Search results for: challenging visitors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2033

Search results for: challenging visitors

1313 Chemical Reaction Method for Growing Uniform Photomechanical Organic Crystlas

Authors: Rabih O. Al-Kaysi, Lingyan Zhu, Muhannah K. Al-Muhannah, Christopher J. Bardeen

Abstract:

(E)-3-(Anthracen-9-yl)acrylic acid (9-AYAA) 1 exhibits a strong photomechanical response in bulk crystals but is challenging to grow in microcrystalline form. High quality microcrystals of this molecule could not be grown using techniques like sublimation, reprecipitation, and the floating drop method. If the tertbutyl ester of 9-AYAA is used as a starting material, however, high quality, size-uniform microwires could be grown via acid catalyzed hydrolysis. 9-AYAA microwires with uniform length and thickness were produced after a suspension of (E)-tert-butyl 3-(anthracen-9-yl)acrylate ester 2 microparticles was tumble-mixed in a mixture of phosphoric acid and sodium dodecyl sulfate at 35 °C. The dependence of the results on temperature, surfactant and precursor concentration, and mixing mode was investigated. This chemical reaction-growth method was extended to grow microplates of 9-anthraldehyde 3 using the corresponding acylal 4 as the starting material. Under 475 nm irradiation, the 9-AYAA microwires undergo a photoinduced coiling–uncoiling transition, while the 9-anthraldehyde microplates undergo a folding–unfolding transition.

Keywords: photomechanical, surfactant, organic crystals, uniform

Procedia PDF Downloads 405
1312 An In-Depth Study on the Experience of Novice Teachers

Authors: Tsafi Timor

Abstract:

The research focuses on the exploration of the unique journey that novice teachers experience in their first year of teaching, among graduates of re-training programs into teaching. The study explores the experiences of success and failure and the factors that underpin positive experiences, as well as the journey (process) of this year with reference to the comparison between novice teachers and new immigrants. The content analysis that was adopted in the study was conducted on texts that were written by the teachers and detailed their first year of teaching. The findings indicate that experiences of success are featured by personal satisfaction, constant need of feedback, high motivation in challenging situations, and emotions. Failure experiences are featured by frustration, helplessness, sense of humiliation, feeling of rejection, and lack of efficacy. Factors that promote and inhibit positive experiences relate to personal, personality, professional and organizational levels. Most teachers reported feeling like new immigrants, and demonstrated different models of the process of the first year of teaching. Further research is recommended on the factors that promote and inhibit positive experiences, and on 'The Missing Link' of the relationship between Teacher Education Programs and the practices in schools.

Keywords: first-year teaching, novice teachers, school practice, teacher education programs

Procedia PDF Downloads 294
1311 Analysis of Facial Expressions with Amazon Rekognition

Authors: Kashika P. H.

Abstract:

The development of computer vision systems has been greatly aided by the efficient and precise detection of images and videos. Although the ability to recognize and comprehend images is a strength of the human brain, employing technology to tackle this issue is exceedingly challenging. In the past few years, the use of Deep Learning algorithms to treat object detection has dramatically expanded. One of the key issues in the realm of image recognition is the recognition and detection of certain notable people from randomly acquired photographs. Face recognition uses a way to identify, assess, and compare faces for a variety of purposes, including user identification, user counting, and classification. With the aid of an accessible deep learning-based API, this article intends to recognize various faces of people and their facial descriptors more accurately. The purpose of this study is to locate suitable individuals and deliver accurate information about them by using the Amazon Rekognition system to identify a specific human from a vast image dataset. We have chosen the Amazon Rekognition system, which allows for more accurate face analysis, face comparison, and face search, to tackle this difficulty.

Keywords: Amazon rekognition, API, deep learning, computer vision, face detection, text detection

Procedia PDF Downloads 108
1310 Reducing Lean by Implementing Distance Learning in the Training Programs of Oil and Gas Industries

Authors: Sayed-Mahdi Hashemi-Dehkordi, Ian Baker

Abstract:

This paper investigates the benefits of implementing distance learning in training courses for the oil and gas industries to reduce lean. Due to the remote locations of many oil and gas operations, scheduling and organizing in-person training classes for employees in these sectors is challenging. Furthermore, considering that employees often work in periodic shifts such as day, night, and resting periods, arranging in-class training courses requires significant time and transportation. To explore the effectiveness of distance learning compared to in-class learning, a set of questionnaires was administered to employees of a far on-shore refinery unit in Iran, where both in-class and distance classes were conducted. The survey results revealed that over 72% of the participants agreed that distance learning saved them a significant amount of time by rating it 4 to 5 points out of 5 on a Likert scale. Additionally, nearly 67% of the participants acknowledged that distance learning considerably reduced transportation requirements, while approximately 64% agreed that it helped in resolving scheduling issues. Introducing and encouraging the use of distance learning in the training environments of oil and gas industries can lead to notable time and transportation savings for employees, ultimately reducing lean in a positive manner.

