Search results for: Bal Deep Sharma
1933 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines
Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma
Abstract:
The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines
Procedia PDF Downloads 831932 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm
Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma
Abstract:
In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA) is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.Keywords: balanced truncation, clustering, dominant pole, Hankel norm, model reduction
Procedia PDF Downloads 5991931 Pilot Directional Protection Scheme Using Wireless Communication
Authors: Nitish Sharma, G. G. Karady
Abstract:
This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today’s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays.Keywords: smart grid protection, pilot protection, power system simulation, wireless communication
Procedia PDF Downloads 6361930 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 651929 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 1981928 The Relevance of Sustainability Skills for International Students
Authors: Mary Panko, Rashika Sharma
Abstract:
Sustainability often appears to be an unfamiliar concept to many international students that enrol in a New Zealand technological degree. Lecturers’ experiences with classroom interactions and evaluation of assessments indicate that studying the concept enlightens and enhances international students understanding of sustainability. However, in most cases, even after studying sustainability in their degree programme, students are not given an opportunity to practice and apply this concept into their professions in their home countries. Therefore, using a qualitative approach, the academics conducted research to determine the change in international students understanding of sustainability before and after their enrolment in an Applied Technology degree. The research also aimed to evaluate if international students viewed sustainability of relevance to their professions and whether the students felt that they will be provided with an opportunity to apply their knowledge about sustainability in the industry. The findings of the research are presented in this paper.Keywords: education for sustainability, international students, vocational education
Procedia PDF Downloads 3081927 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 871926 Contextualizing Theory Z of Motivation Among Indian Universities of Higher Education
Authors: Janani V., Tanika Singh, Bala Subramanian R., Santosh Kumar Sharma
Abstract:
Higher education across the globe is undergoing a sea change. This has created a varied management of higher education in Indian universities, and therefore, we find no universal law regarding HR policies and practices in these universities. As a result, faculty retention is very low, which is a serious concern for educational leaders such as vice-chancellors or directors working in the higher education sector. We can understand this phenomenon in the light of various management theories, among which theory z proposed by William Ouchi is a prominent one. With this backdrop, the present article strives to contextualize theory z in Indian higher education. For the said purpose, qualitative methodology has been adopted, and accordingly, propositions have been generated. We believe that this article will motivate other researchers to empirically test the generated propositions and thereby contribute in the existing literature.Keywords: education, managemenet, motivation, Theory X, Theory Y, Theory Z, faculty members, universities, India
Procedia PDF Downloads 1171925 Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan
Authors: Bilal Wadood, Suleman Khan, Sajjad Ahmed
Abstract:
The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low.Keywords: cycle, deposition, microfacies, reservoir
Procedia PDF Downloads 1511924 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 671923 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 1001922 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 1321921 Application of Magnetic-Nano Photocatalyst for Removal of Xenobiotic Compounds
Authors: Prashant K. Sharma, Kavita Shah
Abstract:
In recent years, the photochemistry of nanomagnetic particles is being utilized for the removal of various pollutants. In the current era where large quantities of various xenobiotic compounds are released in the environment some of which are highly toxic are being used routinely by industries and consumers. Extensive use of these chemicals provides greater risk to plants, animals and human population which has been reviewed from time to time. Apart from the biological degradation, photochemical removal holds considerable promise for the abatement of these pesticides in wastewaters. This paper reviews the photochemical removal of xenobiotic compounds. It is evident from the review that removal depends on several factors such as pH of the solution, catalysts loading, initial concentration, light intensity and so on and so forth. Since the xenobiotics are ubiquitously present in the wastewaters, photochemical technology seems imperative to alleviate the pollution problems associated with the xenobiotics. However, commercial application of this technology has to be clearly assessed.Keywords: magnetic, nanoparticles, photocatalayst, xenobiotic compounds
