Search results for: unit root test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12147

Search results for: unit root test

4767 British Female Muslim Converts: An Investigation into Their De-Conversions from Islam

Authors: Mona Alyedreessy

Abstract:

This study, which is based on a qualitative study sample of thirty-four British converts from different ages, ethnicities, social classes, areas and religious backgrounds in London, investigates the common challenges, problems and abuse in the name of Islam that many British female Muslim converts experienced during their time as Muslims, which caused them to leave the faith. It is an important study, as it creates an awareness of the weaknesses found in western Muslim societies and in various Islamic educational programs that causes people to leave Islam and contribute towards its negative reputation in the media. The women in this study shared common problems regarding gender and racial discrimination, identity development, feminism, marriage, parenting, Muslim culture, isolation, extremism, belonging and practising Islam in both Muslim and non-Muslim societies with differing sacrifices and consequences that caused them to de-convert. The study argues that many of the personal, religious and social problems female Muslim converts experience are due to a lack of knowledge about Islam and their rights as Muslim women, which often results in them being vulnerable and influenced by the opinions, attitudes and actions of uneducated, abusive, non-practising and extremist Muslims. For example, it was found that young female converts in particular were often taken advantage of and manipulated into believing that many negative actions displayed by patriarchal Muslim husbands were a part of Islam. This created much confusion, especially when their husbands used specific Quran texts and Hadiths to justify their abuse, authority and attitudes that made them miserable. As a result and based on the positive experiences of some converts, the study found that obtaining a broad Islamic education that started with an intimate study of the Prophet Muhammad’s biography alongside being guided by the teachings of western Muslim scholars contributed greatly towards a more enjoyable conversion journey, as women were able to identify and avoid problematic Muslims and abuse in the name of Islam. This in turn helped to create a healthier family unit and Muslim society. Those who enjoyed being Muslims were able to create a balanced western Muslim identity by negotiating and applying their own morals and western values to their understanding of The Prophet’s biography and The Quran and integrated Islamic values into their own secular western environments that were free from foreign cultural practices. The outcomes of the study also highlight some effective modern approaches to da’wah based on the teachings of The Prophet Mohammad and other prophets for young Arab and Asian Muslims who marry, study and live among non-Muslims and converts.

Keywords: abuse, apostasy, converts, Muslims

Procedia PDF Downloads 235
4766 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 97
4765 Evaluation of Airborne Particulate Matter Early Biological Effects in Children with Micronucleus Cytome Assay: The MAPEC_LIFE Project

Authors: E. Carraro, Sa. Bonetta, Si. Bonetta, E. Ceretti, G. C. V. Viola, C. Pignata, S. Levorato, T. Salvatori, S. Vannini, V. Romanazzi, A. Carducci, G. Donzelli, T. Schilirò, A. De Donno, T. Grassi, S. Bonizzoni, A. Bonetti, G. Gilli, U. Gelatti

Abstract:

In 2013, air pollution and particulate matter were classified as carcinogenic to human by the IARC. At present, PM is Europe's most problematic pollutant in terms of harm to health, as reported by European Environmental Agency (EEA) in the EEA Technical Report on Air quality in Europe, 2015. A percentage between 17-30 of the EU urban population lives in areas where the EU air quality 24-hour limit value for PM10 is exceeded. Many studies have found a consistent association between exposure to PM and the incidence and mortality for some chronic diseases (i.e. lung cancer, cardiovascular diseases). Among the mechanisms responsible for these adverse effects, genotoxic damage is of particular concern. Children are a high-risk group in terms of the health effects of air pollution and early exposure during childhood can increase the risk of developing chronic diseases in adulthood. The MAPEC_LIFE (Monitoring Air Pollution Effects on Children for supporting public health policy) is a project founded by EU Life+ Programme (LIFE12 ENV/IT/000614) which intends to evaluate the associations between air pollution and early biological effects in children and to propose a model for estimating the global risk of early biological effects due to air pollutants and other factors in children. This work is focused on the micronuclei frequency in child buccal cells in association with airborne PM levels taking into account the influence of other factors associated with the lifestyle of children. The micronucleus test was performed in exfoliated buccal cells of 6–8 years old children from 5 Italian towns with different air pollution levels. Data on air quality during the study period were obtained from the Regional Agency for Environmental Protection. A questionnaire administered to children’s parents was used to obtain details on family socio-economic status, children health condition, exposures to other indoor and outdoor pollutants (i.e. passive smoke) and life-style, with particular reference to eating habits. During the first sampling campaign (winter 2014-15) 1315 children were recruited and sampled for Micronuclei test in buccal cells. In the sampling period the levels of the main pollutants and PM10 were, as expected, higher in the North of Italy (PM10 mean values 62 μg/m3 in Torino and 40 μg/m3 in Brescia) than in the other towns (Pisa, Perugia, Lecce). A higher Micronucleus frequency in buccal cells of children was found in Brescia (0.6/1000 cells) than in the other towns (range 0.3-0.5/1000 cells). The statistical analysis underlines a relation of the micronuclei frequency with PM concentrations, traffic level near child residence, and level of education of parents. The results suggest that, in addition to air pollution exposure, some other factors, related to lifestyle or further exposures, may influence micronucleus frequency and cellular response to air pollutants.

Keywords: air pollution, buccal cells, children, micronucleus cytome assay

Procedia PDF Downloads 257
4764 Increasing the Dialogue in Workplaces Enhances the Age-Friendly Organisational Culture and Helps Employees Face Work-Related Dilemmas

Authors: Heli Makkonen, Eini Hyppönen

Abstract:

The ageing of employees, the availability of workforce, and employees’ engagement in work are today’s challenges in the field of health care and social services, and particularly in the care of older people. Therefore, it is important to enhance both the attractiveness of the work in the field of older people’s care and the retention of employees in the field, and also to pay attention to the length of careers. The length of careers can be affected, for example, by developing an age-friendly organisational culture. Changing the organisational culture in a workplace is, however, a slow process which requires engagement from employees and enhanced dialogue between employees. This article presents an example of age-friendly organisational culture in an older people’s care unit and presents the results of the development of this organisational culture to meet the identified development challenges. In this research-based development process, cycles used in action research were applied. Three workshops were arranged for employees in a service home for older people. The workshops worked as interventions, and the employees and their manager were given several consecutive assignments to be completed between them. In addition to workshops, the employees benchmarked two other service homes. In the workshops, data was collected by observing and documenting the conversations. After that, thematic analysis was used to identify the factors connected to an age-friendly organisational culture. By analysing the data and comparing it to previous studies, some dilemmas we recognised that were hindering or enhancing the attractiveness of work and the retention of employees in this nursing home. After each intervention, the process was reflected and evaluated, and the next steps were planned. The areas of development identified in the study were related to, for example, the flexibility of work, holistic ergonomics, the physical environment at the workplace, and the workplace culture. Some of the areas of development were taken over by the work community and carried out in cooperation with e.g. occupational health care. We encouraged the work community, and the employees provided us with information about their progress. In this research project, the focus was on the development of the workplace culture and, in particular, on the development of the culture of interaction. The workshops showed employees’ attitudes and strong opinions, which can be a challenge from the point of view of the attractiveness of work and the retention of employees in the field. On the other hand, the data revealed that the work community has an interest in developing the dialogue in the work community. Enhancing the dialogue gave the employees the opportunity and resources to face even challenging dilemmas related to the attractiveness of work and the retention of employees in the field. The psychological safety was also enhanced at the same time. The results of this study are part of a broader study that aims at building a model for extending older employees’ careers.

