Search results for: automatic identification system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20232

Search results for: automatic identification system

19512 Pick and Place System for Dip Glaze Using PID Controller

Authors: Benchalak Muangmeesri

Abstract:

Glazes ceramics are ceramic materials produced through controlled crystallization of a parent glass. The great variety of compositions and the possibility of developing special micro structures with specific technological properties have allowed glass ceramic materials to be used in a wide range of applications. At the same time, glazes ceramics need to improvement in the mechanical and chemical properties of glazed. The pick and place station is equipped with a three-axis module. test piece housings placed on the vacuum are detected module picks up a test piece insert from the slide and places it on the test piece housing. Overall, glazes ceramics are compared with automatically and manually of speed and position control. The handling modules of automatic transfer are a new generation of high speed and precision then these color results from absorption and thickness than manual is also included.

Keywords: glaze, PID control, pick and place, ceramic

Procedia PDF Downloads 378
19511 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 212
19510 Group Boundaries against and Due to Identity Threat

Authors: Anna Siegler, Sara Bigazzi, Sara Serdult, Ildiko Bokretas

Abstract:

Social identity emerging from group membership defines the representational processes of our social reality. Based on our theoretical assumption the subjective perception of identity threat leads to an instable identity structure. The need to re-establish the positive identity will lead us to strengthen group boundaries. Prejudice in our perspective offer psychological security those who thinking in exclusive barriers, and we suggest that those who identify highly with their ingroup/national identity and less with superordinate identities take distance from others and this is related to their perception of threat. In our study we used a newly developed questionnaire, the Multiple Threat and Prejudice Questionnaire (MTPQ) which measure identity threat at different dimensions of identification (national, existential, gender, religious) and the distancing of different outgroups, over and above we worked with Social Dominance Orientation (SDO) and Identification with All Humanity Scale (IWAH). We conduct one data collection (N=1482) in a Hungarian sample to examine the connection between national threat and distance-taking, and this survey includes the investigation (N=218) of identification with different group categories. Our findings confirmed that those who feel themselves threatened in their national identity aspects are less likely to identify themselves with superordinate groups and this correlation is much stronger when they think about the nation as a bio-cultural unit, while if nation defined as a social-economy entity this connection is less powerful and has just the opposite direction.

Keywords: group boundaries, identity threat, prejudice, superordinate groups

Procedia PDF Downloads 410
19509 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
19508 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 325
19507 The Hallmarks of War Propaganda: The Case of Russia-Ukraine Conflict

Authors: Veronika Solopova, Oana-Iuliana Popescu, Tim Landgraf, Christoph Benzmüller

Abstract:

Beginning in 2014, slowly building geopolitical tensions in Eastern Europe led to a full-blown conflict between the Russian Federation and Ukraine that generated an unprecedented amount of news articles and data from social media data, reflecting the opposing ideologies and narratives as a background and the essence of the ongoing war. These polarized informational campaigns have led to countless mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for many readers all over the world. In this study, we analyzed scraped news articles from Ukrainian, Russian, Romanian and English-speaking news outlets, on the eve of 24th of February 2022, compared to day five of the conflict (28th of February), to see how the media influenced and mirrored the changes in public opinion. We also contrast the sources opposing and supporting the stands of the Russian government in Ukrainian, Russian and Romanian media spaces. In a data-driven way, we describe how the narratives are spread throughout Eastern and Central Europe. We present predictive linguistic features surrounding war propaganda. Our results indicate that there are strong similarities in terms of rhetoric strategies in the pro-Kremlin media in both Ukraine and Russia, which, while being relatively neutral according to surface structure, use aggressive vocabulary. This suggests that automatic propaganda identification systems have to be tailored for each new case, as they have to rely on situationally specific words. Both Ukrainian and Russian outlets lean towards strongly opinionated news, pointing towards the use of war propaganda in order to achieve strategic goals.

