Search results for: Vickers hardness tester
107 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 216106 Changes in Textural Properties of Zucchini Slices Under Effects of Partial Predrying and Deep-Fat-Frying
Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner
Abstract:
Changes in textural properties of any food material during processing is significant for further consumer’s evaluation and directly affects their decisions. Thus any food material should be considered in terms of textural properties after any process. In the present study zucchini slices were partially predried to control and reduce the product’s final oil content. A conventional oven was used for partially dehydration of zucchini slices. Following frying was carried in an industrial fryer having temperature controller. This study was based on the effect of this predrying process on textural properties of fried zucchini slices. Texture profile analysis was performed. Hardness, elasticity, chewiness, cohesiveness were studied texture parameters of fried zucchini slices. Temperature and weight loss were monitored parameters of predrying process, whereas, in frying, oil temperature and process time were controlled. Optimization of two successive processes was done by response surface methodology being one of the common used statistical process optimization tools. Models developed for each texture parameters displayed high success to predict their values as a function of studied processes’ conditions. Process optimization was performed according to target values for each property determined for directly fried zucchini slices taking the highest score from sensory evaluation. Results indicated that textural properties of predried and then fried zucchini slices could be controlled by well-established equations. This is thought to be significant for fried stuff related food industry, where controlling of sensorial properties are crucial to lead consumer’s perception and texture related ones are leaders. This project (113R015) has been supported by TUBITAK.Keywords: optimization, response surface methodology, texture profile analysis, conventional oven, modelling
Procedia PDF Downloads 433105 Influence of Magnetic Field on Microstructure and Properties of Copper-Silver Composites
Authors: Engang Wang
Abstract:
The Cu-alloy composites are a kind of high-strength and high-conductivity Cu-based alloys, which have excellent mechanical and electrical properties and is widely used in electronic, electrical, machinery industrial fields. However, the solidification microstructure of the composites, such as the primary or second dendrite arm spacing, have important rule to its tensile strength and conductivity, and that is affected by its fabricating method. In this paper, two kinds of directional solidification methods; the exothermic powder method (EP method) and liquid metal cooling method (LMC method), were used to fabricate the Cu-alloy composites with applied different magnetic fields to investigate their influence on the solidifying microstructure of Cu-alloy, and further the fabricated Cu-alloy composites was drawn to wires to investigate the influence of fabricating method and magnetic fields on the drawing microstructure of fiber-reinforced Cu-alloy composites and its properties. The experiment of Cu-Ag alloy under directional solidification and horizontal magnetic fields with different processing parameters show that: 1) For the Cu-Ag alloy with EP method, the dendrite is directionally developed in the cooling copper mould and the solidifying microstructure is effectively refined by applying horizontal magnetic fields. 2) For the Cu-Ag alloy with LMC method, the primary dendrite arm spacing is decreased and the content of Ag in the dendrite increases as increasing the drawing velocity of solidification. 3) The dendrite is refined and the content of Ag in the dendrite increases as increasing the magnetic flux intensity; meanwhile, the growth direction of dendrite is also affected by magnetic field. The research results of Cu-Ag alloy in situ composites by drawing deforming process show that the micro-hardness of alloy is higher by decreasing dendrite arm spacing. When the dendrite growth orientation is consistent with the axial of the samples. the conductivity of the composites increases with the second dendrite arm spacing increases. However, its conductivity reduces with the applied magnetic fields owing to disrupting the dendrite growth orientation.Keywords: Cu-Ag composite, magnetic field, microstructure, solidification
Procedia PDF Downloads 214104 Utilizing Bario Rice, a Natural Red-Pigmented Rice from Sarawak, Malaysia, in the Development of Gluten-Free Bread
Authors: Macdalyna Esther Ronie, Hasmadi Mamat, Ahmad Hazim Abdul Aziz, Mohamad Khairi Zainol
Abstract:
Current trends in gluten-free food development are increasingly leaning towards the utilization of pigmented rice flour, with a particular focus on Bario Merah Sederhana (BMS), a red-pigmented rice native to Sarawak, Malaysia. This study delves into the evaluation of the nutritional, textural, and sensory attributes of gluten-free rice bread produced from a blend of BMS rice flour and potato starch. The resulting samples are denoted as F1 (100% BMS rice flour), F2 (90% BMS rice flour and 10% potato starch), F3 (80% BMS rice flour and 20% potato starch), and F4 (70% BMS rice flour and 30% potato starch). Comparatively, these gluten-free rice bread formulations exhibit higher levels of ash and crude fiber, along with lower carbohydrate content when juxtaposed with conventional wheat bread. Notably, the crude protein content of the rice bread diminishes significantly (p<0.05) as the proportion of rice flour decreases, primarily due to the higher protein content found in wheat flour. The crumb of the rice bread appears darker owing to the red pigment in the rice flour, while the crust is lighter than that of the control sample, possibly attributable to a reduced Maillard reaction. Among the various rice bread formulations, F4 stands out with the least dough and bread hardness, accompanied by the highest levels of stickiness and springiness in both dough and bread, respectively. In sensory evaluations, wheat bread garners the highest rating (p<0.05). However, within the realm of rice breads, F4 emerges as a viable and acceptable formulation, as indicated by its commendable scores in color (7.03), flavor (5.73), texture (6.03), and overall acceptability (6.18). These findings underscore the potential of BMS in the creation of gluten-free rice breads, with the formulation consisting of 70% rice flour and 30% potato starch emerging as a well-received and suitable option.Keywords: gluten-free bread, bario rice, proximate composition, sensory evaluation
Procedia PDF Downloads 242103 Influence of Processing Parameters in Selective Laser Melting on the Microstructure and Mechanical Properties of Ti/Tin Composites With in-situ and ex-situ Reinforcement
Authors: C. Sánchez de Rojas Candela, A. Riquelme, P. Rodrigo, M. D. Escalera-Rodríguez, B. Torres, J. Rams
Abstract:
Selective laser melting is one of the most commonly used AM techniques. In it, a thin layer of metallic powder is deposited, and a laser is used to melt selected zones. The accumulation of layers, each one molten in the preselected zones, gives rise to the formation of a 3D sample with a nearly arbitrary design. To ensure that the properties of the final parts match those of the powder, all the process is carried out in an inert atmosphere, preferentially Ar, although this gas could be substituted. Ti6Al4V alloy is widely used in multiple industrial applications such as aerospace, maritime transport and biomedical, due to its properties. However, due to the demanding requirements of these applications, greater hardness and wear resistance are necessary, together with a better machining capacity, which currently limits its commercialization. To improve these properties, in this study, Selective Laser Melting (SLM) is used to manufacture Ti/TiN metal matrix composites with in-situ and ex-situ titanium nitride reinforcement where the scanning speed is modified (from 28.5 up to 65 mm/s) to study the influence of the processing parameters in SLM. A one-step method of nitriding the Ti6Al4V alloy is carried out to create in-situ TiN reinforcement in a reactive atmosphere and it is compared with ex-situ composites manufactured by previous mixture of both the titanium alloy powder and the ceramic reinforcement particles. The microstructure and mechanical properties of the different Ti/TiN composite materials have been analyzed. As a result, the existence of a similar matrix has been confirmed in in-situ and ex-situ fabrications and the growth mechanisms of the nitrides have been studied. An increase in the mechanical properties with respect to the initial alloy has been observed in both cases and related to changes in their microstructure. Specifically, a greater improvement (around 30.65%) has been identified in those manufactured by the in-situ method at low speeds although other properties such as porosity must be improved for their future industrial applicability.Keywords: in-situ reinforcement, nitriding reaction, selective laser melting, titanium nitride
Procedia PDF Downloads 79102 Formulation Development, Process Optimization and Comparative study of Poorly Compressible Drugs Ibuprofen, Acetaminophen Using Direct Compression and Top Spray Granulation Technique
Authors: Abhishek Pandey
Abstract:
Ibuprofen and Acetaminophen is widely used as prescription & non-prescription medicine. Ibuprofen mainly used in the treatment of mild to moderate pain related to headache, migraine, postoperative condition and in the management of spondylitis, osteoarthritis and rheumatoid arthritis. Acetaminophen is used as an analgesic and antipyretic drug. Ibuprofen having high tendency of sticking to punches of tablet punching machine while Acetaminophen is not ordinarily compressible to tablet formulation because Acetaminophen crystals are very hard and brittle in nature and fracture very easily when compressed producing capping and laminating tablet defects therefore wet granulation method is used to make them compressible. The aim of study was to prepare Ibuprofen and Acetaminophen tablets by direct compression and top spray granulation technique. In this Investigation tablets were prepared by using directly compressible grade excipients. Dibasic calcium phosphate, lactose anhydrous (DCL21), microcrystalline cellulose (Avicel PH 101). In order to obtain best or optimized formulation, nine different formulations were generated among them batch F7, F8, F9 shows good results and within the acceptable limit. Formulation (F7) selected as optimize product on the basis of dissolution study. Furtherly, directly compressible granules of both drugs were prepared by using top spray granulation technique in fluidized bed processor equipment and compressed .In order to obtain best product process optimization was carried out by performing four trials in which various parameters like inlet air temperature, spray rate, peristaltic pump rpm, % LOD, properties of granules, blending time and hardness were optimized. Batch T3 coined as optimized batch on the basis physical & chemical evaluation. Finally formulations prepared by both techniques were compared.Keywords: direct compression, top spray granulation, process optimization, blending time