Keywords: distance learning, in-class learning, lean, oil and gas, scheduling, time, training programs, transportation

Procedia PDF Downloads 71
1309 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm

Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene

Abstract:

Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.

Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest

Procedia PDF Downloads 126
1308 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions

Authors: Emma Serwaa Obobisa

Abstract:

Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.

Keywords: green technology innovation, renewable energy, urbanization, net zero emissions

Procedia PDF Downloads 37
1307 Regulating the Emerging Platform Economy in Ethiopia: Issues in the Ride-Hailing Platforms

Authors: Nebiat Lemenih Lenger

Abstract:

Today, the digital economy is evolving faster than ever in Ethiopia. Platforms that provide a ride-hailing service are growing fast in the country. The market welcomed them as they disrupt it with quality services and lower prices. This revolution is, however, not without challenges. These include cybersecurity breaches, facilitating illegal economic activities, and challenging concepts of privacy. To mitigate the risks and utilize the benefits, appropriate regulation should be introduced in the economy. By identifying legal and institutional gaps in Ethiopia`s digital economy, this research work assists the government`s effort to create a better digital economy. Moreover, this study, being a pioneer study in the area, will be an input for further studies in academia. The research employs a qualitative legal research method and analyzes various legal and policy instruments in Ethiopia in comparison with best international experiences. As this research applies a qualitative research method, a grounded theory method of data analysis is used. The research concluded that Ethiopia is far from designing appropriate legal and regulatory infrastructures. Due to the government monopoly of the sector, there is poor digital infrastructure in the country. The existing labor laws have no specific provisions on the rights and obligations of gig workers.

Keywords: Ethiopia, gig economy, digital, ride-hailing, regulation

Procedia PDF Downloads 97
1306 Enhancing the Sensitivity of Antigen Based Sandwich ELISA for COVID-19 Diagnosis in Saliva Using Gold Conjugated Nanobodies

Authors: Manal Kamel, Sara Maher

Abstract:

Development of sensitive non-invasive tests for detection of SARS-CoV-2 antigens is imperative to manage the extent of infection throughout the population, yet, it is still challenging. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swapswere collected from 170 PCR-confirmed positive and negative cases. Gold nanoparticles (AuNPs) were conjugated with S1protein receptor binding domain (RBD) nanobodies. Recombinant S1 monoclonal antibodies (S1mAb) as primery antibody and gold conjugated nanobodies as secondary antibody were employed in sandwich ELISA. Our developed system were optimized to achieve 87.5 % sensitivity and 100% specificity for saliva samples compared to 89 % and 100% for nasopharyngeal swaps, respectively. This means that saliva could be a suitable replacement for nasopharyngeal swaps No cross reaction was detected with other corona virus antigens. These results revealed that our developed ELISAcould be establishedas a new, reliable, sensitive, and non-invasive test for diagnosis of SARS-CoV-2 infection, using the easily collected saliva samples.

Keywords: COVID 19, diagnosis, ELISA, nanobodies

Procedia PDF Downloads 136
1305 Implementation of Data Science in Field of Homologation

Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande

Abstract:

For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.

Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)

Procedia PDF Downloads 164
1304 An Efficient FPGA Realization of Fir Filter Using Distributed Arithmetic

Authors: M. Iruleswari, A. Jeyapaul Murugan

Abstract:

Most fundamental part used in many Digital Signal Processing (DSP) application is a Finite Impulse Response (FIR) filter because of its linear phase, stability and regular structure. Designing a high-speed and hardware efficient FIR filter is a very challenging task as the complexity increases with the filter order. In most applications the higher order filters are required but the memory usage of the filter increases exponentially with the order of the filter. Using multipliers occupy a large chip area and need high computation time. Multiplier-less memory-based techniques have gained popularity over past two decades due to their high throughput processing capability and reduced dynamic power consumption. This paper describes the design and implementation of highly efficient Look-Up Table (LUT) based circuit for the implementation of FIR filter using Distributed arithmetic algorithm. It is a multiplier less FIR filter. The LUT can be subdivided into a number of LUT to reduce the memory usage of the LUT for higher order filter. Analysis on the performance of various filter orders with different address length is done using Xilinx 14.5 synthesis tool. The proposed design provides less latency, less memory usage and high throughput.