Keywords: age-friendliness, attractiveness of work, dialogue, older people, organisational culture, workplace culture

Procedia PDF Downloads 81
4763 Currently Use Pesticides: Fate, Availability, and Effects in Soils

Authors: Lucie Bielská, Lucia Škulcová, Martina Hvězdová, Jakub Hofman, Zdeněk Šimek

Abstract:

The currently used pesticides represent a broad group of chemicals with various physicochemical and environmental properties which input has reached 2×106 tons/year and is expected to even increases. From that amount, only 1% directly interacts with the target organism while the rest represents a potential risk to the environment and human health. Despite being authorized and approved for field applications, the effects of pesticides in the environment can differ from the model scenarios due to the various pesticide-soil interactions and resulting modified fate and behavior. As such, a direct monitoring of pesticide residues and evaluation of their impact on soil biota, aquatic environment, food contamination, and human health should be performed to prevent environmental and economic damages. The present project focuses on fluvisols as they are intensively used in the agriculture but face to several environmental stressors. Fluvisols develop in the vicinity of rivers by the periodic settling of alluvial sediments and periodic interruptions to pedogenesis by flooding. As a result, fluvisols exhibit very high yields per area unit, are intensively used and loaded by pesticides. Regarding the floods, their regular contacts with surface water arise from serious concerns about the surface water contamination. In order to monitor pesticide residues and assess their environmental and biological impact within this project, 70 fluvisols were sampled over the Czech Republic and analyzed for the total and bioaccessible amounts of 40 various pesticides. For that purpose, methodologies for the pesticide extraction and analysis with liquid chromatography-mass spectrometry technique were developed and optimized. To assess the biological risks, both the earthworm bioaccumulation tests and various types of passive sampling techniques (XAD resin, Chemcatcher, and silicon rubber) were optimized and applied. These data on chemical analysis and bioavailability were combined with the results of soil analysis, including the measurement of basic physicochemical soil properties as well detailed characterization of soil organic matter with the advanced method of diffuse reflectance infrared spectrometry. The results provide unique data on the residual levels of pesticides in the Czech Republic and on the factors responsible for increased pesticide residue levels that should be included in the modeling of pesticide fate and effects.

Keywords: currently used pesticides, fluvisoils, bioavailability, Quechers, liquid-chromatography-mass spectrometry, soil properties, DRIFT analysis, pesticides

Procedia PDF Downloads 468
4762 Cultural Diversity and Challenges for Female Entrepreneurs: Empirical Study of an Emerging Economy

Authors: Amir Ikram, Qin Su, Muhammad Fiaz, Muhammad Waqas Shabbir

Abstract:

Women entrepreneurship witnessed a healthy rise in the last decade or so, and the scenario in Pakistan is not different. However female leaders are facing various, cultural, career oriented, and professional challenges. The study investigates the impact of social and industry-specific challenges on female entrepreneurship; social challenges was evaluated in terms of culture, and industry-specific challenges was measured in terms of team management and career growth. Purposive sampling was employed to collect data from 75 multicultural organizations operating in the culturally diverse and historic city of Lahore, Pakistan. Cronbach’s alpha was conducted to endorse the reliability of survey questionnaire, while correlation and regression analysis were used to test hypotheses. Industry-specific challenges were found to be more significant as compared to cultural factors. The paper also highlights the importance of female entrepreneurship for emerging economies, and suggests that bringing women to mainstream professions can lead to economic success.

Keywords: cultural challenges, emerging economy, female entrepreneurship, leadership

Procedia PDF Downloads 339
4761 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements

Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks

Abstract:

Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.

Keywords: aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing

Procedia PDF Downloads 333
4760 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry

Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng

Abstract:

The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.

Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP

Procedia PDF Downloads 444
4759 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 444
4758 Pupil with Special Educational Needs Camouflaging and Teacher Training of University Teaching Staff: Practical Reflection

Authors: Ana Mercedes Vernia Carrasco

Abstract:

The objective of this work is to reflect through the theoretical framework on the access to the university for the formation of a degree in a teacher of primary education. The University Access Tests in Spain evaluate a series of skills and competencies in writing, which leave aside the sample of another set of skills and tools that this type of test cannot evaluate. In the last years, a very much diversified student body has arrived in the classrooms of the Universities. Nowadays, talking about special education means attending to the changes that are being experienced in this area. At present, the educational model focuses on the reinforcement by the educational institutions so that they form the students according to their personal characteristics and that it is not the students that must adapt to the system. A bibliographic review plus some years of experience in training for the future teacher allows us to make an initial assessment about the lack of rigor in the tests of access to the university. In conclusion, we can say that, although we are not a specialist in the type of Special Educational Needs that can manifest the students, therefore, we understand that teacher today needs training and support to develop their teaching with the best quality possible. These teacher and student needs also imply more institutional support.

