Search results for: 4-region isotherm model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16995

Search results for: 4-region isotherm model

9585 Photophysics of a Coumarin Molecule in Graphene Oxide Containing Reverse Micelle

Authors: Aloke Bapli, Debabrata Seth

Abstract:

Graphene oxide (GO) is the two-dimensional (2D) nanoscale allotrope of carbon having several physiochemical properties such as high mechanical strength, high surface area, strong thermal and electrical conductivity makes it an important candidate in various modern applications such as drug delivery, supercapacitors, sensors etc. GO has been used in the photothermal treatment of cancers and Alzheimer’s disease etc. The main idea to choose GO in our work is that it is a surface active molecule, it has a large number of hydrophilic functional groups such as carboxylic acid, hydroxyl, epoxide on its surface and in basal plane. So it can easily interact with organic fluorophores through hydrogen bonding or any other kind of interaction and easily modulate the photophysics of the probe molecules. We have used different spectroscopic techniques for our work. The Ground-state absorption spectra and steady-state fluorescence emission spectra were measured by using UV-Vis spectrophotometer from Shimadzu (model-UV-2550) and spectrofluorometer from Horiba Jobin Yvon (model-Fluoromax 4P) respectively. All the fluorescence lifetime and anisotropy decays were collected by using time-correlated single photon counting (TCSPC) setup from Edinburgh instrument (model: LifeSpec-II, U.K.). Herein, we described the photophysics of a hydrophilic molecule 7-(n,n׀-diethylamino) coumarin-3-carboxylic acid (7-DCCA) in the reverse micelles containing GO. It was observed that photophysics of dye is modulated in the presence of GO compared to photophysics of dye in the absence of GO inside the reverse micelles. Here we have reported the solvent relaxation and rotational relaxation time in GO containing reverse micelle and compare our work with normal reverse micelle system by using 7-DCCA molecule. Normal reverse micelle means reverse micelle in the absence of GO. The absorption maxima of 7-DCCA were blue shifted and emission maxima were red shifted in GO containing reverse micelle compared to normal reverse micelle. The rotational relaxation time in GO containing reverse micelle is always faster compare to normal reverse micelle. Solvent relaxation time, at lower w₀ values, is always slower in GO containing reverse micelle compare to normal reverse micelle and at higher w₀ solvent relaxation time of GO containing reverse micelle becomes almost equal to normal reverse micelle. Here emission maximum of 7-DCCA exhibit bathochromic shift in GO containing reverse micelles compared to that in normal reverse micelles because in presence of GO the polarity of the system increases, as polarity increases the emission maxima was red shifted an average decay time of GO containing reverse micelle is less than that of the normal reverse micelle. In GO containing reverse micelle quantum yield, decay time, rotational relaxation time, solvent relaxation time at λₑₓ=375 nm is always higher than λₑₓ=405 nm, shows the excitation wavelength dependent photophysics of 7-DCCA in GO containing reverse micelles.

Keywords: photophysics, reverse micelle, rotational relaxation, solvent relaxation

Procedia PDF Downloads 160
9584 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System

Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain

Abstract:

Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.

Keywords: car parking, Co2, Co2 reduction, IoT, merge sort, number plate recognition, smart car parking

Procedia PDF Downloads 149
9583 Structural Morphing on High Performance Composite Hydrofoil to Postpone Cavitation

Authors: Fatiha Mohammed Arab, Benoit Augier, Francois Deniset, Pascal Casari, Jacques Andre Astolfi

Abstract:

For the top high performance foiling yachts, cavitation is often a limiting factor for take-off and top speed. This work investigates solutions to delay the onset of cavitation thanks to structural morphing. The structural morphing is based on compliant leading and trailing edge, with effect similar to flaps. It is shown here that the commonly accepted effect of flaps regarding the control of lift and drag forces can also be used to postpone the inception of cavitation. A numerical and experimental study is conducted in order to assess the effect of the geometric parameters of hydrofoil on their hydrodynamic performances and in cavitation inception. The effect of a 70% trailing edge and a 30% leading edge of NACA 0012 is investigated using Xfoil software at a constant Reynolds number 106. The simulations carried out for a range flaps deflections and various angles of attack. So, the result showed that the lift coefficient increase with the increase of flap deflection, but also with the increase of angle of attack and enlarged the bucket cavitation. To evaluate the efficiency of the Xfoil software, a 2D analysis flow over a NACA 0012 with leading and trailing edge flap was studied using Fluent software. The results of the two methods are in a good agreement. To validate the numerical approach, a passive adaptive composite model is built and tested in the hydrodynamic tunnel at the Research Institute of French Naval Academy. The model shows the ability to simulate the effect of flap by a LE and TE structural morphing due to hydrodynamic loading.

