are crucial, there is a dearth of empirical evidence about the role of big data analytics (BDA) capabilities in bank performance. This research addresses a gap in the existing literature by introducing a model that combines the resource-based view (RBV), the technical organization environment framework (TOE), and dynamic capability theory (DC). This study investigates the influence of Big Data Analytics (BDA) utilization on the performance of market and risk management. This is supported by a comparative examination of Hungarian mobile banking services.Keywords: big data, digital transformation, dynamic capabilities, mobile banking
Procedia PDF Downloads 6427086 Business Model Innovation and Firm Performance: Exploring Moderation Effects
Authors: Mohammad-Ali Latifi, Harry Bouwman
Abstract:
Changes in the business environment accelerated dramatically over the last decades as a result of changes in technology, regulation, market, and competitors’ behavior. Firms need to change the way they do business in order to survive or maintain their growth. Innovating business model (BM) can create competitive advantages and enhance firm performance. However, many companies fail to achieve expected outcomes in practice, mostly due to irreversible fundamental changes in key components of the company’s BM. This leads to more ambiguity, uncertainty, and risks associated with business performance. However, the relationship among BM Innovation, moderating factors, and the firm’s overall performance is by and large ignored in the current literature. In this study, we identified twenty moderating factors from our comprehensive literature review. We categorized these factors based on two criteria regarding the extent to which: the moderating factors can be controlled and managed by firms, and they are generic or specific changes to the firms. This leads to four moderation groups. The first group is BM implementation, which includes management support, employees’ commitment, employees’ skills, communication, detailed plan. The second group is called BM practices, which consists of BM tooling, BM experimentation, the scope of change, speed of change, degree of novelty. The third group is Firm characteristics, including firm size, age, and ownership. The last group is called Industry characteristics, which considers the industry sector, competitive intensity, industry life cycle, environmental dynamism, high-tech vs. low-tech industry. Through collecting data from 508 European small and medium-sized enterprises (SMEs) and using the structural equation modeling technique, the developed moderation model was examined. Results revealed that all factors highlighted through these four groups moderate the relation between BMI and firm performance significantly. Particularly, factors related to BM-Implementation and BM-Practices are more manageable and would potentially improve firm overall performance. We believe that this result is more important for researchers and practitioners since the possibility of working on factors in Firm characteristics and Industry characteristics groups are limited, and the firm can hardly control and manage them to improve the performance of BMI efforts.Keywords: business model innovation, firm performance, implementation, moderation
Procedia PDF Downloads 11927085 Governance Commitment and Time Differences in Aspects of Sustainability Reporting in Nigerian Banks
Authors: Nwobu Obiamaka, Owolabi Akintola
Abstract:
This study examined the extent of statistical significant difference between the economic, environmental, governance and social aspects of sustainability reporting as a result of board committee on sustainability and time (year) of reporting for business organizations in the Nigerian banking sector. The years of reporting under consideration were 2010, 2011, 2012 and 2013. Content analysis methodology was employed through a reporting index used to score the amount of economic, environmental, governance and social indicators of sustainability reporting. The results of this study indicated that business organizations with board committee on sustainability had more indicators of sustainability reporting than those without board committees on sustainability issues. Also, sustainability reporting in 2013 was higher than that of prior years (2012, 2011 and 2010) for the economic, environmental and social indicators. The governance indicators of 2012 was highest compared to the other years (2013, 2011 and 2010) under consideration in this study. The implication of this finding is that business organizations that have board committees on sustainability are monitored by such boards to report more to their stakeholders. On the other hand, business organizations are appreciating the need to engage in sustainability reporting with each passing year. This could be due to the Central Bank of Nigeria (CBN) Sustainability Reporting framework that business organizations in the banking sector have to adhere to. When sustainability issues are monitored from the board of directors, business organizations are likely to increase and improve on their sustainability reporting.Keywords: governance, organizations, reporting, sustainability
Procedia PDF Downloads 31727084 A Predictive Model of Supply and Demand in the State of Jalisco, Mexico
Authors: M. Gil, R. Montalvo
Abstract:
Business Intelligence (BI) has become a major source of competitive advantages for firms around the world. BI has been defined as the process of data visualization and reporting for understanding what happened and what is happening. Moreover, BI has been studied for its predictive capabilities in the context of trade and financial transactions. The current literature has identified that BI permits managers to identify market trends, understand customer relations, and predict demand for their products and services. This last capability of BI has been of special concern to academics. Specifically, due to its power to build predictive models adaptable to specific time horizons and geographical regions. However, the current literature of BI focuses on predicting specific markets and industries because the impact of such predictive models was relevant to specific industries or organizations. Currently, the existing literature has not developed a predictive model of BI that takes into consideration the whole economy of a geographical area. This paper seeks to create a predictive model of BI that would show the bigger picture of a geographical area. This paper uses a data set from the Secretary of Economic Development of the state of Jalisco, Mexico. Such data set includes data from all the commercial transactions that occurred in the state in the last years. By analyzing such data set, it will be possible to generate a BI model that predicts supply and demand from specific industries around the state of Jalisco. This research has at least three contributions. Firstly, a methodological contribution to the BI literature by generating the predictive supply and demand model. Secondly, a theoretical contribution to BI current understanding. The model presented in this paper incorporates the whole picture of the economic field instead of focusing on a specific industry. Lastly, a practical contribution might be relevant to local governments that seek to improve their economic performance by implementing BI in their policy planning.Keywords: business intelligence, predictive model, supply and demand, Mexico
Procedia PDF Downloads 12227083 Hybrid Data-Driven Drilling Rate of Penetration Optimization Scheme Guided by Geological Formation and Historical Data
Authors: Ammar Alali, Mahmoud Abughaban, William Contreras Otalvora
Abstract:
Optimizing the drilling process for cost and efficiency requires the optimization of the rate of penetration (ROP). ROP is the measurement of the speed at which the wellbore is created, in units of feet per hour. It is the primary indicator of measuring drilling efficiency. Maximization of the ROP can indicate fast and cost-efficient drilling operations; however, high ROPs may induce unintended events, which may lead to nonproductive time (NPT) and higher net costs. The proposed ROP optimization solution is a hybrid, data-driven system that aims to improve the drilling process, maximize the ROP, and minimize NPT. The system consists of two phases: (1) utilizing existing geological and drilling data to train the model prior, and (2) real-time adjustments of the controllable dynamic drilling parameters [weight on bit (WOB), rotary speed (RPM), and pump flow rate (GPM)] that direct influence on the ROP. During the first phase of the system, geological and historical drilling data are aggregated. After, the top-rated wells, as a function of high instance ROP, are distinguished. Those wells are filtered based on NPT incidents, and a cross-plot is generated for the controllable dynamic drilling parameters per ROP value. Subsequently, the parameter values (WOB, GPM, RPM) are calculated as a conditioned mean based on physical distance, following Inverse Distance Weighting (IDW) interpolation methodology. The first phase is concluded by producing a model of drilling best practices from the offset wells, prioritizing the optimum ROP value. This phase is performed before the commencing of drilling. Starting with the model produced in phase one, the second phase runs an automated drill-off test, delivering live adjustments in real-time. Those adjustments are made by directing the driller to deviate two of the controllable parameters (WOB and RPM) by a small percentage (0-5%), following the Constrained Random Search (CRS) methodology. These minor incremental variations will reveal new drilling conditions, not explored before through offset wells. The data is then consolidated into a heat-map, as a function of ROP. A more optimum ROP performance is identified through the heat-map and amended in the model. The validation process involved the selection of a planned well in an onshore oil field with hundreds of offset wells. The first phase model was built by utilizing the data points from the top-performing historical wells (20 wells). The model allows drillers to enhance decision-making by leveraging existing data and blending it with live data in real-time. An empirical relationship between controllable dynamic parameters and ROP was derived using Artificial Neural Networks (ANN). The adjustments resulted in improved ROP efficiency by over 20%, translating to at least 10% saving in drilling costs. The novelty of the proposed system lays is its ability to integrate historical data, calibrate based geological formations, and run real-time global optimization through CRS. Those factors position the system to work for any newly drilled well in a developing field event.Keywords: drilling optimization, geological formations, machine learning, rate of penetration
Procedia PDF Downloads 13127082 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 30827081 Analysis of Effect of Microfinance on the Profit Level of Small and Medium Scale Enterprises in Lagos State, Nigeria
Authors: Saheed Olakunle Sanusi, Israel Ajibade Adedeji
Abstract:
The study analysed the effect of microfinance on the profit level of small and medium scale enterprises in Lagos. The data for the study were obtained by simple random sampling, and total of one hundred and fifty (150) small and medium scale enterprises (SMEs) were sampled for the study. Seventy-five (75) each are microfinance users and non-users. Data were analysed using descriptive statistics, logit model, t-test and ordinary least square (OLS) regression. The mean profit of the enterprises using microfinance is ₦16.8m, while for the non-users of microfinance is ₦5.9m. The mean profit of microfinance users is statistically different from the non-users. The result of the logit model specified for the determinant of access to microfinance showed that three of specified variables- educational status of the enterprise head, credit utilisation and volume of business investment are significant at P < 0.01. Enterprises with many years of experience, highly educated enterprise heads and high volume of business investment have more potential access to microfinance. The OLS regression model indicated that three parameters namely number of school years, the volume of business investment and (dummy) participation in microfinance were found to be significant at P < 0.05. These variables are therefore significant determinants of impacts of microfinance on profit level in the study area. The study, therefore, concludes and recommends that to improve the status of small and medium scale enterprises for an increase in profit, the full benefit of access to microfinance can be enhanced through investment in social infrastructure and human capital development. Also, concerted efforts should be made to encouraged non-users of microfinance among SMEs to use it in order to boost their profit.Keywords: credit utilisation, logit model, microfinance, small and medium enterprises