Procedia PDF Downloads 363101 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials
Authors: Ergin Kosa, Ali Göksenli
Abstract:
Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material
Procedia PDF Downloads 401100 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet
Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay
Abstract:
The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD
Procedia PDF Downloads 11299 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 55098 Adhesion Enhancement of Boron Carbide Coatings on Aluminum Substrates Utilizing an Intermediate Adhesive Layer
Authors: Sharon Waichman, Shahaf Froim, Ido Zukerman, Shmuel Barzilai, Shmual Hayun, Avi Raveh
Abstract:
Boron carbide is a ceramic material with superior properties such as high chemical and thermal stability, high hardness and high wear resistance. Moreover, it has a big cross section for neutron absorption and therefore can be employed in nuclear based applications. However, an efficient attachment of boron carbide to a metal such as aluminum can be very challenging, mainly because of the formation of aluminum-carbon bonds that are unstable in humid environment, the affinity of oxygen to the metal and the different thermal expansion coefficients of the two materials that may cause internal stresses and a subsequent failure of the bond. Here, we aimed to achieving a strong and a durable attachment between the boron carbide coating and the aluminum substrate. For this purpose, we applied Ti as a thin intermediate layer that provides a gradual change in the thermal expansion coefficients of the configured layers. This layer is continuous and therefore prevents the formation of aluminum-carbon bonds. Boron carbide coatings with a thickness of 1-5 µm were deposited on the aluminum substrate by pulse-DC magnetron sputtering. Prior to the deposition of the boron carbide layer, the surface was pretreated by energetic ion plasma followed by deposition of the Ti intermediate adhesive layer in a continuous process. The properties of the Ti intermediate layer were adjusted by the bias applied to the substrate. The boron carbide/aluminum bond was evaluated by various methods and complementary techniques, such as SEM/EDS, XRD, XPS, FTIR spectroscopy and Glow Discharge Spectroscopy (GDS), in order to explore the structure, composition and the properties of the layers and to study the adherence mechanism of the boron carbide/aluminum contact. Based on the interfacial bond characteristics, we propose a desirable solution for improved adhesion of boron carbide to aluminum using a highly efficient intermediate adhesive layer.Keywords: adhesion, boron carbide coatings, ceramic/metal bond, intermediate layer, pulsed-DC magnetron sputtering
Procedia PDF Downloads 16497 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 49696 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery
Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi
Abstract:
Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor
Procedia PDF Downloads 12295 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel
Authors: Sellidj Abdelaziz, Lebaili Soltane
Abstract:
A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment
Procedia PDF Downloads 11694 An Investigation on the Pulse Electrodeposition of Ni-TiO2/TiO2 Multilayer Structures
Authors: S. Mohajeri
Abstract:
Electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from Watts bath containing TiO2 sol was carried out on copper substrate. Pulse plating and pulse reverse plating techniques were applied to facilitate higher incorporations of TiO2 nanoparticles in Ni-TiO2 nanocomposite single layers, and the results revealed that by prolongation of the current-off durations and the anodic cycles, deposits containing 11.58 wt.% and 13.16 wt.% TiO2 were produced, respectively. Multilayer coatings which consisted of Ni-TiO2 and TiO2-rich layers were deposited by pulse potential deposition through limiting the nickel deposition by diffusion control mechanism. The TiO2-rich layers thickness and accordingly, the content of TiO2 reinforcement reached 104 nm and 18.47 wt.%, respectively in the optimum condition. The phase structure and surface morphology of the nanocomposite coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The cross sectional morphology and line scans of the layers were studied by field emission scanning electron microscopy (FESEM). It was confirmed that the preferred orientations and the crystallite sizes of nickel matrix were influenced by the deposition technique parameters, and higher contents of codeposited TiO2 nanoparticles refined the microstructure. The corrosion behavior of the coatings in 1M NaCl and 0.5M H2SO4 electrolytes were compared by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Increase of corrosion resistance and the passivation tendency were favored by TiO2 incorporation, while the degree of passivation declined as embedded particles disturbed the continuity of passive layer. The role of TiO2 incorporation on the improvement of mechanical properties including hardness, elasticity, scratch resistance and friction coefficient was investigated by the means of atomic force microscopy (AFM). Hydrophilicity and wettability of the composite coatings were investigated under UV illumination, and the water contact angle of the multilayer was reduced to 7.23° after 1 hour of UV irradiation.Keywords: electrodeposition, hydrophilicity, multilayer, pulse-plating