Keywords: cavitation, flaps, hydrofoil, panel method, xfoil

Procedia PDF Downloads 183
9582 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity

Procedia PDF Downloads 165
9581 Towards a Business Process Model Deriving from an Intentional Perspective

Authors: Omnia Saidani Neffati, Rim Samia Kaabi, Naoufel Kraiem

Abstract:

In this paper, we propose an approach aiming at (i) representing services at two levels: the intentional level and the organizational level, and (ii) establishing mechanisms allowing to make a transition from the first level to the second one in order to execute intentional services. An example is used to validate our approach.

Keywords: intentional service, business process, BPMN, MDE, intentional service execution

Procedia PDF Downloads 397
9580 Numerical Simulation of Footing on Reinforced Loose Sand

Authors: M. L. Burnwal, P. Raychowdhury

Abstract:

Earthquake leads to adverse effects on buildings resting on soft soils. Mitigating the response of shallow foundations on soft soil with different methods reduces settlement and provides foundation stability. Few methods such as the rocking foundation (used in Performance-based design), deep foundation, prefabricated drain, grouting, and Vibro-compaction are used to control the pore pressure and enhance the strength of the loose soils. One of the problems with these methods is that the settlement is uncontrollable, leading to differential settlement of the footings, further leading to the collapse of buildings. The present study investigates the utility of geosynthetics as a potential improvement of the subsoil to reduce the earthquake-induced settlement of structures. A steel moment-resisting frame building resting on loose liquefiable dry soil, subjected to Uttarkashi 1991 and Chamba 1995 earthquakes, is used for the soil-structure interaction (SSI) analysis. The continuum model can simultaneously simulate structure, soil, interfaces, and geogrids in the OpenSees framework. Soil is modeled with PressureDependentMultiYield (PDMY) material models with Quad element that provides stress-strain at gauss points and is calibrated to predict the behavior of Ganga sand. The model analyzed with a tied degree of freedom contact reveals that the system responses align with the shake table experimental results. An attempt is made to study the responses of footing structure and geosynthetics with unreinforced and reinforced bases with varying parameters. The result shows that geogrid reinforces shallow foundation effectively reduces the settlement by 60%.

Keywords: settlement, shallow foundation, SSI, continuum FEM

Procedia PDF Downloads 198
9579 A Regional Analysis on Co-movement of Sovereign Credit Risk and Interbank Risks

Authors: Mehdi Janbaz

Abstract:

The global financial crisis and the credit crunch that followed magnified the importance of credit risk management and its crucial role in the stability of all financial sectors and the whole of the system. Many believe that risks faced by the sovereign sector are highly interconnected with banking risks and most likely to trigger and reinforce each other. This study aims to examine (1) the impact of banking and interbank risk factors on the sovereign credit risk of Eurozone, and (2) how the EU Credit Default Swaps spreads dynamics are affected by the Crude Oil price fluctuations. The hypothesizes are tested by employing fitting risk measures and through a four-staged linear modeling approach. The sovereign senior 5-year Credit Default Swap spreads are used as a core measure of the credit risk. The monthly time-series data of the variables used in the study are gathered from the DataStream database for a period of 2008-2019. First, a linear model test the impact of regional macroeconomic and market-based factors (STOXX, VSTOXX, Oil, Sovereign Debt, and Slope) on the CDS spreads dynamics. Second, the bank-specific factors, including LIBOR-OIS spread (the difference between the Euro 3-month LIBOR rate and Euro 3-month overnight index swap rates) and Euribor, are added to the most significant factors of the previous model. Third, the global financial factors including EURO to USD Foreign Exchange Volatility, TED spread (the difference between 3-month T-bill and the 3-month LIBOR rate based in US dollars), and Chicago Board Options Exchange (CBOE) Crude Oil Volatility Index are added to the major significant factors of the first two models. Finally, a model is generated by a combination of the major factor of each variable set in addition to the crisis dummy. The findings show that (1) the explanatory power of LIBOR-OIS on the sovereign CDS spread of Eurozone is very significant, and (2) there is a meaningful adverse co-movement between the Crude Oil price and CDS price of Eurozone. Surprisingly, adding TED spread (the difference between the three-month Treasury bill and the three-month LIBOR based in US dollars.) to the analysis and beside the LIBOR-OIS spread (the difference between the Euro 3M LIBOR and Euro 3M OIS) in third and fourth models has been increased the predicting power of LIBOR-OIS. Based on the results, LIBOR-OIS, Stoxx, TED spread, Slope, Oil price, OVX, FX volatility, and Euribor are the determinants of CDS spreads dynamics in Eurozone. Moreover, the positive impact of the crisis period on the creditworthiness of the Eurozone is meaningful.