Keywords: finite impulse response, distributed arithmetic, field programmable gate array, look-up table

Procedia PDF Downloads 461
1303 An Entropy Based Novel Algorithm for Internal Attack Detection in Wireless Sensor Network

Authors: Muhammad R. Ahmed, Mohammed Aseeri

Abstract:

Wireless Sensor Network (WSN) consists of low-cost and multi functional resources constrain nodes that communicate at short distances through wireless links. It is open media and underpinned by an application driven technology for information gathering and processing. It can be used for many different applications range from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. With its nature and application scenario, security of WSN had drawn a great attention. It is known to be valuable to variety of attacks for the construction of nodes and distributed network infrastructure. In order to ensure its functionality especially in malicious environments, security mechanisms are essential. Malicious or internal attacker has gained prominence and poses the most challenging attacks to WSN. Many works have been done to secure WSN from internal attacks but most of it relay on either training data set or predefined threshold. Without a fixed security infrastructure a WSN needs to find the internal attacks is a challenge. In this paper we present an internal attack detection method based on maximum entropy model. The final experimental works showed that the proposed algorithm does work well at the designed level.

Keywords: internal attack, wireless sensor network, network security, entropy

Procedia PDF Downloads 456
1302 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 128
1301 The Necessity of Trust in Achieving Positive Work Culture and Sustainable Outcomes in SMEs: Practical Guidelines for Positive Leadership

Authors: Leanne Sanders, Leonie Hallo, Tiep Nguyen, Nicholas Chileshe.

Abstract:

Purpose – Small and Medium-Sized Enterprises (SMEs) play an important role globally, yet the investigation of sustainability in this context is limited. The leader’s relationships with employees are a critical aspect of creating a positive and supportive organizational culture. Therefore, to bridge the knowledge gap, the aim of this paper is to extend the notion that the creation of trust is central to the sustainability of SMEs. Design: The study employs a case study observational research (CSOR) approach, and data were collected using first-hand observations and interviews. Findings: A model of leadership behaviour and a series of steps that leaders can take to leverage trust are presented. Leaders can have a positive impact even if the team is operating in a challenging context. Creating a positive environment brings sustainability to the team and perhaps the wider organization as well. Originality: This paper provides detailed information about the context in which developing trust can produce positive outcomes despite the prevailing overall toxic culture of an organization. The paper provides concrete advice for leaders to assist them in this highly important task.

Keywords: leadership, organizational culture, organizational sustainability, trust, positive culture

Procedia PDF Downloads 20
1300 The Preparation and Effectiveness of Picture Book for Increasing Knowledge about Divorce

Authors: Denia Prameswari

Abstract:

The impacts of divorce are not only felt by parents but also by children. Preschool children are the most distressed while facing parental divorce. The negative impacts of divorce on children can be minimized when children had pervious knowledge about the event. One of the method to give knowledge about divorce to children is through picture book. Unfortunately, in Indonesia, researchers have not found picture books for preschoolers about divorce. This study aims to test the effectiveness of picture book in increasing knowledge of preschool children about divorce. Formulation of picture books in this study is based on three sources of information: (1) the study of literature, (2) analysis of picture books, and (3) need assessment. This picture book that have been prepared, then used to test its effectiveness for increasing knowledge of preschool children about divorce. The test was conducted using pre and post test on 5 participants. The statistical method used in this study is paired sample t-test. The purposive sampling method was used to select the participants. The participants for this study are preschool children with parents that is undergoing divorce proceedings. The result shows that picture books in this study significantly increase preschool children's knowledge about divorce. As an additional result, parents find it easier to explain divorce to their children using the picture book from this study. For further study, researcher can make another picture book about divorce for children at different age or to face another challenging situation in life.

Keywords: divorce, parent, picture book, preschool children

Procedia PDF Downloads 328
1299 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 192
1298 Educational Credit in Enhancing Collaboration between Universities and Companies in Smart City

Authors: Eneken Titov, Ly Hobe

Abstract:

The collaboration between the universities and companies has been a challenging topic for many years, and although we have many good experiences, those seem to be single examples between one university and company. In Ülemiste Smart City in Estonia, the new initiative was started in 2020 fall, when five Estonian universities cooperated, led by the Ülemiste City developing company Mainor, intending to provide charge-free university courses for the Ülemiste City companies and their employees to encourage university-company wider collaboration. Every Ülemiste City company gets a certain number of free educational credit hours per year to participate in university courses. A functional and simple web platform was developed to mediate university courses for the companies. From January 2021, the education credit platform is open for all Ülemiste City companies and their employees to join, and universities offer more than 9000 hours of courses (appr 150 ECTS). Just two months later, more than 20% of Ülemiste City companies (82 out of 400) have joined the project, and their employees have registered for more than in total 3000 hours courses. The first results already show that the project supports the university marketing and the continuous education mindset in general, whether 1/4 of the courses are paid courses (e.g., when the company is out of free credit).