Keywords: linguistic, news, propaganda, Russia, ukraine

Procedia PDF Downloads 120
19506 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: butterfly valve, flow coefficient, automatic CFD analysis, FSI analysis

Procedia PDF Downloads 241
19505 Tomato-Weed Classification by RetinaNet One-Step Neural Network

Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri

Abstract:

The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.

Keywords: deep learning, object detection, cnn, tomato, weeds

Procedia PDF Downloads 103
19504 Enhance Engineering Learning Using Cognitive Simulator

Authors: Lior Davidovitch

Abstract:

Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.

Keywords: cognitive simulator, decision making, engineering learning, project management

Procedia PDF Downloads 249
19503 A Review of Ultralightweight Mutual Authentication Protocols

Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran

Abstract:

Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.

Keywords: RFID, Ultralightweight, UMAP, SASI

Procedia PDF Downloads 153
19502 Robust Noisy Speech Identification Using Frame Classifier Derived Features

Authors: Punnoose A. K.

Abstract:

This paper presents an approach for identifying noisy speech recording using a multi-layer perception (MLP) trained to predict phonemes from acoustic features. Characteristics of the MLP posteriors are explored for clean speech and noisy speech at the frame level. Appropriate density functions are used to fit the softmax probability of the clean and noisy speech. A function that takes into account the ratio of the softmax probability density of noisy speech to clean speech is formulated. These phoneme independent scoring is weighted using a phoneme-specific weightage to make the scoring more robust. Simple thresholding is used to identify the noisy speech recording from the clean speech recordings. The approach is benchmarked on standard databases, with a focus on precision.

Keywords: noisy speech identification, speech pre-processing, noise robustness, feature engineering

Procedia PDF Downloads 127
19501 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance

Authors: Shauma L. Tamba

Abstract:

This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.

Keywords: morality, competence, ingroup identification, religion, group norm

Procedia PDF Downloads 408
19500 Design of a Small Mobile PV Driven RO Water Desalination Plant to be Deployed at the North West Coast of Egypt

Authors: Hosam A. Shawky, Amr A. Abdel Fatah, Moustafa M. S. Abo ElFad, Abdel Hameed M. El-Aassar

Abstract:

Water desalination projects based on reverse osmosis technology are being introduced in Egypt to combat drinking water shortage in remote areas. Reverse osmosis (RO) desalination is a pressure driven process. This paper focuses on the design of an integrated brackish water and seawater RO desalination and solar Photovoltaic (PV) technology. A small Mobile PV driven RO desalination plant prototype without batteries is designed and tested. Solar-driven reverse osmosis desalination can potentially break the dependence of conventional desalination on fossil fuels, reduce operational costs, and improve environmental sustainability. Moreover, the innovative features incorporated in the newly designed PV-RO plant prototype are focusing on improving the cost effectiveness of producing drinkable water in remote areas. This is achieved by maximizing energy yield through an integrated automatic single axis PV tracking system with programmed tilting angle adjustment. An autonomous cleaning system for PV modules is adopted for maximizing energy generation efficiency. RO plant components are selected so as to produce 4-5 m3/day of potable water. A basic criterion in the design of this PV-RO prototype is to produce a minimum amount of fresh water by running the plant during peak sun hours. Mobility of the system will provide potable water to isolated villages and population as well as ability to provide good drinking water to different number of people from any source that is not drinkable.

Keywords: design, reverse osmosis, photovoltaic, energy, desalination, Egypt

Procedia PDF Downloads 573
19499 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 189
19498 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing

Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari

Abstract:

A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.

Keywords: bacteria chromosome, bacterial identification, sequence, primer generation

Procedia PDF Downloads 193
19497 A System Functions Set-Up through Near Field Communication of a Smartphone

Authors: Jaemyoung Lee

Abstract:

We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.