Keywords: CDS, crude oil, interbank risk, LIBOR-OIS, OVX, sovereign credit risk, TED

Procedia PDF Downloads 149
9578 Loading and Unloading Scheduling Problem in a Multiple-Multiple Logistics Network: Modelling and Solving

Authors: Yasin Tadayonrad

Abstract:

Most of the supply chain networks have many nodes starting from the suppliers’ side up to the customers’ side that each node sends/receives the raw materials/products from/to the other nodes. One of the major concerns in this kind of supply chain network is finding the best schedule for loading /unloading the shipments through the whole network by which all the constraints in the source and destination nodes are met and all the shipments are delivered on time. One of the main constraints in this problem is loading/unloading capacity in each source/ destination node at each time slot (e.g., per week/day/hour). Because of the different characteristics of different products/groups of products, the capacity of each node might differ based on each group of products. In most supply chain networks (especially in the Fast-moving consumer goods industry), there are different planners/planning teams working separately in different nodes to determine the loading/unloading timeslots in source/destination nodes to send/receive the shipments. In this paper, a mathematical problem has been proposed to find the best timeslots for loading/unloading the shipments minimizing the overall delays subject to respecting the capacity of loading/unloading of each node, the required delivery date of each shipment (considering the lead-times), and working-days of each node. This model was implemented on python and solved using Python-MIP on a sample data set. Finally, the idea of a heuristic algorithm has been proposed as a way of improving the solution method that helps to implement the model on larger data sets in real business cases, including more nodes and shipments.

Keywords: supply chain management, transportation, multiple-multiple network, timeslots management, mathematical modeling, mixed integer programming

Procedia PDF Downloads 98
9577 Neuroprotective Effects of Dehydroepiandrosterone (DHEA) in Rat Model of Alzheimer’s Disease

Authors: Hanan F. Aly, Fateheya M. Metwally, Hanaa H. Ahmed

Abstract:

The current study is undertaken to elucidate a possible neuroprotective role of dehydroepiandrosterone (DHEA) against the development of Alzheimer’s disease in experimental rat model. Alzheimer’s disease was produced in young female ovariectomized rats by intraperitoneal administration of AlCl3 (4.2 mg/kg body weight) daily for 12 weeks. Half of these animals also received orally DHEA (250 mg/kg body weight, three times weekly) for 18 weeks. Control groups of animals received either DHAE alone, or no DHEA, or were not ovariectomized. After such treatment the animals were analyzed for oxidative stress biomarkers such as hydrogen peroxide, nitric oxide and malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activities, antiapoptotic marker Bcl-2 and brain derived neurotrophic factor. Also, brain cholinergic markers (acetylcholinesterase and acetylcholine) were determined. The results revealed significant increase in oxidative stress parameters associated with significant decrease in the antioxidant enzyme activities in Al-intoxicated ovariectomized rats. Significant depletion in brain Bcl-2 and brain-derived neurotrophic factor levels were also detected. Moreover, significant elevations in brain acetylcholinesterase activity accompanied with significant reduction in acetylcholine level were recorded. Significant amelioration in all investigated parameters was detected as a result of treatment of Al-intoxicated ovariectomized rats with DHEA. These results were confirmed by histological examination of brain sections. These results clearly indicate a neuroprotective effect of DHEA against Alzheimer’s disease.

Keywords: Alzheimer’s disease, oxidative stress, apoptosis, dehydroepiandrosterone

Procedia PDF Downloads 328
9576 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 300
9575 Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept

Authors: M. Rafiur Rahman, M. Mezbah Uddin, Mohammad Irfan Uddin, M. Moinul Islam

Abstract:

With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief.

Keywords: coupled integrated dynamic analysis, SFC, time domain analysis, wave energy converters

Procedia PDF Downloads 225
9574 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets

Authors: Selin Guney, Andres Riquelme

Abstract:

Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.

