Search results for: Random Field Ising Model
23909 Developing a Clustered-Based Model and Strategy for Waterfront Urban Tourism in Manado, Indonesia
Authors: Bet El Silisna Lagarense, Agustinus Walansendow
Abstract:
Manado Waterfront Development (MWD) occurs along the coastline of the city to meet the communities’ various needs and interests. Manado waterfront, with its various kinds of tourist attractions, is being developed to strengthen opportunities for both tourism and other businesses. There are many buildings that are used for trade and business purposes. The spatial distributions of tourism, commercial and residential land uses overlap. Field research at the study site consisted desktop scan, questionnaire-based survey, observation and in-depth interview with key informants and Focus Group Discussion (FGD) identified how MWD was initially planned and designed in the whole process of decision making in terms of resource and environmental management particularly for the waterfront tourism development in the long run. The study developed a clustered-based model for waterfront urban tourism in Manado through evaluation of spatial distribution of tourism uses along the waterfront.Keywords: clustered-based model, Manado, urban tourism, waterfront
Procedia PDF Downloads 29423908 MIOM: A Mixed-Initiative Operational Model for Robots in Urban Search and Rescue
Authors: Mario Gianni, Federico Nardi, Federico Ferri, Filippo Cantucci, Manuel A. Ruiz Garcia, Karthik Pushparaj, Fiora Pirri
Abstract:
In this paper, we describe a Mixed-Initiative Operational Model (MIOM) which directly intervenes on the state of the functionalities embedded into a robot for Urban Search&Rescue (USAR) domain applications. MIOM extends the reasoning capabilities of the vehicle, i.e. mapping, path planning, visual perception and trajectory tracking, with operator knowledge. Especially in USAR scenarios, this coupled initiative has the main advantage of enhancing the overall performance of a rescue mission. In-field experiments with rescue responders have been carried out to evaluate the effectiveness of this operational model.Keywords: mixed-initiative planning and control, operator control interfaces for rescue robotics, situation awareness, urban search, rescue robotics
Procedia PDF Downloads 37423907 Using Immersive Study Abroad Experiences to Strengthen Preservice Teachers’ Critical Reflection Skills on Future Classroom Practices
Authors: Meredith Jones, Susan Catapano, Carol McNulty
Abstract:
Study abroad experiences create unique learning opportunities for preservice teachers to strengthen their reflective thinking practices through applied learning experiences. Not only do study abroad experiences provide opportunities for students to expand their cultural sensitivity, but incorporating applied learning experiences in study abroad trips creates unique opportunities for preservice teachers to engage in critical reflection on their teaching skills. Applied learning experiences are designed to nurture learning and growth through a reflective, experiential process outside the traditional classroom setting. As students participate in applied learning experiences, they engage in critical reflection independently, with their peers, and with university faculty. Critical reflection within applied learning contexts generates, deepens, and documents learning but must be intentionally designed to be effective. Grounded in Dewey’s model of reflection, this qualitative study examines longitudinal data from various study abroad cohorts from a particular university. Reflective data was collected during the study abroad trip, and follow up data on critical reflection of teaching practices were collected six months and a year after the trip. Dewey’s model of reflection requires preservice teachers to make sense of their experiences by reflecting on theoretical knowledge, experiences, and pedagogical knowledge. Guided reflection provides preservice teachers with a framework to respond to questions and ideas critical to the applied learning outcomes. Prompts are used to engage preservice teachers in reflecting on situations they have experienced and how they can be transferred to their teaching. Findings from this study noted that students with previous field experiences, or work in the field, engaged in more critical reflection on pedagogical knowledge throughout their applied learning experience. Preservice teachers with limited experiences in the field benefited from engaging in critical reflection prompted by university faculty during the applied learning experience. However, they were able to independently engage in critical reflection once they began work in the field through university field placements, internships, or student teaching. Finally, students who participated in study abroad applied learning experiences reported their critical reflection on their teaching practices, and cultural sensitivity enhanced their teaching and relationships with children once they formally entered the teaching profession.Keywords: applied learning experiences, critical reflection, cultural sensitivity, preservice teachers, teacher education
Procedia PDF Downloads 13823906 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose
Authors: Mohamed Rabhi, Kouider Halim Benrahou
Abstract:
The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity
Procedia PDF Downloads 40523905 Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation
Authors: Jesus Ruano, Francesc Xavier Trias, Asensi Oliva
Abstract:
A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed.Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, long-span bodies
Procedia PDF Downloads 37623904 Numerical Investigation of Turbulent Flow Control by Suction and Injection on a Subsonic NACA23012 Airfoil by Proper Orthogonal Decomposition Analysis and Perturbed Reynolds Averaged Navier‐Stokes Equations
Authors: Azam Zare
Abstract:
Separation flow control for performance enhancement over airfoils at high incidence angle has become an increasingly important topic. This work details the characteristics of an efficient feedback control of the turbulent subsonic flow over NACA23012 airfoil using forced reduced‐order model based on the proper orthogonal decomposition/Galerkin projection and perturbation method on the compressible Reynolds Averaged Navier‐Stokes equations. The forced reduced‐order model is used in the optimal control of the turbulent separated flow over a NACA23012 airfoil at Mach number of 0.2, Reynolds number of 5×106, and high incidence angle of 24° using blowing/suction controlling jets. The Spallart-Almaras turbulence model is implemented for high Reynolds number calculations. The main shortcoming of the POD/Galerkin projection on flow equations for controlling purposes is that the blowing/suction controlling jet velocity does not show up explicitly in the resulting reduced order model. Combining perturbation method and POD/Galerkin projection on flow equations introduce a forced reduced‐order model that can predict the time-varying influence of the blowing/suction controlling jet velocity. An optimal control theory based on forced reduced‐order system is used to design a control law for a nonlinear reduced‐order model, which attempts to minimize the vorticity content in the turbulent flow field over NACA23012 airfoil. Numerical simulations were performed to help understand the behavior of the controlled suction jet at 12% to 18% chord from leading edge and a pair of blowing/suction jets at 15% to 18% and 24% to 30% chord from leading edge, respectively. Analysis of streamline profiles indicates that the blowing/suction jets are efficient in removing separation bubbles and increasing the lift coefficient up to 22%, while the perturbation method can predict the flow field in an accurate Manner.Keywords: flow control, POD, Galerkin projection, separation
Procedia PDF Downloads 14923903 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks
Authors: Theodore Halnon, Martin Bojowald
Abstract:
In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.Keywords: cosmology, deparameterization, general relativity, quantum mechanics
Procedia PDF Downloads 30823902 3D Model of Rain-Wind Induced Vibration of Inclined Cable
Authors: Viet-Hung Truong, Seung-Eock Kim
Abstract:
Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model
Procedia PDF Downloads 48923901 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices
Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli
Abstract:
Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis
Procedia PDF Downloads 46523900 Effect of Transcutaneous Electrical Nerve Stimulation on Acupoints in Type 2 Diabetes Mellitus: A Blood Glucose Analysis
Authors: Asif Arsalan
Abstract:
The mortality rate of type 2 diabetes increasing day by day at an alarming rate. Changing lifestyle and environment have contributory effect in increase rate of type 2 diabetes mellitus. This study introduces a new method in physiotherapy field of treating a disease like diabetes, and gives the new way to control the diabetes without medicines.50 patients were selected on the basis of inclusion and exclusion criteria and were assigned to receive either TENS (group A) on the bilateral ST36 acupoints at a frequency of 25 Hz with intensity of 9 mA or placebo (group B) treatment for 5 minutes for 7 days. The blood glucose level was measured at both pre and post stimulation. Stimulation was given after 3 hours of food on every day regularly on stipulated time.There was significant improvement (P<0.05) in random blood sugar level of type 2 diabetes mellitus. It has been found TENS on bilateral ST36 acupoints have an effect to control plasma glucose level for type 2 diabetic mellitus patients and can be used without having any side effect. This study gives new idea to treat the type 2 diabetes conservatively with the TENS. As there are some study that TENS had been used to treat nausea, spasticity etc. condition by stimulating the acupoint but it is the very first time that TENS has been used to treat diabetes like disease. This study help the physiotherapy community to spread the physiotherapy treatment in other branches of the medical field and this gives a new identity for the physiotherapy. This also gives the benefit to patients to take a safe and cost effective treatment for the diabetes, and make the new use of TENS to treat other condition rather than pain.Keywords: acupoint, plasma glucose level, type 2 diabetic mellitus, TENS
Procedia PDF Downloads 30423899 Identification and Control the Yaw Motion Dynamics of Open Frame Underwater Vehicle
Authors: Mirza Mohibulla Baig, Imil Hamda Imran, Tri Bagus Susilo, Sami El Ferik
Abstract:
The paper deals with system identification and control a nonlinear model of semi-autonomous underwater vehicle (UUV). The input-output data is first generated using the experimental values of the model parameters and then this data is used to compute the estimated parameter values. In this study, we use the semi-autonomous UUV LAURS model, which is developed by the Sensors and Actuators Laboratory in University of Sao Paolo. We applied three methods to identify the parameters: integral method, which is a classical least square method, recursive least square, and weighted recursive least square. In this paper, we also apply three different inputs (step input, sine wave input and random input) to each identification method. After the identification stage, we investigate the control performance of yaw motion of nonlinear semi-autonomous Unmanned Underwater Vehicle (UUV) using feedback linearization-based controller. In addition, we compare the performance of the control with an integral and a non-integral part along with state feedback. Finally, disturbance rejection and resilience of the controller is tested. The results demonstrate the ability of the system to recover from such fault.Keywords: system identification, underwater vehicle, integral method, recursive least square, weighted recursive least square, feedback linearization, integral error
Procedia PDF Downloads 53523898 Flood-prone Urban Area Mapping Using Machine Learning, a Case Sudy of M'sila City (Algeria)
Authors: Medjadj Tarek, Ghribi Hayet
Abstract:
This study aims to develop a flood sensitivity assessment tool using machine learning (ML) techniques and geographic information system (GIS). The importance of this study is integrating the geographic information systems (GIS) and machine learning (ML) techniques for mapping flood risks, which help decision-makers to identify the most vulnerable areas and take the necessary precautions to face this type of natural disaster. To reach this goal, we will study the case of the city of M'sila, which is among the areas most vulnerable to floods. This study drew a map of flood-prone areas based on the methodology where we have made a comparison between 3 machine learning algorithms: the xGboost model, the Random Forest algorithm and the K Nearest Neighbour algorithm. Each of them gave an accuracy respectively of 97.92 - 95 - 93.75. In the process of mapping flood-prone areas, the first model was relied upon, which gave the greatest accuracy (xGboost).Keywords: Geographic information systems (GIS), machine learning (ML), emergency mapping, flood disaster management
Procedia PDF Downloads 9523897 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 7323896 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe
Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman
Abstract:
This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field
Procedia PDF Downloads 26423895 The Future of Insurance: P2P Innovation versus Traditional Business Model
Authors: Ivan Sosa Gomez
Abstract:
Digitalization has impacted the entire insurance value chain, and the growing movement towards P2P platforms and the collaborative economy is also beginning to have a significant impact. P2P insurance is defined as innovation, enabling policyholders to pool their capital, self-organize, and self-manage their own insurance. In this context, new InsurTech start-ups are emerging as peer-to-peer (P2P) providers, based on a model that differs from traditional insurance. As a result, although P2P platforms do not change the fundamental basis of insurance, they do enable potentially more efficient business models to be established in terms of ensuring the coverage of risk. It is therefore relevant to determine whether p2p innovation can have substantial effects on the future of the insurance sector. For this purpose, it is considered necessary to develop P2P innovation from a business perspective, as well as to build a comparison between a traditional model and a P2P model from an actuarial perspective. Objectives: The objectives are (1) to represent P2P innovation in the business model compared to the traditional insurance model and (2) to establish a comparison between a traditional model and a P2P model from an actuarial perspective. Methodology: The research design is defined as action research in terms of understanding and solving the problems of a collectivity linked to an environment, applying theory and best practices according to the approach. For this purpose, the study is carried out through the participatory variant, which involves the collaboration of the participants, given that in this design, participants are considered experts. For this purpose, prolonged immersion in the field is carried out as the main instrument for data collection. Finally, an actuarial model is developed relating to the calculation of premiums that allows for the establishment of projections of future scenarios and the generation of conclusions between the two models. Main Contributions: From an actuarial and business perspective, we aim to contribute by developing a comparison of the two models in the coverage of risk in order to determine whether P2P innovation can have substantial effects on the future of the insurance sector.Keywords: Insurtech, innovation, business model, P2P, insurance
Procedia PDF Downloads 9223894 The Influence of Beta Shape Parameters in Project Planning
Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou
Abstract:
Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.Keywords: beta distribution, PERT, Monte Carlo simulation, skewness, project completion time distribution
Procedia PDF Downloads 14923893 Comparative Evaluation of Root Uptake Models for Developing Moisture Uptake Based Irrigation Schedules for Crops
Authors: Vijay Shankar
Abstract:
In the era of water scarcity, effective use of water via irrigation requires good methods for determining crop water needs. Implementation of irrigation scheduling programs requires an accurate estimate of water use by the crop. Moisture depletion from the root zone represents the consequent crop evapotranspiration (ET). A numerical model for simulating soil water depletion in the root zone has been developed by taking into consideration soil physical properties, crop and climatic parameters. The governing differential equation for unsaturated flow of water in the soil is solved numerically using the fully implicit finite difference technique. The water uptake by plants is simulated by using three different sink functions. The non-linear model predictions are in good agreement with field data and thus it is possible to schedule irrigations more effectively. The present paper describes irrigation scheduling based on moisture depletion from the different layers of the root zone, obtained using different sink functions for three cash, oil and forage crops: cotton, safflower and barley, respectively. The soil is considered at a moisture level equal to field capacity prior to planting. Two soil moisture regimes are then imposed for irrigated treatment, one wherein irrigation is applied whenever soil moisture content is reduced to 50% of available soil water; and other wherein irrigation is applied whenever soil moisture content is reduced to 75% of available soil water. For both the soil moisture regimes it has been found that the model incorporating a non-linear sink function which provides best agreement of computed root zone moisture depletion with field data, is most effective in scheduling irrigations. Simulation runs with this moisture uptake function result in saving 27.3 to 45.5% & 18.7 to 37.5%, 12.5 to 25% % &16.7 to 33.3% and 16.7 to 33.3% & 20 to 40% irrigation water for cotton, safflower and barley respectively, under 50 & 75% moisture depletion regimes over other moisture uptake functions considered in the study. Simulation developed can be used for an optimized irrigation planning for different crops, choosing a suitable soil moisture regime depending upon the irrigation water availability and crop requirements.Keywords: irrigation water, evapotranspiration, root uptake models, water scarcity
Procedia PDF Downloads 33123892 Dynamics of Light Induced Current in 1D Coupled Quantum Dots
Authors: Tokuei Sako
Abstract:
Laser-induced current in a quasi-one-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to a pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation directly by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the lifetime of the quasi-bound states formed when the static bias voltage is applied.Keywords: pulsed laser field, nanowire, electron wave packet, quantum dots, time-dependent Schrödinger equation
Procedia PDF Downloads 35623891 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software
Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven
Abstract:
Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model
Procedia PDF Downloads 21223890 Multidimensional Approach to Analyse the Environmental Impacts of Mobility
Authors: Andras Gyorfi, Andras Torma, Adrienn Buruzs
Abstract:
Mobility has been evolved to a determining field of science. The continuously developing segment involves a variety of affected issues such as public and economic sectors. Beside the changes in mobility the state of environment had also changed in the last period. Alternative mobility as a separate category and the idea of its widespread appliance is such a new field that needs to be studied deeper. Alternative mobility implies finding new types of propulsion, using innovative kinds of power and energy resources, revolutionizing the approach to vehicular control. Including new resources and excluding others has such a complex effect which cannot be unequivocally confirmed by today’s scientific achievements. Changes in specific parameters will most likely reduce the environmental impacts, however, the production of new substances or even their subtraction of the system will cause probably energy deficit as well. The aim of this research is to elaborate the environmental impact matrix of alternative mobility and cognize the factors that are yet unknown, analyse them, look for alternative solutions and conclude all the above in a coherent system. In order to this, we analyse it with a method called ‘the system of systems (SoS) method’ to model the effects and the dynamics of the system. A part of the research process is to examine its impacts on the environment, and to decide whether the newly developed versions of alternative mobility are affecting the environmental state. As a final result, a complex approach will be used which can supplement the current scientific studies. By using the SoS approach, we create a framework of reference containing elements in which we examine the interactions as well. In such a way, a flexible and modular model can be established which supports the prioritizing of effects and the deeper analysis of the complex system.Keywords: environment, alternative mobility, complex model, element analysis, multidimensional map
Procedia PDF Downloads 32423889 Model and Neural Control of the Depth of Anesthesia during Surgery
Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz
Abstract:
At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model
Procedia PDF Downloads 33723888 On a Single Server Queue with Arrivals in Batches of Variable Size, Generalized Coxian-2 Service and Compulsory Server Vacations
Authors: Kailash C. Madan
Abstract:
We study the steady state behaviour of a batch arrival single server queue in which the first service with general service times is compulsory and the second service with general service times is optional. We term such a two phase service as generalized Coxian-2 service. Just after completion of a service the server must take a vacation of random length of time with general vacation times. We obtain steady state probability generating functions for the queue size as well as the steady state mean queue size at a random epoch of time in explicit and closed forms. Some particular cases of interest including some known results have been derived.Keywords: batch arrivals, compound Poisson process, generalized Coxian-2 service, steady state
Procedia PDF Downloads 45523887 Rheological Properties of Polymer Systems in Magnetic Field
Authors: T. S. Soliman, A. G. Galyas, E. V. Rusinova, S. A. Vshivkov
Abstract:
The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum.Keywords: rheology, liquid crystals, magnetic field, cellulose ethers
Procedia PDF Downloads 34823886 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 8323885 Damage Identification Using Experimental Modal Analysis
Authors: Niladri Sekhar Barma, Satish Dhandole
Abstract:
Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification
Procedia PDF Downloads 11623884 Mean Square Responses of a Cantilever Beam with Various Damping Mechanisms
Authors: Yaping Zhao, Yimin Zhang
Abstract:
In the present paper, the stationary random vibration of a uniform cantilever beam is investigated. Two types of damping mechanism, i.e. the external and internal viscous dampings, are taken into account simultaneously. The excitation form is the support motion, and it is ideal white. Because two type of damping mechanism are considered concurrently, the product of the modal damping ratio and the natural frequency is not a constant anymore. As a result, the infinite definite integral encountered in the process of computing the mean square response is more complex than that in the existing literature. One signal progress of this work is to have calculated these definite integrals accurately. The precise solution of the mean square response is thus obtained in the infinite series form finally. Numerical examples are supplied and the numerical outcomes acquired confirm the validity of the theoretical analyses.Keywords: random vibration, cantilever beam, mean square response, white noise
Procedia PDF Downloads 38423883 Electrodeposition of Nickel-Zinc Alloy on Stainless Steel in a Magnetic Field in a Chloride Environment
Authors: Naima Benachour, Sabiha Chouchane, J. Paul Chopart
Abstract:
The objective of this work is to determine the appropriate conditions for a Ni-Zn deposit with good nickel content. The electrodeposition of zinc-nickel on a stainless steel is carried out in a chlorinated bath NiCl2.6H2O, ZnCl2, and H3BO3), whose composition is 1.1 M; 1.8 M; 0.1 M respectively. Studies show the effect of the concentration of NH4Cl, which reveals a significant effect on the reduction and ion transport in the electrolyte. In order to highlight the influence of magnetic field on the chemical composition and morphology of the deposit, chronopotentiometry tests were conducted, the curves obtained inform us that the application of a magnetic field promotes stability of the deposit. Characterization developed deposits was performed by scanning electron microscopy coupled with EDX and specified by the X-ray diffraction.Keywords: Zn-Ni alloys, electroplating, magnetic field, chronopotentiometry
Procedia PDF Downloads 44023882 Using Machine Learning Techniques to Extract Useful Information from Dark Data
Authors: Nigar Hussain
Abstract:
It is a subset of big data. Dark data means those data in which we fail to use for future decisions. There are many issues in existing work, but some need powerful tools for utilizing dark data. It needs sufficient techniques to deal with dark data. That enables users to exploit their excellence, adaptability, speed, less time utilization, execution, and accessibility. Another issue is the way to utilize dark data to extract helpful information to settle on better choices. In this paper, we proposed upgrade strategies to remove the dark side from dark data. Using a supervised model and machine learning techniques, we utilized dark data and achieved an F1 score of 89.48%.Keywords: big data, dark data, machine learning, heatmap, random forest
Procedia PDF Downloads 2823881 A Model of Teacher Leadership in History Instruction
Authors: Poramatdha Chutimant
Abstract:
The objective of the research was to propose a model of teacher leadership in history instruction for utilization. Everett M. Rogers’ Diffusion of Innovations Theory is applied as theoretical framework. Qualitative method is to be used in the study, and the interview protocol used as an instrument to collect primary data from best practices who awarded by Office of National Education Commission (ONEC). Open-end questions will be used in interview protocol in order to gather the various data. Then, information according to international context of history instruction is the secondary data used to support in the summarizing process (Content Analysis). Dendrogram is a key to interpret and synthesize the primary data. Thus, secondary data comes as the supportive issue in explanation and elaboration. In-depth interview is to be used to collected information from seven experts in educational field. The focal point is to validate a draft model in term of future utilization finally.Keywords: history study, nationalism, patriotism, responsible citizenship, teacher leadership
Procedia PDF Downloads 27923880 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 105