Keywords: training, special needs, didactics, music

Procedia PDF Downloads 99
4757 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 113
4756 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
4755 Supporting Densification through the Planning and Implementation of Road Infrastructure in the South African Context

Authors: K. Govender, M. Sinclair

Abstract:

This paper demonstrates a proof of concept whereby shorter trips and land use densification can be promoted through an alternative approach to planning and implementation of road infrastructure in the South African context. It briefly discusses how the development of the Compact City concept relies on a combination of promoting shorter trips and densification through a change in focus in road infrastructure provision. The methodology developed in this paper uses a traffic model to test the impact of synthesized deterrence functions on congestion locations in the road network through the assignment of traffic on the study network. The results from this study demonstrate that intelligent planning of road infrastructure can indeed promote reduced urban sprawl, increased residential density and mixed-use areas which are supported by an efficient public transport system; and reduced dependence on the freeway network with a fixed road infrastructure budget. The study has resonance for all cities where urban sprawl is seemingly unstoppable.

Keywords: compact cities, densification, road infrastructure planning, transportation modelling

Procedia PDF Downloads 181
4754 Challenging Clinical Scenario of Blood Stream Candida Infections – An Indian Experience

Authors: P. Uma Devi, S. Sujith, K. Rahul, T. S. Dipu, V. Anil Kumar , Vidya Menon

Abstract:

Introduction: Candida is an important cause of bloodstream infections (BSIs), causing significant mortality and morbidity. The epidemiology of Candida infection is also changing, mainly in relation to the number of episodes caused by species Candida non-albicans. However, in India, the true burden of candidemia is not clear. Thus, this study was conducted to evaluate the clinical characteristics, species distribution, antifungal susceptibility and outcome of candidemia at our hospital. Methodology: Between January 2012 and April 2014, adult patients with at least one positive blood culture for Candida species were identified through the microbiology laboratory database (for each patient only the first episode of candidemia was recorded). Patient data was collected by retrospective chart review of clinical characteristics including demographic data, risk factors; species distribution, resistance to antifungals and survival. Results: A total of 165 episodes of Candida BSI were identified, with 115 episodes occurring in adult patients. Most of the episodes occurred in males (69.6%). Nearly 82.6% patients were between 41 to 80 years and majority of the patients were in the intensive care unit (65.2%) at the time of diagnosis. On admission, 26.1% and 18.3% patients had pneumonia and urinary tract infection, respectively. Majority of the candidemia episodes were found in the general medicine department (23.5%) followed by gastrointestinal surgery (13.9%) and medical oncology & haematology (13%). Risk factors identified were prior hospitalization within one year (83.5%), antibiotic therapy within the last one month (64.3%), indwelling urinary catheter (63.5%), central venous catheter use (59.1%), diabetes mellitus (53%), severe sepsis (45.2%), mechanical ventilation (43.5%) and surgery (36.5%). C. tropicalis (30.4%) was the leading cause of infection followed by C. parapsilosis (28.7%) and C. albicans (13%). Other non-albicans species isolated included C. haemulonii (7.8%), C. glabrata (7%), C. famata (4.3%) and C. krusei (1.7%). Antifungal susceptibility to fluconazole was 87.9% (C. parapsilosis), 100% (C. tropicalis) and 93.3% (C. albicans). Mortality was noted in 51 patients (44.3%). Early mortality (within 7 days) was noted in 32 patients while late mortality (between 7 and 30 days) was noted in 19 patients. Conclusion: In recent years, candidemia has been flourishing in critically ill patients. Comparison of data from our own hospital from 2005 shows a doubling of the incidence. Rapid changes in the rate of infection, potential risk factors, and emergence of non-albicans Candida demand continued surveillance of this serious BSI. High index of suspicion and sensitive diagnostics are essential to improve outcomes in resource limited settings with emergence of non-albicans Candida.