Keywords: system set-up, near field communication, smartphone, android

Procedia PDF Downloads 336
19496 Analysis Rescuers' Viewpoint about Victims Tracking in Earthquake by Using Radio Frequency Identification (RFID)

Authors: Sima Ajami, Batool Akbari

Abstract:

Background: Radio frequency identification (RFID) system has been successfully applied to the areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services. The RFID is already used to track and trace the victims in a disaster situation. Data can be collected in real time and be immediately available to emergency personnel and saves time by the RFID. Objectives: The aim of this study was, first, to identify stakeholders and customers for rescuing earthquake victims, second, to list key internal and external factors to use RFID to track earthquake victims, finally, to assess SWOT for rescuers' viewpoint. Materials and Methods: This study was an applied and analytical study. The study population included scholars, experts, planners, policy makers and rescuers in the "red crescent society of Isfahan province", "disaster management Isfahan province", "maintenance and operation department of Isfahan", "fire and safety services organization of Isfahan municipality", and "medical emergencies and disaster management center of Isfahan". After that, researchers held a workshop to teach participants about RFID and its usages in tracking earthquake victims. In the meanwhile of the workshop, participants identified, listed, and weighed key internal factors (strengths and weaknesses; SW) and external factors (opportunities and threats; OT) to use RFID in tracking earthquake victims. Therefore, participants put weigh strengths, weaknesses, opportunities, and threats (SWOT) and their weighted scales were calculated. Then, participants' opinions about this issue were assessed. Finally, according to the SWOT matrix, strategies to solve the weaknesses, problems, challenges, and threats through opportunities and strengths were proposed by participants. Results: The SWOT analysis showed that the total weighted score for internal and external factors were 3.91 (Internal Factor Evaluation) and 3.31 (External Factor Evaluation) respectively. Therefore, it was in a quadrant SO strategies cell in the SWOT analysis matrix and aggressive strategies were resulted. Organizations, scholars, experts, planners, policy makers and rescue workers should plan to use RFID technology in order to save more victims and manage their life. Conclusions: Researchers suppose to apply SO strategies and use a firm’s internal strength to take advantage of external opportunities. It is suggested, policy maker should plan to use the most developed technologies to save earthquake victims and deliver the easiest service to them. To do this, education, informing, and encouraging rescuers to use these technologies is essential. Originality/ Value: This study was a research paper that showed how RFID can be useful to track victims in earthquake.

Keywords: frequency identification system, strength, weakness, earthquake, victim

Procedia PDF Downloads 322
19495 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 441
19494 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 482
19493 Analyzing Safety Incidents using the Fatigue Risk Index Calculator as an Indicator of Fatigue within a UK Rail Franchise

Authors: Michael Scott Evans, Andrew Smith

Abstract:

The feeling of fatigue at work could potentially have devastating consequences. The aim of this study was to investigate whether the well-established objective indicator of fatigue – the Fatigue Risk Index (FRI) calculator used by the rail industry is an effective indicator to the number of safety incidents, in which fatigue could have been a contributing factor. The study received ethics approval from Cardiff University’s Ethics Committee (EC.16.06.14.4547). A total of 901 safety incidents were recorded from a single British rail franchise between 1st June 2010 – 31st December 2016, into the Safety Management Information System (SMIS). The safety incident types identified that fatigue could have been a contributing factor were: Signal Passed at Danger (SPAD), Train Protection & Warning System (TPWS) activation, Automatic Warning System (AWS) slow to cancel, failed to call, and station overrun. From the 901 recorded safety incidents, the scheduling system CrewPlan was used to extract the Fatigue Index (FI) score and Risk Index (RI) score of all train drivers on the day of the safety incident. Only the working rosters of 64.2% (N = 578) (550 men and 28 female) ranging in age from 24 – 65 years old (M = 47.13, SD = 7.30) were accessible for analyses. Analysis from all 578 train drivers who were involved in safety incidents revealed that 99.8% (N = 577) of Fatigue Index (FI) scores fell within or below the identified guideline threshold of 45 as well as 97.9% (N = 566) of Risk Index (RI) scores falling below the 1.6 threshold range. Their scores represent good practice within the rail industry. These findings seem to indicate that the current objective indicator, i.e. the FRI calculator used in this study by the British rail franchise was not an effective predictor of train driver’s FI scores and RI scores, as safety incidents in which fatigue could have been a contributing factor represented only 0.2% of FI scores and 2.1% of RI scores. Further research is needed to determine whether there are other contributing factors that could provide a better indication as to why there is such a significantly large proportion of train drivers who are involved in safety incidents, in which fatigue could have been a contributing factor have such low FI and RI scores.