Procedia PDF Downloads 20427080 Examining Language as a Crucial Factor in Determining Academic Performance: A Case of Business Education in Hong Kong
Authors: Chau So Ling
Abstract:
I.INTRODUCTION: Educators have always been interested in exploring factors that contribute to students’ academic success. It is beyond question that language, as a medium of instruction, will affect student learning. This paper tries to investigate whether language is a crucial factor in determining students’ achievement in their studies. II. BACKGROUND AND SIGNIFICANCE OF STUDY: The issue of using English as a medium of instruction in Hong Kong is a special topic because Hong Kong is a post-colonial and international city which a British colony. In such a specific language environment, researchers in the education field have always been interested in investigating students’ language proficiency and its relation to academic achievement and other related educational indicators such as motivation to learn, self-esteem, learning effectiveness, self-efficacy, etc. Along this line of thought, this study specifically focused on business education. III. METHODOLOGY: The methodology in this study involved two sequential stages, namely, a focus group interview and a data analysis. The whole study was directed towards both qualitative and quantitative aspects. The subjects of the study were divided into two groups. For the first group participating in the interview, a total of ten high school students were invited. They studied Business Studies, and their English standard was varied. The theme of the discussion was “Does English affect your learning and examination results of Business Studies?” The students were facilitated to discuss the extent to which English standard affected their learning of Business subjects and requested to rate the correlation between English and performance of Business Studies on a five-point scale. The second stage of the study involved another group of students. They were high school graduates who had taken the public examination for entering universities. A database containing their public examination results for different subjects has been obtained for the purpose of statistical analysis. Hypotheses were tested and evidence was obtained from the focus group interview to triangulate the findings. V. MAJOR FINDINGS AND CONCLUSION: By sharing of personal experience, the discussion of focus group interviews indicated that higher English standards could help the students achieve better learning and examination performance. In order to end the interview, the students were asked to indicate the correlation between English proficiency and performance of Business Studies on a five-point scale. With point one meant least correlated, ninety percent of the students gave point four for the correlation. The preliminary results illustrated that English plays an important role in students’ learning of Business Studies, or at least this was what the students perceived, which set the hypotheses for the study. After conducting the focus group interview, further evidence had to be gathered to support the hypotheses. The data analysis part tried to find out the relationship by correlating the students’ public examination results of Business Studies and levels of English standard. The results indicated a positive correlation between their English standard and Business Studies examination performance. In order to highlight the importance of the English language to the study of Business Studies, the correlation between the public examination results of other non-business subjects was also tested. Statistical results showed that language does play a role in affecting students’ performance in studying Business subjects than the other subjects. The explanation includes the dynamic subject nature, examination format and study requirements, the specialist language used, etc. Unlike Science and Geography, students in their learning process might find it more difficult to relate business concepts or terminologies to their own experience, and there are not many obvious physical or practical activities or visual aids to serve as evidence or experiments. It is well-researched in Hong Kong that English proficiency is a determinant of academic success. Other research studies verified such a notion. For example, research revealed that the more enriched the language experience, the better the cognitive performance in conceptual tasks. The ability to perform this kind of task is particularly important to students taking Business subjects. Another research was carried out in the UK, which was geared towards identifying and analyzing the reasons for underachievement across a cohort of GCSE students taking Business Studies. Results showed that weak language ability was the main barrier to raising students’ performance levels. It seemed that the interview result was successfully triangulated with data findings. Although education failure cannot be restricted to linguistic failure and language is just one of the variables to play in determining academic achievement, it is generally accepted that language does affect students’ academic performance. It is just a matter of extent. This paper provides recommendations for business educators on students’ language training and sheds light on more research possibilities in this area.Keywords: academic performance, language, learning, medium of instruction
Procedia PDF Downloads 12127079 Theoretical and ML-Driven Identification of a Mispriced Credit Risk