Procedia PDF Downloads 24993 Sulfanilamide/Epoxy Resin and Its Application as Tackifier in Epoxy Adhesives
Authors: Oiane Ruiz de Azua, Salvador Borros, Nuria Agullo, Jordi Arbusa
Abstract:
Tackiness is described as the ability to spontaneously form a bond to another material under light pressures within a short application time. During the first few minutes of the adhesive's curing, it is necessary to have enough tack to keep the substrates together while cohesion is increasing within the adhesive. This property plays a key role in the manufacturing process of pieces. Epoxy adhesives, unlike other adhesives, usually present low tackiness before curing; however, there is very little literature about the use of tackifiers in epoxy adhesives, except for the high molecular weight epoxy additives. In the present work, a tetrafunctional epoxy resin based on Bisphenol-A and Sulfanilamide has been synthesized in order to be used as a tackifier. This additive offers improved specific adhesion to two-component (2K) epoxy adhesives. The dosage of the tackifier has to be done carefully not to alter the mechanical and rheological properties of the adhesive. The synthetized product has been analyzed by FTIR and ¹H-NMR analysis, and the effect of the addition of 1 wt % of the tackifier on rheological properties, viscoelastic behavior, and mechanical properties has been studied. On one hand, the addition of the product in the epoxy resin part showed a significant increase in tackiness regarding the neat epoxy resin. On the other hand, tackiness of the whole formulation was also increased. Curing time of the adhesive has not undergone any relevant changes with the tackifier addition. Regarding viscoelastic properties, Storage Modulus (G') and Loss Modulus (G'') remain also unchanged at ambient temperature. Probably, in case higher tackifier concentration would be added, differences in viscoelastic properties would be observed. The study of mechanical properties shows that hardness and tensile strength also keep their values unchanged regarding neat two component adhesive. In conclusion, the addition of 1 wt % of sulfanilamide/epoxy enhanced the tackiness of the epoxy resin part, improves tack without modifying significantly either the rheological, the mechanical, or the viscoelastic properties of the product. Thus, the sulfanilamide presented could be a good candidate to be used as an additive to the 2k epoxy formulation for the manufacturing process of pieces.Keywords: epoxy adhesive, manufacturing process of pieces, sulfanilamide, tackifiers
Procedia PDF Downloads 18492 Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique
Authors: Amessalu Atenafu Gelaw, Nele Rath
Abstract:
Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured.Keywords: absorptivity, fiber reinforced matrix, laser hardening, Nd:YAG laser
Procedia PDF Downloads 15691 Effect of Roasting Treatment on Milling Quality, Physicochemical, and Bioactive Compounds of Dough Stage Rice Grains
Authors: Chularat Leewuttanakul, Khanitta Ruttarattanamongkol, Sasivimon Chittrakorn
Abstract:
Rice during grain development stage is a rich source of many bioactive compounds. Dough stage rice contains high amounts of photochemical and can be used for rice milling industries. However, rice grain at dough stage had low milling quality due to high moisture content. Thermal processing can be applied to rice grain for improving milled rice yield. This experiment was conducted to study the chemical and physic properties of dough stage rice grain after roasting treatment. Rice were roasted with two different methods including traditional pan roasting at 140 °C for 60 minutes and using the electrical roasting machine at 140 °C for 30, 40, and 50 minutes. The chemical, physical properties, and bioactive compounds of brown rice and milled rice were evaluated. The result of this experiment showed that moisture content of brown and milled rice was less than 10 % and amylose contents were in the range of 26-28 %. Rice grains roasting for 30 min using electrical roasting machine had high head rice yield and length and breadth of grain after milling were close to traditional pan roasting (p > 0.05). The lightness (L*) of rice did not affect by roasting treatment (p > 0.05) and the a* indicated the yellowness of milled rice was lower than brown rice. The bioactive compounds of brown and milled rice significantly decreased with increasing of drying time. Brown rice roasted for 30 minutes had the highest of total phenolic content, antioxidant activity, α-tocopherol, and ɤ-oryzanol content. Volume expansion and elongation of cooked rice decreased as roasting time increased and quality of cooked rice roasted for 30 min was comparable to traditional pan roasting. Hardness of cooked rice as measured by texture analyzer increased with increasing roasting time. The results indicated that rice grains at dough stage, containing a high amount of bioactive compounds, have a great potential for rice milling industries and the electrical roasting machine can be used as an alternative to pan roasting which decreases processing time and labor costs.Keywords: bioactive compounds, cooked rice, dough stage rice grain, grain development, roasting