Keywords: antifungal susceptibility, candida albicans, candidemia, non-albicans candida

Procedia PDF Downloads 459
4753 Love and Money: Societal Attitudes Toward Income Disparities in Age-Gap Relationships

Authors: Victoria Scarratt

Abstract:

Couples involved in age-gap relationships generally evoke negative stereotypes, opinions, and social disapproval. This research seeks to examine whether financial disparities in age-discrepant relationships cause negative attitudes in study participants. It was hypothesized that an age-gap couple (29 year difference) would receive a greater degree of societal disapproval when the couple also had a large salary gap compared to a similarly aged couple (1 year difference) with a salary gap. Additionally, there would be no significant difference between age-gap couples without a salary-gap compared to a similarly aged couple without a salary gap. To test the hypothesis, participants were given one of four scenarios regarding a couple in a romantic relationship.Then they were asked to respond to nine Likert scale questions. Results indicated that participants perceived age-gap relationships with a salary disparity to be less equitable in regard to a power imbalance between the couple and the financial and general gain that one partner will receive. A significant interaction was also detected for evoking feelings of disgust in participants and how morally correct it is for the couple to continue their relationship.

Keywords: age gap relationships, love, financial disparities, societal stigmas, relationship dynamics

Procedia PDF Downloads 117
4752 Microsimulation of Potential Crashes as a Road Safety Indicator

Authors: Vittorio Astarita, Giuseppe Guido, Vincenzo Pasquale Giofre, Alessandro Vitale

Abstract:

Traffic microsimulation has been used extensively to evaluate consequences of different traffic planning and control policies in terms of travel time delays, queues, pollutant emissions, and every other common measured performance while at the same time traffic safety has not been considered in common traffic microsimulation packages as a measure of performance for different traffic scenarios. Vehicle conflict techniques that were introduced at intersections in the early traffic researches carried out at the General Motor laboratory in the USA and in the Swedish traffic conflict manual have been applied to vehicles trajectories simulated in microscopic traffic simulators. The concept is that microsimulation can be used as a base for calculating the number of conflicts that will define the safety level of a traffic scenario. This allows engineers to identify unsafe road traffic maneuvers and helps in finding the right countermeasures that can improve safety. Unfortunately, most commonly used indicators do not consider conflicts between single vehicles and roadside obstacles and barriers. A great number of vehicle crashes take place with roadside objects or obstacles. Only some recent proposed indicators have been trying to address this issue. This paper introduces a new procedure based on the simulation of potential crash events for the evaluation of safety levels in microsimulation traffic scenarios, which takes into account also potential crashes with roadside objects and barriers. The procedure can be used to define new conflict indicators. The proposed simulation procedure generates with the random perturbation of vehicle trajectories a set of potential crashes which can be evaluated accurately in terms of DeltaV, the energy of the impact, and/or expected number of injuries or casualties. The procedure can also be applied to real trajectories giving birth to new surrogate safety performance indicators, which can be considered as “simulation-based”. The methodology and a specific safety performance indicator are described and applied to a simulated test traffic scenario. Results indicate that the procedure is able to evaluate safety levels both at the intersection level and in the presence of roadside obstacles. The procedure produces results that are expressed in the same unity of measure for both vehicle to vehicle and vehicle to roadside object conflicts. The total energy for a square meter of all generated crash can be used and is shown on the map, for the test network, after the application of a threshold to evidence the most dangerous points. Without any detailed calibration of the microsimulation model and without any calibration of the parameters of the procedure (standard values have been used), it is possible to identify dangerous points. A preliminary sensitivity analysis has shown that results are not dependent on the different energy thresholds and different parameters of the procedure. This paper introduces a specific new procedure and the implementation in the form of a software package that is able to assess road safety, also considering potential conflicts with roadside objects. Some of the principles that are at the base of this specific model are discussed. The procedure can be applied on common microsimulation packages once vehicle trajectories and the positions of roadside barriers and obstacles are known. The procedure has many calibration parameters and research efforts will have to be devoted to make confrontations with real crash data in order to obtain the best parameters that have the potential of giving an accurate evaluation of the risk of any traffic scenario.