Keywords: fatigue risk index calculator, objective indicator of fatigue, rail industry, safety incident

Procedia PDF Downloads 181
19492 Creating Systems Change: Implementing Cross-Sector Initiatives within the Justice System to Support Ontarians with Mental Health and Addictions Needs

Authors: Tania Breton, Dorina Simeonov, Shauna MacEachern

Abstract:

Ontario’s 10 Year Mental Health and Addictions Strategy has included the establishment of 18 Service Collaborative across the province; cross-sector tables in a specific region coming together to explore mental health and addiction system needs and adopting an intervention to address that need. The process is community led and supported by implementation teams from the Centre for Addiction and Mental Health (CAMH), using the framework of implementation science (IS) to enable evidence-based and sustained change. These justice initiatives are focused on the intersection of the justice system and the mental health and addiction systems. In this presentation, we will share the learnings, achievements and challenges of implementing innovative practices to the mental health and addictions needs of Ontarians within the justice system. Specifically, we will focus on the key points across the justice system - from early intervention and trauma-informed, culturally appropriate services to post-sentence support and community reintegration. Our approach to this work involves external implementation support from the CAMH team including coaching, knowledge exchange, evaluation, Aboriginal engagement and health equity expertise. Agencies supported the implementation of tools and processes which changed practice at the local level. These practices are being scaled up across Ontario and community agencies have come together in an unprecedented collaboration and there is a shared vision of the issues overlapping between the mental health, addictions and justice systems. Working with ministry partners has allowed space for innovation and created an environment where better approaches can be nurtured and spread.

Keywords: implementation, innovation, early identification, mental health and addictions, prevention, systems

Procedia PDF Downloads 362
19491 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection

Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok

Abstract:

The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.

Keywords: RJ45, automatic annotation, object tracking, 3D projection

Procedia PDF Downloads 167
19490 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita

Abstract:

The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 257
19489 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model

Authors: Anshika Kankane, Dongshik Kang

Abstract:

Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.

Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching

Procedia PDF Downloads 106
19488 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: segmentation, road signs, characters, classification

Procedia PDF Downloads 444
19487 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 148
19486 Development of a Multi-Locus DNA Metabarcoding Method for Endangered Animal Species Identification

Authors: Meimei Shi

Abstract:

Objectives: The identification of endangered species, especially simultaneous detection of multiple species in complex samples, plays a critical role in alleged wildlife crime incidents and prevents illegal trade. This study was to develop a multi-locus DNA metabarcoding method for endangered animal species identification. Methods: Several pairs of universal primers were designed according to the mitochondria conserved gene regions. Experimental mixtures were artificially prepared by mixing well-defined species, including endangered species, e.g., forest musk, bear, tiger, pangolin, and sika deer. The artificial samples were prepared with 1-16 well-characterized species at 1% to 100% DNA concentrations. After multiplex-PCR amplification and parameter modification, the amplified products were analyzed by capillary electrophoresis and used for NGS library preparation. The DNA metabarcoding was carried out based on Illumina MiSeq amplicon sequencing. The data was processed with quality trimming, reads filtering, and OTU clustering; representative sequences were blasted using BLASTn. Results: According to the parameter modification and multiplex-PCR amplification results, five primer sets targeting COI, Cytb, 12S, and 16S, respectively, were selected as the NGS library amplification primer panel. High-throughput sequencing data analysis showed that the established multi-locus DNA metabarcoding method was sensitive and could accurately identify all species in artificial mixtures, including endangered animal species Moschus berezovskii, Ursus thibetanus, Panthera tigris, Manis pentadactyla, Cervus nippon at 1% (DNA concentration). In conclusion, the established species identification method provides technical support for customs and forensic scientists to prevent the illegal trade of endangered animals and their products.