Procedia PDF Downloads 16390 Comparative Study of Water Quality Parameters in the Proximity of Various Landfills Sites in India
Authors: Abhishek N. Srivastava, Rahul Singh, Sumedha Chakma
Abstract:
The rapid urbanization in the developing countries is generating an enormous amount of waste leading to the creation of unregulated landfill sites at various places at its disposal. The liquid waste, known as leachate, produced from these landfills sites is severely affecting the surrounding water quality. The water quality in the proximity areas of the landfill is found affected by various physico-chemical parameters of leachate such as pH, alkalinity, total hardness, conductivity, chloride, total dissolved solids (TDS), total suspended solids (TSS), sulphate, nitrate, phosphate, fluoride, sodium and potassium, biological parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), Faecal coliform, and heavy metals such as cadmium (Cd), lead (Pb), iron (Fe), mercury (Hg), arsenic (As), cobalt (Co), manganese (Mn), zinc (Zn), copper (Cu), chromium (Cr), nickel (Ni). However, all these parameters are distributive in leachate that produced according to the nature of waste being dumped at various landfill sites, therefore, it becomes very difficult to predict the main responsible parameter of leachate for water quality contamination. The present study is endeavour the comparative analysis of the physical, chemical and biological parameters of various landfills in India viz. Okhla landfill, Ghazipur landfill, Bhalswa ladfill in NCR Delhi, Deonar landfill in Mumbai, Dhapa landfill in Kolkata and Kodungayaiyur landfill, Perungudi landfill in Chennai. The statistical analysis of the parameters was carried out using the Statistical Packages for the Social Sciences (SPSS) and LandSim 2.5 model to simulate the long term effect of various parameters on different time scale. Further, the uncertainties characterization of various input parameters has also been analysed using fuzzy alpha cut (FAC) technique to check the sensitivity of various water quality parameters at the proximity of numerous landfill sites. Finally, the study would help to suggest the best method for the prevention of pollution migration from the landfill sites on priority basis.Keywords: landfill leachate, water quality, LandSim, fuzzy alpha cut
Procedia PDF Downloads 12589 Investigation of Supercapacitor Properties of Nanocomposites Obtained from Acid and Base-functionalized Multi-walled Carbon Nanotube (MWCNT) and Polypyrrole (PPy)
Authors: Feridun Demir, Pelin Okdem
Abstract:
Polymers are versatile materials with many unique properties, such as low density, reasonable strength, flexibility, and easy processability. However, the mechanical properties of these materials are insufficient for many engineering applications. Therefore, there is a continuous search for new polymeric materials with improved properties. Polymeric nanocomposites are an advanced class of composite materials that have attracted great attention in both academic and industrial fields. Since nano-reinforcement materials are very small in size, they provide ultra-large interfacial area per volume between the nano-element and the polymer matrix. This allows the nano-reinforcement composites to exhibit enhanced toughness without compromising hardness or optical clarity. PPy and MWCNT/PPy nanocomposites were synthesized by the chemical oxidative polymerization method and the supercapacitor properties of the obtained nanocomposites were investigated. In addition, pure MWCNT was functionalized with acid (H₂SO₄/H₂O₂) and base (NH₄OH/H₂O₂) solutions at a ratio of 3:1 and a-MWCNT/d-PPy, and b-MWCNT/d-PPy nanocomposites were obtained. The homogeneous distribution of MWCNTs in the polypyrrole matrix and shell-core type morphological structures of the nanocomposites was observed with SEM images. It was observed with SEM, FTIR and XRD analyses that the functional groups formed by the functionalization of MWCNTs caused the MWCNTs to come together and partially agglomerate. It was found that the conductivity of the nanocomposites consisting of MWCNT and d-PPy was higher than that of pure d-PPy. CV, GCD and EIS results show that the use of a-MWCNT and b-MWCNTs in nanocomposites with low particle content positively affects the supercapacitor properties of the materials but negatively at high particle content. It was revealed that the functional MWCNT particles combined in nanocomposites with high particle content cause a decrease in the conductivity and distribution of ions in the electrodes and, thus, a decrease in their energy storage capacity.Keywords: polypyrrole, multi-walled carbon nanotube (MWCNT), conducting polymer, chemical oxidative polymerization, nanocomposite, supercapacitor