Procedia PDF Downloads 3761920 Systematic Formulation Development and Evaluation of Self-Nanoemulsifying Systems of Rosuvastatin Employing QbD Approach and Chemometric Techniques
Authors: Sarwar Beg, Gajanand Sharma, O. P. Katare, Bhupinder Singh
Abstract:
The current studies entail development of self-nano emulsifying drug delivery systems (SNEDDS) of rosuvastatin, employing rational QbD-based approach for enhancing its oral bioavailability. SNEDDS were prepared using the blend of lipidic and emulsifying excipients, i.e., Peceol, Tween 80, and Transcutol HP. The prepared formulations evaluated for in vitro drug release, ex vivo permeation, in situ perfusion studies and in vivo pharmacokinetic studies in rats, which demonstrated 3-4 fold improvement in biopharmaceutical performance of the developed formulations. Cytotoxicity studies using MTT assay and histopathological studies in intestinal cells revealed the lack of cytotoxicity and thereby safety and efficacy of the developed formulations.Keywords: SNEDDS, bioavailability, solubility, Quality by Design (QbD)
Procedia PDF Downloads 5061919 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2941918 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 911917 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2911916 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 1481915 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 4031914 Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating
Authors: Prashant Sharma, Jyotsna Dutta Majumdar
Abstract:
The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating.Keywords: plasma spraying, oxidation resistance, thermal barrier coating, microstructure, X-ray method
Procedia PDF Downloads 3531913 Characterization of Number of Subgroups of Finite Groups
Authors: Khyati Sharma, A. Satyanarayana Reddy
Abstract:
The topic of how many subgroups exist within a certain finite group naturally arises in the study of finite groups. Over the years, different researchers have investigated this issue from a variety of angles. The significant contributions of the key mathematicians over the time have been summarized in this article. To this end, we classify finite groups into three categories viz. (a) Groups for which the number of subgroups is less than |G|, (b) equals to |G|, and finally, (c) greater than |G|. Because every element of a finite group generates a cyclic subgroup, counting cyclic subgroups is the most important task in this endeavor. A brief survey on the number of cyclic subgroups of finite groups is also conducted by us. Furthermore, we also covered certain arithmetic relations between the order of a finite group |G| and the number of its distinct cyclic subgroups |C(G)|. In order to provide pertinent context and possibly reveal new novel areas of potential research within the field of research on finite groups, we finally pose and solicit a few open questions.Keywords: abstract algebra, cyclic subgroup, finite group, subgroup
Procedia PDF Downloads 1201912 Software Defined Storage: Object Storage over Hadoop Platform
Authors: Amritesh Srivastava, Gaurav Sharma
Abstract:
The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.Keywords: Hadoop, HBase, object storage, REST
Procedia PDF Downloads 3391911 Medi-Conf: Conference Management System
Authors: Dishant Kothari, Pankaj Gaur, Priyanshu Sharma, Ratnesh Litoriya, Sachin Solanki, Shimpy Goyal
Abstract:
Web based Conference Management System comprises of all the processes needed for round table conference, research paper publication includes the phases-call for paper, paper submission, paper review, acknowledgement to the author, paper acceptance and payment for publication. It will also help colleges and universities to conduct conferences for research, thus spreading awareness and will contribute to the overall development of students. Web based Conference Management System will streamline the procedure for paper publication by reducing the time and efforts needed in physical (offline mode) submission. A conference can be organized from anywhere and anytime. Authors can easily trace the status of the paper, and the program committee can review them anywhere and provide necessary comments to it.Keywords: peer review, paper publication, author, chair, reviewer, virtualization, new normal
Procedia PDF Downloads 1311910 Integrated Care on Chronic Diseases in Asia-Pacific Countries
Authors: Chang Liu, Hanwen Zhang, Vikash Sharma, Don Eliseo Lucerno-Prisno III, Emmanuel Yujuico, Maulik Chokshi, Prashanthi Krishnakumar, Bach Xuan Tran, Giang Thu Vu, Kamilla Anna Pinter, Shenglan Tang
Abstract:
Background and Aims: Globally, many health systems focus on hospital-based healthcare models targeting acute care and disease treatment, which are not effective in addressing the challenges of ageing populations, chronic conditions, multi-morbidities, and increasingly unhealthy lifestyles. Recently, integrated care programs on chronic diseases have been developed, piloted, and implemented to meet such challenges. However, integrated care programs in the Asia-Pacific region vary in the levels of integration from linkage to coordination to full integration. This study aims to identify and analyze existing cases of integrated care in the Asia-Pacific region and identify the facilitators and barriers in order to improve existing cases and inform future cases. Methods: The study is a comparative study, with a combination approach of desk-based research and key informant interviews. The selected countries included in this study represent a good mix of lower-middle income countries (the Philippines, India, Vietnam, and Fiji), upper-middle income country (China), and high-income country (Singapore) in the Asia-Pacific region. Existing integrated care programs were identified through the scoping review approach. Trigger, history, general design, beneficiaries, and objectors were summarized with barriers and facilitators of integrated care based on key informant interviews. Representative case(s) in each country were selected and comprehensively analyzed through deep-dive case studies. Results: A total of 87 existing integrated care programs on chronic diseases were found in all countries, with 44 in China, 21 in Singapore, 12 in India, 5 in Vietnam, 4 in the Philippines, and 1 in Fiji. 9 representative cases of integrated care were selected for in-depth description and analysis, with 2 in China, the Philippines, and Vietnam, and 1 in Singapore, India, and Fiji. Population aging and the rising chronic disease burden have been identified as key drivers for almost all the six countries. Among the six countries, Singapore has the longest history of integrated care, followed by Fiji, the Philippines, and China, while India and Vietnam have a shorter history of integrated care. Incentives, technologies, education, and performance evaluation would be crucial for developing strategies for implementing future programs and improve already existing programs. Conclusion: Integrated care is important for addressing challenges surrounding the delivery of long-term care. To date, there is an increasing trend of integrated care programs on chronic diseases in the Asia-Pacific region, and all six countries in our study set integrated care as a direction for their health systems transformation.Keywords: integrated healthcare, integrated care delivery, chronic diseases, Asia-Pacific region
Procedia PDF Downloads 1351909 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 991908 Synthesis of KCaVO4:Sm³⁺/PMMA Luminescent Nanocomposites and Their Optical Property Measurements
Authors: Sumara Khursheed, Jitendra Sharma
Abstract:
The present work reports synthesis of nanocomposites (NCs) of phosphor (KCaVO4:Sm3+) embedded poly(methylmethacrylate) (PMMA) using solution casting method and their optical properties measurements for their possible application in making flexible luminescent films. X-ray diffraction analyses were employed to obtain the structural parameters as crystallinity, shape and size of the obtained NCs. The emission and excitation spectra were obtained using Photoluminescence spectroscopy to quantify the spectral properties of these fluorescent polymer/phosphor films. Optical energy gap has been estimated using UV-VIS spectroscopy while differential scanning calorimetry (DSC) was exploited to measure the thermal properties of the NC films in terms of their thermal stability, glass transition temperature and degree of crystallinity etc.Keywords: nanocomposites, luminescence, XRD, differential scanning calorimetry, PMMA
Procedia PDF Downloads 1701907 Measurement of Rayleigh Scattering Cross-Section of ₆₀Nd K X-Rays Elements with 26 ≤ Z≤ 90
Authors: Govind Sharma, Harpreet S. Kainth
Abstract:
Rayleigh scattering differential cross sections have been measured for the 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays. These measurements have been done in 44 elements with 22 ≤ Z ≤ 90 at an angle of 1390. The measurements are performed by using a radiation source consisting of an annular 60Nd foil excited by the 59.54 KeV γ-ray photons from 241Am radioactive source. The Nd Kα2, Kβ1,3 X-ray photons from the 60Nd annular foil (secondary photon source) are made to scatter from the target and the scattered photons are detected using Canberra made low energy Germanium (LEGe) detector. The measured Rayleigh scattering cross sections are compared with the theoretical MF, MFASF and the SM values. The noticeable deviations are observed from the MF, MFASF and SM values for 36.84 keV (60Nd Kα2), 37.36 keV (60Nd Kα1) and 42.27 keV (60Nd Kβ1,3) X-rays.Keywords: Photon-electron interaction, Rayleigh scattering, X-ray fluorescence, X-ray
Procedia PDF Downloads 3881906 Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene
Authors: Aman Sharma, Sonali Sengupta
Abstract:
The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results.Keywords: acquisition function, Bayesian optimization, desulfurization, kinetics, thiophene
Procedia PDF Downloads 1821905 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 891904 Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data
Authors: Rishabh Srivastav, Divyam Sharma
Abstract:
We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic.Keywords: categorical data, fuzzy logic, genetic algorithm, K modes clustering, rough sets
Procedia PDF Downloads 250