Keywords: road safety, traffic, traffic safety, traffic simulation

Procedia PDF Downloads 139
4751 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum

Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul

Abstract:

The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.

Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum

Procedia PDF Downloads 234
4750 Evaluating the Diagnostic Accuracy of the ctDNA Methylation for Liver Cancer

Authors: Maomao Cao

Abstract:

Objective: To test the performance of ctDNA methylation for the detection of liver cancer. Methods: A total of 1233 individuals have been recruited in 2017. 15 male and 15 female samples (including 10 cases of liver cancer) were randomly selected in the present study. CfDNA was extracted by MagPure Circulating DNA Maxi Kit. The concentration of cfDNA was obtained by Qubit™ dsDNA HS Assay Kit. A pre-constructed predictive model was used to analyze methylation data and to give a predictive score for each cfDNA sample. Individuals with a predictive score greater than or equal to 80 were classified as having liver cancer. CT tests were considered the gold standard. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the diagnosis of liver cancer were calculated. Results: 9 patients were diagnosed with liver cancer according to the prediction model (with high sensitivity and threshold of 80 points), with scores of 99.2, 91.9, 96.6, 92.4, 91.3, 92.5, 96.8, 91.1, and 92.2, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value of ctDNA methylation for the diagnosis of liver cancer were 0.70, 0.90, 0.78, and 0.86, respectively. Conclusions: ctDNA methylation could be an acceptable diagnostic modality for the detection of liver cancer.

Keywords: liver cancer, ctDNA methylation, detection, diagnostic performance

Procedia PDF Downloads 158
4749 Substitution Effects of Baijiu and Cigarette Consumption on Anti-Corruption Campaigns: Evidence from China

Authors: Xiaohan Gu

Abstract:

China is perceived as one of the most politically corrupt countries in the world. The 2021 Transparency International Corruption Perceptions Index China (RPC) ranks the country in 66th place out of 180 countries in the Index, where the 180 countries are perceived to have the most corrupt public sector. This paper proposes a theory on the impact of corruption on the consumption of luxury goods. We test the theory and evaluate the effectiveness of China’s anti-corruption campaign in 2012 by conducting a difference-in-differences analysis of product-city-level alcohol and cigarette consumption from 2013 to 2022. We find that the campaign increased sales of middle-end baijiu and cigarettes but decreased sales of luxury baijiu and cigarettes, contrasting with the trend for low-end products. This substitution pattern may be attributable to decreased public spending on luxury goods. This substitution pattern is moderated by officials’ wages and anti-corruption efforts, which supports the theoretical predictions.

Keywords: substitution effect, baijiu, corruption, anti-corruption, chinese political connection

Procedia PDF Downloads 95
4748 Finite Element Modeling of the Mechanical Behavior of Municipal Solid Waste Incineration Bottom Ash with the Mohr-Coulomb Model

Authors: Le Ngoc Hung, Abriak Nor Edine, Binetruy Christophe, Benzerzour Mahfoud, Shahrour Isam, Patrice Rivard

Abstract:

Bottom ash from Municipal Solid Waste Incineration (MSWI) can be viewed as a typical granular material because these industrial by-products result from the incineration of various domestic wastes. MSWI bottom ashes are mainly used in road engineering in substitution of the traditional natural aggregates. As the characterization of their mechanical behavior is essential in order to use them, specific studies have been led over the past few years. In the first part of this paper, the mechanical behavior of MSWI bottom ash is studied with triaxial tests. After analysis of the experiment results, the simulation of triaxial tests is carried out by using the software package CESAR-LCPC. As the first approach in modeling of this new class material, the Mohr-Coulomb model was chosen to describe the evolution of material under the influence of external mechanical actions.