Procedia PDF Downloads 2188 Effects of Spirulina Platensis Powder on Nutrition Value, Sensory and Physical Properties of Four Different Food Products
Authors: Yazdan Moradi
Abstract:
Spirulina platensis is a blue-green microalga with unique nutrient content and has many nutritional and therapeutic effects that are used to enrich various foods. The purpose of this research was to investigate the effect of Spirulina platensis microalgae on the nutritional value and sensory and physical properties of four different cereal-based products. For this purpose, spirulina microalgae dry powder with amounts of 0.25, 0.5, 0.75, and 1 is added to the formula of pasta, bulk bread, layered sweets, and cupcakes. A sample without microalgae powder of each product is also considered as a control. The results showed that adding Spirulina powder to the formulation of selected foods significantly changed the nutrition value and sensory and physical characteristics. Comparison to control protein increased in the samples containing spirulina powder. The increase in protein was about 1, 0.6, 1.2 and 1.1 percent in bread, cake, layered sweets and Pasta, respectively. The iron content of samples, including Spirulina, also increased. The increase was 0.6, 2, 5 and 18 percent in bread, cake, layered sweets and Pasta respectively. Sensory evaluation analysis showed that all products had an acceptable acceptance score. The instrumental analysis of L*, a*, and b* color indices showed that the increase of spirulina caused green color in the treatments, and this color change is more significant in the bread and pasta samples. The results of texture analysis showed that adding spirulina to selected food products reduces the hardness of the samples. No significant differences were observed in fat content in samples, including spirulina samples and control. However, fatty acid content and a trace amount of EPA found in samples included 1% spirulina. Added spirulina powder to food ingredients also changed the amino acid profile, especially essential amino acids. An increase of histidine, isoleucine, leucine, tryptophan, and valine in samples, including Spirulina was observed.Keywords: spirulina, nutrition, Alge, iron, food
Procedia PDF Downloads 3487 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building
Authors: Iuri Salukvadze
Abstract:
Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.Keywords: construction, seismic protection systems, soil, motor roads, concrete
Procedia PDF Downloads 24486 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics
Authors: Sleman Yahya Rasul
Abstract:
Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties
Procedia PDF Downloads 4385 Impact of Non-Starch Polysaccharides on Sensorial Characteristics and Textural Properties of Bread
Authors: Farhan Saeed, Imran Pasha, Faqir M. Anjum, Muhammad U. Arshad
Abstract:
Introduction: Cereals especially wheat is one example in this respite as it contains several nutrients and phytochemicals. In this regard, presences of non-starch polysaccharides are of significance value e.g. arabinoxylans (AX) and arabinogalactans (AG). These ingredients possess several functional and nutritional properties and in this project, efforts were directed to extract AX and AG from different spring wheat varieties of Pakistan and subsequent utilization in cereal based baked products. Methodology: In the present study, effort was made to characterize eight different spring wheats e.g. Lasani-08, FSD-08, Mairaj-08, Shafaq-06, Sehar-06, Bhakkar-02, Uqab-2000 and Inqalab-91 with special reference to non-starch polysaccharides (arabinoxylans and arabinogalactans) extraction followed by their utilization in baked products. Major Findings of Study: Results showed that the arabinoxylans and arabinogalactans content in whole wheat flour of different wheat varieties ranged from 2.93 to 4.68% and 0.47 to 0.93%, respectively while in bran, they ranged from 11.71 to 18.38% and 1.07-4.43%, respectively. Phenolic compounds i.e. ferulic acid, p-coumaric acids were 1.12 and 19.6mg/100g, respectively. Owing to presence of these phenolic compounds, it has persuasive antioxidant potential. Arabinoxylan has negative impact on gluten quality as reduced gluten strength was observed while significant results were obtained for rheological characteristic. Moreover, adding Arabinoxylan and arabinogalactan in bread formulation resulted in significant increase in volume and texture of the final product. In addition, the hardness of bread lessened considerably due to the increase in the concentration of arabinoxylan and arabinogalactan. Additionally, fracturability of bread improved as the both non-starch polysaccharides levels increased. The highest gumminess value was given to Shafaq-06 with increasing trend from control to 0.5% arabinoxylan. Whilst with the addition of arabinogalactan, the highest bread gumminess value (155.74 ± 6.1, 156.32 ± 7.9) was also observed in Shafaq-06. Concluding Statement: Conclusively, it may be inferred that non-starch polysaccharides hold potential to be extracted and utilized in cereal based products for best quality and value addition.Keywords: non-starch polysaccharides, arabinoxylan, arabinogalactan, bread
Procedia PDF Downloads 22384 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India
Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma
Abstract:
The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.Keywords: lithology, petrographic, pollution, urbanization