Keywords: commodity, forecast, fuzzy, Markov

Procedia PDF Downloads 220
9573 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company

Authors: Milica Lilic, Marina Rosales Martínez

Abstract:

Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.

Keywords: good practice, knowledge transfer, a spin-off company, university

Procedia PDF Downloads 151
9572 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses

Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid

Abstract:

Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.

Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss

Procedia PDF Downloads 284
9571 Development and Testing of Health Literacy Scales for Chinese Primary and Secondary School Students

Authors: Jiayue Guo, Lili You

Abstract:

Background: Children and adolescent health are crucial for both personal well-being and the nation's future health landscape. Health Literacy (HL) is important in enabling adolescents to self-manage their health, a fundamental step towards health empowerment. However, there are limited tools for assessing HL among elementary and junior high school students. This study aims to construct and validate a test-based HL scale for Chinese students, offering a scientific reference for cross-cultural HL tool development. Methods: We conducted a cross-sectional online survey. Participants were recruited from a stratified cluster random sampling method, a total of 4189 Chinese in-school primary and secondary students. The development of the scale was completed by defining the concept of HL, establishing the item indicator system, screening items (7 health content dimensions), and evaluating reliability and validity. Delphi method expert consultation was used to screen items, the Rasch model was conducted for quality analysis, and Cronbach’s alpha coefficient was used to examine the internal consistency. Results: We developed four versions of the HL scale, each with a total score of 100, encompassing seven key health areas: hygiene, nutrition, physical activity, mental health, disease prevention, safety awareness, and digital health literacy. Each version measures four dimensions of health competencies: knowledge, skills, motivation, and behavior. After the second round of expert consultation, the average importance score of each item by experts is 4.5–5.0, and the coefficient of variation is 0.000–0.174. The knowledge and skills dimensions are judgment-based and multiple-choice questions, with the Rasch model confirming unidimensionality at a 5.7% residual variance. The behavioral and motivational dimensions, measured with scale-type items, demonstrated internal consistency via Cronbach's alpha and strong inter-item correlation with KMO values of 0.924 and 0.787, respectively. Bartlett's test of sphericity, with p-values <0.001, further substantiates the scale's reliability. Conclusions: The new test-based scale, designed to evaluate competencies within a multifaceted framework, aligns with current international adolescent literacy theories and China's health education policies, focusing not only on knowledge acquisition but also on the application of health-related thinking and behaviors. The scale can be used as a comprehensive tool for HL evaluation and a reference for other countries.

Keywords: adolescent health, Chinese, health literacy, rasch model, scale development

Procedia PDF Downloads 35
9570 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model

Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra

Abstract:

In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.

Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions

Procedia PDF Downloads 170
9569 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell

Authors: Hongjian Jia

Abstract:

A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.

Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval

Procedia PDF Downloads 115
9568 Impact of Applying Bag House Filter Technology in Cement Industry on Ambient Air Quality - Case Study: Alexandria Cement Company

Authors: Haggag H. Mohamed, Ghatass F. Zekry, Shalaby A. Elsayed

Abstract:

Most sources of air pollution in Egypt are of anthropogenic origin. Alexandria Governorate is located at north of Egypt. The main contributing sectors of air pollution in Alexandria are industry, transportation and area source due to human activities. Alexandria includes more than 40% of the industrial activities in Egypt. Cement manufacture contributes a significant amount to the particulate pollution load. Alexandria Portland Cement Company (APCC) surrounding was selected to be the study area. APCC main kiln stack Total Suspended Particulate (TSP) continuous monitoring data was collected for assessment of dust emission control technology. Electro Static Precipitator (ESP) was fixed on the cement kiln since 2002. The collected data of TSP for first quarter of 2012 was compared to that one in first quarter of 2013 after installation of new bag house filter. In the present study, based on these monitoring data and metrological data a detailed air dispersion modeling investigation was carried out using the Industrial Source Complex Short Term model (ISC3-ST) to find out the impact of applying new bag house filter control technology on the neighborhood ambient air quality. The model results show a drastic reduction of the ambient TSP hourly average concentration from 44.94μg/m3 to 5.78μg/m3 which assures the huge positive impact on the ambient air quality by applying bag house filter technology on APCC cement kiln

Keywords: air pollution modeling, ambient air quality, baghouse filter, cement industry

Procedia PDF Downloads 272
9567 A Bayesian Population Model to Estimate Reference Points of Bombay-Duck (Harpadon nehereus) in Bay of Bengal, Bangladesh Using CMSY and BSM