Keywords: education, educational credit, smart city, university-industry collaboration

Procedia PDF Downloads 206
1297 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 303
1296 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: graph computation, graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia PDF Downloads 150
1295 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 130
1294 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 258
1293 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework

Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi

Abstract:

There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.

Keywords: video lectures, big video data, video retrieval, hadoop

Procedia PDF Downloads 537
1292 The Emoji Method: An Approach for Identifying and Formulating Problem Ideas

Authors: Thorsten Herrmann, Alexander Laukemann, Hansgeorg Binz, Daniel Roth

Abstract:

For the analysis of already identified and existing problems, the pertinent literature provides a comprehensive collection of approaches as well as methods in order to analyze the problems in detail. But coming up with problems, which are assets worth pursuing further, is often challenging. However, the importance of well-formulated problem ideas and their influence of subsequent creative processes are incontestable and proven. In order to meet the covered challenges, the Institute for Engineering Design and Industrial Design (IKTD) developed the Emoji Method. This paper presents the Emoji Method, which support designers to generate problem ideas in a structured way. Considering research findings from knowledge management and innovation management, research into emojis and emoticons reveal insights by means of identifying and formulating problem ideas within the early design phase. The simple application and the huge supporting potential of the Emoji Method within the early design phase are only few of the many successful results of the conducted evaluation. The Emoji Method encourages designers to identify problem ideas and describe them in a structured way in order to start focused with generating solution ideas for the revealed problem ideas.

Keywords: emojis, problem ideas, innovation management, knowledge management

Procedia PDF Downloads 144
1291 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition

Procedia PDF Downloads 384
1290 Trend and Distribution of Heavy Metals in Soil and Sediment: North of Thailand Region

Authors: Chatkaew Tansakul, Saovajit Nanruksa, Surasak Chonchirdsin

Abstract:

Heavy metals in the environment can be occurred by both natural weathering process and human activity, which may present significant risks to human health and the wider environment. A number of heavy metals, i.e. Arsenic (As) and Manganese (Mn), are found with a relatively high concentration in the northern part of Thailand that was assumptively from natural parent rocks and materials. However, scarce literature is challenging to identify the accurate root cause and best available explanation. This study is, therefore, aim to gather heavy metals data in 5 provinces of the North of Thailand where PTT Exploration and Production (PTTEP) public company limited has operated for more than 20 years. A thousand heavy metal analysis is collected and interpreted in term of Enrichment Factor (EF). The trend and distribution of heavy metals in soil and sediment are analyzed by considering altogether the geochemistry of the regional soil and rock. . In addition, the relationship between land use and heavy metals distribution is investigated. In the first conclusion, heavy metal concentrations of (As) and (Mn) in the studied areas are equal to 7.0 and 588.6 ppm, respectively, which are comparable to those in regional parent materials (1 – 12 and 850 – 1,000 ppm for As and Mn respectively). Moreover, there is an insignificant escalation of the heavy metals in these studied areas over two decades.

Keywords: contaminated soil, enrichment factor, heavy metals, parent materials in North of Thailand

Procedia PDF Downloads 158
1289 Transcending Boundaries: Integrating Urban Vibrancy with Contemporary Interior Design through Vivid Wall Pieces

Authors: B. C. Biermann

Abstract:

This in-depth exploration investigates the transformative integration of urban vibrancy into contemporary interior design through the strategic incorporation of vivid wall pieces. Bridging the gap between public dynamism and private tranquility, this study delves into the nuanced methodologies, creative processes, and profound impacts of this innovative approach. Drawing inspiration from street art's dynamic language and the timeless allure of natural beauty, these artworks serve as conduits, orchestrating a dialogue that challenges traditional boundaries and redefines the relationship between external chaos and internal sanctuaries. The fusion of urban vibrancy with contemporary interior design represents a paradigm shift, where the inherent dynamism of public spaces harmoniously converges with the curated tranquility of private environments. This paper aims to explore the underlying principles, creative processes, and transformative impacts of integrating vivid wall pieces as instruments for bringing the "outside in." Employing an innovative and meticulous methodology, street art elements are synthesized with the refined aesthetics of contemporary design. This delicate balance necessitates a nuanced understanding of both artistic realms, ensuring a synthesis that captures the essence of urban energy while seamlessly blending with the sophistication of modern interior design. The creative process involves a strategic selection of street art motifs, colors, and textures that resonate with the organic beauty found in natural landscapes, creating a symbiotic relationship between the grittiness of the streets and the elegance of interior spaces. This groundbreaking approach defies traditional boundaries by integrating dynamic street art into interior spaces, blurring the demarcation between external chaos and internal tranquility. Vivid wall pieces serve as dynamic focal points, transforming physical spaces and challenging conventional perceptions of where art belongs. This redefinition asserts that boundaries are fluid and meant to be transcended. Case studies illustrate the profound impact of integrating vivid wall pieces on the aesthetic appeal of interior spaces. Urban vibrancy revitalizes the atmosphere, infusing it with palpable energy that resonates with the vivacity of public spaces. The curated tranquility of private interiors coexists harmoniously with the dynamic visual language of street art, fostering a unique and evolving relationship between inhabitants and their living spaces. Emphasizing harmonious coexistence, the paper underscores the potential for a seamless dialogue between public urban spaces and private interiors. The integration of vivid wall pieces acts as a bridge rather than a dichotomy, merging the dynamism of street art with the curated elegance of contemporary design. This unique visual tapestry transcends traditional categorizations, fostering a symbiotic relationship between contrasting worlds. In conclusion, this paper posits that the integration of vivid wall pieces represents a transformative tool for contemporary interior design, challenging and redefining conventional boundaries. By strategically bringing the "outside in," this approach transforms interior spaces and heralds a paradigm shift in the relationship between urban aesthetics and contemporary living. The ongoing narrative between urban vibrancy and interior design creates spaces that reflect the dynamic and ever-evolving nature of the surrounding environment.

Keywords: Art Integration, Contemporary Interior Design, Interior Space Transformation, Vivid Wall Pieces

Procedia PDF Downloads 85
1288 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 151
1287 The Case of ESPRIT (HigherSchool of Engineering)

Authors: Amira Potter

Abstract:

Since three years, ESPRIT has adopted project-based learning across its curricula. The philosophy behind this reform is to prepare its future engineers to become more operational once they integrate the workplace. It allows them to learn all the required skills expected from them by their future employers. This learner-centered method helps the students take responsibility for their own learning, solve real-world problems and carry out muli-faceted projects. Therefore, the teacher who used to be considered as the detainer of the knowledge has become more of a facilitator and a coach, encouraging their students’ learning process. This innovative way to English teaching has enabled the students to learn the English language differently. The target language is learnt cooperatively through group work, presentations, debating and many other communicative activities. The speaking skill in English language remains by far the most challenging skill for Tunisian students with an educational background based on Arabic as a first language and French as a second language. The student’s initial resistance to speak English in front of their classmates and the way they end up performing their work, shows the real progress they managed to achieve through PBL approach. The article will focus on the positive impact PBL has had on oral fluency among Esprit engineering students and how it has been achieved. It will also describe how speaking skill is taught and assessed at ESPRIT.

Keywords: cooperative, engineer, innovative, project-based learning

Procedia PDF Downloads 320
1286 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement

Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen

Abstract:

Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.

Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening

Procedia PDF Downloads 120
1285 Multidisciplinary Rehabilitation Algorithm after Mandibular Resection for Ameloblastoma

Authors: Joaquim de Almeida Dultra, Daiana Cristina Pereira Santana, Fátima Karoline Alves Araújo Dultra, Liliane Akemi Kawano Shibasaki, Mariana Machado Mendes de Carvalho, Ieda Margarida Crusoé Rocha Rebello

Abstract:

Defects originating from mandibular resections can cause significant functional impairment and facial disharmony, and they have complex rehabilitation. The aim of this report is to demonstrate the authors' experience facing challenging rehabilitation after mandibular resection in a patient with ameloblastoma. Clinical and surgical steps are described simultaneously, highlighting the adaptation of the final fixed prosthesis, reported in an unprecedented way in the literature. A 37-year-old male patient was seen after a sports accident, where a pathological fracture in the symphysis and left mandibular body was identified, where a large radiolucent lesion was found. The patient underwent resection, bone graft, distraction osteogenesis, rehabilitation with dental implants, prosthesis, and finally, orofacial harmonization, in an interval of six years. Rehabilitation should consider the patient's needs individually and should have as the main objective to provide similar aesthetics and function to that present before the disease. We also emphasize the importance of interdisciplinary work during the course of rehabilitation.

Keywords: ameloblastoma, mandibular reconstruction, distraction osteogenesis, dental implants. dental prosthesis, implant-supported, treatment outcome

Procedia PDF Downloads 115
1284 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 641