Authors: Yuri Katz, Kun Liu, Arunram Atmacharan
Abstract:
Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning
Procedia PDF Downloads 7927078 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity
Authors: N. P. Yadav, Deepti Verma
Abstract:
This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid
Procedia PDF Downloads 41627077 New Opportunities in Business as a Result of the Corona Virus
Authors: Lasha Kamashidze
Abstract:
COVID19 has already become one of the biggest challenges in the modern world. The virus has also had a significant impact on the world economy, which has faced a major crisis. Each crisis and challenge creates new opportunities. Changes in the world have allowed us to see business in a new light. The aim of the article is to explore new opportunities in the business that have arisen as a result of the Corona virus. Now, organizations with a service profile are working to meet the rapidly changing needs of their staff and customers. Due to the situation created by the pandemic, it became necessary to make some changes in people's daily lives. It became necessary to adapt to the new reality. The changes caused by Coronavirus require in-depth research and analysis in the world economy, as the current situation is not ruled out to be repeated in the future. Many companies have resorted to remote work methods, which require organizational changes. The form of remote work is not new to the Georgian reality. In Georgia, as well as in the rest of the world, the business sector has undergone changes. It will be beneficial for many Georgian companies to make organizational changes that will allow them to work remotely. The current situation has shown the managers of both Georgian and other companies to have "weak points" in organizing modern business. A survey was conducted (online survey), as a result of which it received important information about the problems of remote work in Georgia.Keywords: organizational change, coronomics, remote work, management
Procedia PDF Downloads 8527076 Create a Model of Production and Marketing Strategies in Alignment with Business Strategy Using QFD Approach
Authors: Hamed Saremi, Shahla Saremi
Abstract:
In today's competitive world, organizations are expected to surpass the competitors and benefit from the resources and benefits. Therefore, organizations need to improve the current performance is felt more than ever that this requires to identify organizational optimal strategies, and consider all strategies simultaneously. In this study, to enhance competitive advantage and according to customer requirements, alignment between business, production and marketing strategies, House of Quality (QFD) approach has been used and zero-one linear programming model has been studied. First, the alignment between production and marketing strategies with business strategy, independent weights of these strategies is calculated. Then with using QFD approach the aligned weights of optimal strategies in each production and marketing field will be obtained and finally the aligned marketing strategies selection with the purpose of allocating budget and specialist human resource to marketing functions will be done that lead to increasing competitive advantage and benefit.Keywords: marketing strategy, business strategy, strategy alignment, house of quality deployment, production strategy
Procedia PDF Downloads 60327075 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production
Authors: Olga Orynycz, Andrzej Wasiak
Abstract:
Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system
Procedia PDF Downloads 34427074 Light Car Assisted by PV Panels
Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid
Abstract:
This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.Keywords: light car, hybrid system, PV panel, electric motor
Procedia PDF Downloads 11927073 An Exploration of Why Insider Fraud Is the Biggest Threat to Your Business
Authors: Claire Norman-Maillet
Abstract:
Insider fraud, otherwise known as occupational, employee, or internal fraud, is a financial crime threat. Perpetrated by defrauding (or attempting to defraud) one’s current, prospective, or past employer, an ‘employee’ covers anyone employed by the company, including board members and contractors. The Coronavirus pandemic has forced insider fraud into the spotlight, and it isn’t dimming. As the focus of most academics and practitioners has historically been on that of ‘external fraud’, insider fraud is often overlooked or not considered to be a real threat. However, since COVID-19 changed the working world, pushing most of us into remote or hybrid working, employers cannot easily keep an eye on what their staff are doing, which has led to reliance on trust and transparency. This, therefore, brings about an increased risk of insider fraud perpetration. The objective of this paper is to explore why insider fraud is, therefore, now the biggest threat to a business. To achieve the research objective, participating individuals within the financial crime sector (either as a practitioner or consultants) attended semi-structured interviews with the researcher. The principal recruitment strategy for these individuals was via the researcher’s LinkedIn network. The main findings in the research suggest that insider fraud has been ignored and rejected as a threat to a business, owing to a reluctance to admit that a colleague may perpetrate. A positive of the Coronavirus pandemic is that it has forced insider fraud into a more prominent position and giving it more importance on a business’ agenda and risk register. Despite insider fraud always having been a possibility (and therefore a risk) within any business, it is very rare that a business has given it the attention it requires until now, if at all. The research concludes that insider fraud needs to prioritised by all businesses, and even ahead of external fraud. The research also provides advice on how a business can add new or enhance existing controls to mitigate the risk.Keywords: insider fraud, occupational fraud, COVID-19, COVID, coronavirus, pandemic, internal fraud, financial crime, economic crime
Procedia PDF Downloads 62