Authors: Ahmad Rabby

Abstract:

The demographic trend analyses of Bombay-duck from time series catch data using CMSY and BSM for the first time in Bangladesh. During 2000-2018, CMSY indicates average lowest production in 2000 and highest in 2018. This has been used in the estimation of prior biomass by the default rules. Possible 31030 viable trajectories for 3422 r-k pairs were found by the CMSY analysis and the final estimates for intrinsic rate of population increase (r) was 1.19 year-1 with 95% CL= 0.957-1.48 year-1. The carrying capacity(k) of Bombay-duck was 283×103 tons with 95% CL=173×103 - 464×103 tons and MSY was 84.3×103tons year-1, 95% CL=49.1×103-145×103 tons year-1. Results from Bayesian state-space implementation of the Schaefer production model (BSM) using catch & CPUE data, found catchabilitiy coefficient(q) was 1.63 ×10-6 from lcl=1.27×10-6 to ucl=2.10×10-6 and r= 1.06 year-1 with 95% CL= 0.727 - 1.55 year-1, k was 226×103 tons with 95% CL=170×103-301×103 tons and MSY was 60×103 tons year-1 with 95% CL=49.9 ×103- 72.2 ×103 tons year-1. Results for Bombay-duck fishery management based on BSM assessment from time series catch data illustrated that, Fmsy=0.531 with 95% CL =0.364 - 0.775 (if B > 1/2 Bmsy then Fmsy =0.5r); Fmsy=0.531 with 95% CL =0.364-0.775 (r and Fmsy are linearly reduced if B < 1/2Bmsy). Biomass in 2018 was 110×103 tons with 2.5th to 97.5th percentile=82.3-155×103 tons. Relative biomass (B/Bmsy) in last year was 0.972 from 2.5th percentile to 97.5th percentile=0.728 -1.37. Fishing mortality in last year was 0.738 with 2.5th-97.5th percentile=0.525-1.37. Exploitation F/Fmsy was 1.39, from 2.5th to 97.5th percentile it was 0.988 -1.86. The biological reference points of B/BMSY was smaller than 1.0, while F/FMSY was higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Bombay-duck fishery.

Keywords: biological reference points, catchability coefficient, carrying capacity, intrinsic rate of population increase

Procedia PDF Downloads 131
9566 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 218
9565 Powerful Media: Reflection of Professional Audience

Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval

Abstract:

As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.

Keywords: audience, effect, media, interaction, action laws

Procedia PDF Downloads 493
9564 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 135
9563 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study

Authors: G. Singh, H.Schuster, U. Füssel

Abstract:

The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.

Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode

Procedia PDF Downloads 190
9562 The Development of E-Commerce in Mexico: An Econometric Analysis

Authors: Alma Lucero Ortiz, Mario Gomez

Abstract:

Technological advances contribute to the well-being of humanity by allowing man to perform in a more efficient way. Technology offers tangible advantages to countries with the adoption of information technologies, communication, and the Internet in all social and productive sectors. The Internet is a networking infrastructure that allows the communication of people throughout the world, exceeding the limits of time and space. Nowadays the internet has changed the way of doing business leading to a digital economy. In this way, e-commerce has emerged as a commercial transaction conducted over the Internet. For this inquiry e-commerce is seen as a source of economic growth for the country. Thereby, these research aims to answer the research question, which are the main variables that have affected the development of e-commerce in Mexico. The research includes a period of study from 1990 to 2017. This inquiry aims to get insight on how the independent variables influence the e-commerce development. The independent variables are information infrastructure construction, urbanization level, economic level, technology level, human capital level, educational level, standards of living, and price index. The results suggest that the independent variables have an impact on development of the e-commerce in Mexico. The present study is carried out in five parts. After the introduction, in the second part, a literature review about the main qualitative and quantitative studies to measure the variables subject to the study is presented. After, an empirical study is applied through time series data, and to process the data an econometric model is performed. In the fourth part, the analysis and discussion of results are presented, and finally, some conclusions are included.