Keywords: DNA metabarcoding, endangered animal species, mitochondria nucleic acid, multi-locus

Procedia PDF Downloads 139
19485 Forensic Comparison of Facial Images for Human Identification

Authors: D. P. Gangwar

Abstract:

Identification of human through facial images has got great importance in forensic science. The video recordings, CCTV footage, passports, driver licenses and other related documents are invariably sent to the laboratory for comparison of the questioned photographs as well as video recordings with suspected photographs/recordings to prove the identity of a person. More than 300 questioned and 300 control photographs received in actual crime cases, received from various investigation agencies, have been compared by me so far using various familiar analysis and comparison techniques such as Holistic comparison, Morphological analysis, Photo-anthropometry and superimposition. On the basis of findings obtained during the examination huge photo exhibits, a realistic and comprehensive technique has been proposed which could be very useful for forensic.

Keywords: CCTV Images, facial features, photo-anthropometry, superimposition

Procedia PDF Downloads 528
19484 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine

Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif

Abstract:

The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.

Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)

Procedia PDF Downloads 370
19483 Recognition of Spelling Problems during the Text in Progress: A Case Study on the Comments Made by Portuguese Students Newly Literate

Authors: E. Calil, L. A. Pereira

Abstract:

The acquisition of orthography is a complex process, involving both lexical and grammatical questions. This learning occurs simultaneously with the domain of multiple textual aspects (e.g.: graphs, punctuation, etc.). However, most of the research on orthographic acquisition focus on this acquisition from an autonomous point of view, separated from the process of textual production. This means that their object of analysis is the production of words selected by the researcher or the requested sentences in an experimental and controlled setting. In addition, the analysis of the Spelling Problems (SP) are identified by the researcher on the sheet of paper. Considering the perspective of Textual Genetics, from an enunciative approach, this study will discuss the SPs recognized by dyads of newly literate students, while they are writing a text collaboratively. Six proposals of textual production were registered, requested by a 2nd year teacher of a Portuguese Primary School between January and March 2015. In our case study we discuss the SPs recognized by the dyad B and L (7 years old). We adopted as a methodological tool the Ramos System audiovisual record. This system allows real-time capture of the text in process and of the face-to-face dialogue between both students and their teacher, and also captures the body movements and facial expressions of the participants during textual production proposals in the classroom. In these ecological conditions of multimodal registration of collaborative writing, we could identify the emergence of SP in two dimensions: i. In the product (finished text): SP identification without recursive graphic marks (without erasures) and the identification of SPs with erasures, indicating the recognition of SP by the student; ii. In the process (text in progress): identification of comments made by students about recognized SPs. Given this, we’ve analyzed the comments on identified SPs during the text in progress. These comments characterize a type of reformulation referred to as Commented Oral Erasure (COE). The COE has two enunciative forms: Simple Comment (SC) such as ' 'X' is written with 'Y' '; or Unfolded Comment (UC), such as ' 'X' is written with 'Y' because...'. The spelling COE may also occur before or during the SP (Early Spelling Recognition - ESR) or after the SP has been entered (Later Spelling Recognition - LSR). There were 631 words entered in the 6 stories written by the B-L dyad, 145 of them containing some type of SP. During the text in progress, the students recognized orally 174 SP, 46 of which were identified in advance (ESRs) and 128 were identified later (LSPs). If we consider that the 88 erasure SPs in the product indicate some form of SP recognition, we can observe that there were twice as many SPs recognized orally. The ESR was characterized by SC when students asked their colleague or teacher how to spell a given word. The LSR presented predominantly UC, verbalizing meta-orthographic arguments, mostly made by L. These results indicate that writing in dyad is an important didactic strategy for the promotion of metalinguistic reflection, favoring the learning of spelling.

Keywords: collaborative writing, erasure, learning, metalinguistic awareness, spelling, text production

Procedia PDF Downloads 163