Procedia PDF Downloads 29383 Impure Water, a Future Disaster: A Case Study of Lahore Ground Water Quality with GIS Techniques
Authors: Rana Waqar Aslam, Urooj Saeed, Hammad Mehmood, Hameed Ullah, Imtiaz Younas
Abstract:
This research has been conducted to assess the water quality in and around Lahore Metropolitan area on the basis of three different land uses, i.e. residential, commercial, and industrial land uses. For this, 29 sample sites have been selected on the basis of simple random sampling technique. Samples were collected at the source (WASA tube wells). The criteria for selecting sample sites are to have a maximum concentration of population in the selected land uses. The results showed that in the residential land use the proportion of nitrate and turbidity is at their highest level in the areas of Allama Iqbal Town and Samanabad Town. Commercial land use of Gulberg and Data Gunj Bakhsh Town have highest level of proportion of chlorides, calcium, TDS, pH, Mg, total hardness, arsenic and alkalinity. Whereas in industrial type of land use in Ravi and Wahga Town have the proportion of arsenic, Mg, nitrate, pH, and turbidity are at their highest level. The high rate of concentration of these parameters in these areas is basically due to the old and fractured pipelines that allow bacterial as well as physiochemical contaminants to contaminate the portable water at the sources. Furthermore, it is seen in most areas that waste water from domestic, industrial, as well as municipal sources may get easy discharge into open spaces and water bodies, like, cannels, rivers, lakes that seeps and become a part of ground water. In addition, huge dumps located in Lahore are becoming the cause of ground water contamination as when the rain falls, the water gets seep into the ground and impures the ground water quality. On the basis of the derived results with the help of Geo-spatial technology ACRGIS 9.3 Interpolation (IDW), it is recommended that water filtration plants must be installed with specific parameter control. A separate team for proper inspection has to be made for water quality check at the source. Old water pipelines must be replaced with the new pipelines, and safe water depth must be ensured at the source end.Keywords: GIS, remote sensing, pH, nitrate, disaster, IDW
Procedia PDF Downloads 22582 Effect of Aminoethoxyvinylglycine on Ceasing in Sweet Orange
Authors: Zahoor Hussain
Abstract:
Creasing is a physiological disorder of rind in sweet orange [Citrus sinensis (L.) Osbeck] fruit and causes serious economic losses in various countries of the world. The reversible inhibitor of ethylene, aminoethoxyvinylglycine (AVG) with the effects of different concentrations (0, 20, 40 and 60 mgL⁻¹) AVG with 0.05% ‘Tween 20’ as a surfactant applied at the fruit set, the golf ball or at the colour break stage on controlling creasing, rheological properties of fruit and rind as well as fruit quality in of Washington Navel and Lane Late sweet orange was investigated. Creasing was substantially reduced and fruit quality was improved with the exogenous application of AVG depending upon its concentration and stage of application in both cultivars. The spray application of AVG (60 mgL⁻¹) at the golf ball stage was effective in reducing creasing (27.86% and 24.29%) compared to the control (52.14 and 51.53%) in cv. Washington Navel during 2011 and 2012, respectively. Whilst, in cv. Lane Late lowest creasing was observed When AVG was applied at fruit set stage (22.86%) compared to the control (51.43%) during 2012. In cv. Washington Navel, AVG treatment (60 mgL⁻¹) was more effective to increase the fruit firmness (318.97 N) and rind hardness (25.94 N) when applied at fruit set stage. However, rind tensile strength was higher, when AVG was applied at the golf ball stage (54.13 N). In cv. Lane Late, the rind harness (28.61 N), rind tensile strength (78.82 N) was also higher when AVG was sprayed at fruit set stage. Whilst, the fruit compression force (369.68 N) was higher when AVG was applied at the golf ball stage. Similarly, the treatment AVG (60 mgL⁻¹) was more effective in improving fruit weight (281.00 and 298.50 g) and fruit diameter (87.30 and 82.69 mm), rind thickness (5.56 and 5.38 mm) and total sugars (15.27 mg.100ml⁻¹) when AVG was applied at the fruit golf ball stage in cv. Washington Navel and Lane Late, respectively. Similarly, rind harness (25.94 and 28.61 N), total antioxidants (45.30 and 46.48 mM trolox 100ml⁻¹), total sugars (13.64 and 15.27 mg.100ml⁻¹), citric acid (1.66 and 1.32 mg100ml⁻¹), malic acid (0.36 and 0.63 mg.100ml⁻¹) and succinic acid (0.35 and 0.38 mg100ml⁻¹) were also higher, when AVG was applied at the fruit set stage in both cultivars. In conclusion, the exogenous applications of AVG substantially reduces the creasing incidence, improves rheological properties of fruit and rind as well as fruit quality in Washington Navel and Lane Late sweet orange fruit.Keywords: AVG, creasing, ethylene inhibitor, sweet orange
Procedia PDF Downloads 15981 Improvement of Compressive and Tensile Strengths of Concrete Using Polypropylene Fibers
Authors: Omar Asad Ahmad, Mohammed Awwad
Abstract:
Concrete is one of the essential elements that used in different types of construction these days, but it has many problems when interacts with environmental elements such as water, air, temperature, dust, and humidity. Also concrete made with Portland cement has certain characteristics: it is relatively strong in compression but weak in tension and tends to be brittle. These disadvantages make concrete limited to use in certain conditions. The most common problems appears on concrete are manifested by tearing, cracking, corrosion and spalling, which will lead to do some defect in concrete then in the whole construction, The fundamental objective of this research was to provide information about the hardened properties of concrete achieved by using easily available local raw materials in Jordan to support the practical work with partners in assessing the practicability of the mixes with polypropylene, and to facilitate the introduction of polypropylene fiber concrete (PFC) technology into general construction practice. Investigate the effect of the polypropylene fibers in PCC mixtures and on materials properties such as compressive strength, and tensile strength. Also to investigate the use of polypropylene fibers in plain cubes and cylindrical concrete to improve its compressive and tensile strengths to reduce early cracking and inhibit later crack growth. Increasing the hardness of concrete in this research is the main purpose to measure the deference of compressive strength and tensile strength between plain concrete and concrete mixture with polypropylene fibers different additions and to investigate its effect on reducing the early and later cracking problem. To achieve the goals of research 225 concrete test sample were prepared to measure it’s compressive strength and tensile strength, the concrete test sample were three classes (A,B,C), sub-classified to standard , and polypropylene fibers added by the volume of concrete (5%, 10%, 15%, and 20%). The investigation of polypropylene fibers mixture with concrete shows that the strengths of the cement are increased and the cracking decreased. The results show that for class A the recommended addition were 5% of polypropylene fibers additions for compressive strength and 10 % for tensile strength revels the best compressive strength that reach 26.67 Mpa and tensile strength that reach 2.548 Mpa records. Achieved results show that for classes B and C the recommend additions were 10 % polypropylene fibers revels the best compressive strength records where they reach 21.11 and 33.78 Mpa, records reach for tensile strength 2.707 and 2.65 Mpa respectively.Keywords: polypropylene, effects, compressive, tensile, strengths, concrete, construction
Procedia PDF Downloads 54480 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel
Authors: Bijit Kalita, R. Jayaganthan
Abstract:
Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing
Procedia PDF Downloads 11779 Assessment of Water Quality of Euphrates River at Babylon Governorate, for Drinking, Irrigation and general, Using Water Quality Index (Canadian Version) (CCMEWQI)
Authors: Amer Obaid Saud
Abstract:
Water quality index (WQI) is considered as an effective tool in categorization of water resources for its quality and suitability for different uses. The Canadian version of water quality index (CCME WQI) which based on the comparison of the water quality parameters to regulatory standards and give a single value to the water quality of a source was applied in this study to assess the water quality of Euphrates river in Iraq at Babylon Governorate north of Baghdad and determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation(IWQI). Five stations were selected on the river in Babylon (Euphrates River/AL-Musiab, Hindia barrage, two stations at Hilla city and the fifth station at Al-Hshmeya north of Hilla. Fifteen water samples were collected every month during August 2013 to July 2014 at the study sites and analyzed for the physico-chemical parameters like (Temperature, pH, Electrical Conductivity, Total Dissolved Solids(TDS), Total Suspended Solids(TSS), Total Alkalinity, Total Hardness, Calcium and Magnesium Concentration, some of nutrient like Nitrite, Nitrate, Phosphate also the study of concentration of some heavy metals (Fe, Pb, Zn, Cu, Mn, and Cd) in water and comparison of measures to benchmarks such as guidelines and objectives to assess change in water quality. The result of Canadian version of(CCME .WQI) to assess the irrigation water quality (IWQI) of Euphrates river was (83-good) at site one during second seasonal period while the lowest was (66-Fair) in the second station during the fourth seasonal period, the values of potable water supply index (PWSI)that the highest value was (68-Fair) in the fifth site during the second period while the lowest value (42 -Poor) in the second site during the first seasonal period,the highest value for general water quality (GWQI) was (74-Fair) in site five during the second seasonal period, the lowest value (48-Marginal) in the second site during the first seasonal period. It was observed that the main cause of deterioration in water quality was due to the lack of, unprotected river sites ,high anthropogenic activities and direct discharge of industrial effluent.Keywords: Babylon governorate, Canadian version, water quality, Euphrates river
Procedia PDF Downloads 39878 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters
Authors: Tooba Aslam, Efthalia Chatzisymeon
Abstract:
UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment
Procedia PDF Downloads 77