Keywords: digital economy, e-commerce, econometric model, economic growth, internet

Procedia PDF Downloads 245
9561 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic

Procedia PDF Downloads 165
9560 Student Feedback of a Major Curricular Reform Based on Course Integration and Continuous Assessment in Electrical Engineering

Authors: Heikki Valmu, Eero Kupila, Raisa Vartia

Abstract:

A major curricular reform was implemented in Metropolia UAS in 2014. The teaching was to be based on larger course entities and collaborative pedagogy. The most thorough reform was conducted in the department of electrical engineering and automation technology. It has been already shown that the reform has been extremely successful with respect to student progression and drop-out rate. The improvement of the results has been much more significant in this department compared to the other engineering departments making only minor pedagogical changes. In the beginning of the spring term of 2017, a thorough student feedback project was conducted in the department. The study consisted of thirty questions about the implementation of the curriculum, the student workload and other matters related to student satisfaction. The reply rate was more than 40%. The students were divided to four different categories: first year students [cat.1] and students of all the three different majors [categories 2-4]. These categories were found valid since all the students have the same course structure in the first two semesters after which they may freely select the major. All staff members are divided into four teams respectively. The curriculum consists of consecutive 15 credit (ECTS) courses each taught by a group of teachers (3-5). There are to be no end exams and continuous assessment is to be employed. In 2014 the different teacher groups were encouraged to employ innovatively different assessment methods within the given specs. One of these methods has been since used in categories 1 and 2. These students have to complete a number of compulsory tasks each week to pass the course and the actual grade is defined by a smaller number of tests throughout the course. The tasks vary from homework assignments, reports and laboratory exercises to larger projects and the actual smaller tests are usually organized during the regular lecture hours. The teachers of the other two majors have been pedagogically more conservative. The student progression has been better in categories 1 and 2 compared to categories 3 and 4. One of the main goals of this survey was to analyze the reasons for the difference and the assessment methods in detail besides the general student satisfaction. The results show that in the categories following more strictly the specified assessment model much more versatile assessment methods are used and the basic spirit of the new pedagogy is followed. Also, the student satisfaction is significantly better in categories 1 and 2. It may be clearly stated that continuous assessment and teacher cooperation improve the learning outcomes, student progression as well as student satisfaction. Too much academic freedom seems to lead to worse results [cat 3 and 4]. A standardized assessment model is launched for all students in autumn 2017. This model is different from the one used so far in categories 1 and 2 allowing more flexibility to teacher groups, but it will force all the teacher groups to follow the general rules in order to improve the results and the student satisfaction further.

Keywords: continuous assessment, course integration, curricular reform, student feedback

Procedia PDF Downloads 207
9559 High Performance Computing Enhancement of Agent-Based Economic Models

Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna

Abstract:

This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).

Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process

Procedia PDF Downloads 132
9558 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements

Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch

Abstract:

Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.

Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone

Procedia PDF Downloads 224
9557 Digitalization and High Audit Fees: An Empirical Study Applied to US Firms

Authors: Arpine Maghakyan

Abstract:

The purpose of this paper is to study the relationship between the level of industry digitalization and audit fees, especially, the relationship between Big 4 auditor fees and industry digitalization level. On the one hand, automation of business processes decreases internal control weakness and manual mistakes; increases work effectiveness and integrations. On the other hand, it may cause serious misstatements, high business risks or even bankruptcy, typically in early stages of automation. Incomplete automation can bring high audit risk especially if the auditor does not fully understand client’s business automation model. Higher audit risk consequently will cause higher audit fees. Higher audit fees for clients with high automation level are more highlighted in Big 4 auditor’s behavior. Using data of US firms from 2005-2015, we found that industry level digitalization is an interaction for the auditor quality on audit fees. Moreover, the choice of Big4 or non-Big4 is correlated with client’s industry digitalization level. Big4 client, which has higher digitalization level, pays more than one with low digitalization level. In addition, a high-digitalized firm that has Big 4 auditor pays higher audit fee than non-Big 4 client. We use audit fees and firm-specific variables from Audit Analytics and Compustat databases. We analyze collected data by using fixed effects regression methods and Wald tests for sensitivity check. We use fixed effects regression models for firms for determination of the connections between technology use in business and audit fees. We control for firm size, complexity, inherent risk, profitability and auditor quality. We chose fixed effects model as it makes possible to control for variables that have not or cannot be measured.

Keywords: audit fees, auditor quality, digitalization, Big4

Procedia PDF Downloads 306
9556 Allergenic Potential of Airborne Algae Isolated from Malaysia

Authors: Chu Wan-Loy, Kok Yih-Yih, Choong Siew-Ling

Abstract:

The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model.

Keywords: airborne algae, respiratory, allergenic, immune response, Malaysia

Procedia PDF Downloads 242