Keywords: bottom ash, granular material, triaxial test, mechanical behavior, simulation, Mohr-Coulomb model, CESAR-LCPC

Procedia PDF Downloads 316
4747 A Study of Students’ Perceptions of Technology in Petaling District

Authors: Ahmad Masduki Bin Selamat

Abstract:

Malaysia is becoming a developed country by the year 2020, the problem is that little is known about the perceptions and curricular values of Malaysian high school students who have taken Living Skills as a subject in the regular public school. How these students perceive technology in their daily lives, in the country’s development and in global context, is not known. The study involved form 4 students from four public schools in Petaling District. The study found that the Petaling District students’ knowledge of technology were good, where 76.6 % of them scored 50% marks and above during the achievement test. In addition, it was also found that only excellent and squatter students perceived technology education as important as a school subject, compared to those students from the urban area. It was found that students preferred business and entrepreneurship topics rather than the other Living Skills curriculum. The study suggests that students should be exposed to technology education from the early years of schooling (preschool to secondary). In addition, the acquisition of skills, the evaluation, revision and modification of the instruction as well as the curriculum should be enforced.

Keywords: technology education, living skills, curricular values, public schools

Procedia PDF Downloads 456
4746 Body Dysmorphia in Adolescent's Fixation on Cosmetic Surgeries

Authors: Noha El Toukhy

Abstract:

The ‘beauty is good” stereotype suggests that people perceive attractive people as having several positive characteristics. Likewise, an “anomalous-is-bad” stereotype is hypothesized to facilitate biases against people with anomalous or less attractive faces. Researchers integrated both into a stereotype content model, which is one of the frameworks used in this study to assess how facial anomalies influence people’s social attitudes and, specifically, people’s ratings of warmth and competence. The mind perception theory, as well as the assessment of animalistic and mechanistic dehumanization against facially anomalous people, are two further frameworks that we are using in this study. This study will test the hypothesis that people have negative attitudes towards people with facial anomalies. We also hypothesize that people have negative biases toward faces with visible differences compared to faces without such differences regardless of the specific type of anomaly, as well as that individual differences in psychological dispositions bear on the expression of the anomalous-is-bad stereotype. Using highly controlled and some never-before-used face stimuli, this pre-registered study examines whether moral character influences perceptions of attractiveness, warmth, and competence for facial anomalies.

Keywords: adolescents, attractiveness, competence, social attitudes, warmth

Procedia PDF Downloads 104
4745 Adjustment and Compensation Techniques for the Rotary Axes of Five-axis CNC Machine Tools

Authors: Tung-Hui Hsu, Wen-Yuh Jywe

Abstract:

Five-axis computer numerical control (CNC) machine tools (three linear and two rotary axes) are ideally suited to the fabrication of complex work pieces, such as dies, turbo blades, and cams. The locations of the axis average line and centerline of the rotary axes strongly influence the performance of these machines; however, techniques to compensate for eccentric error in the rotary axes remain weak. This paper proposes optical (Non-Bar) techniques capable of calibrating five-axis CNC machine tools and compensating for eccentric error in the rotary axes. This approach employs the measurement path in ISO/CD 10791-6 to determine the eccentric error in two rotary axes, for which compensatory measures can be implemented. Experimental results demonstrate that the proposed techniques can improve the performance of various five-axis CNC machine tools by more than 90%. Finally, a result of the cutting test using a B-type five-axis CNC machine tool confirmed to the usefulness of this proposed compensation technique.

Keywords: calibration, compensation, rotary axis, five-axis computer numerical control (CNC) machine tools, eccentric error, optical calibration system, ISO/CD 10791-6

Procedia PDF Downloads 388
4744 Experimental Partial Discharge Localization for Internal Short Circuits of Transformers Windings

Authors: Jalal M. Abdallah

Abstract:

This paper presents experimental studies carried out on a three phase transformer to investigate and develop the transformer models, which help in testing procedures, describing and evaluating the transformer dielectric conditions process and methods such as: the partial discharge (PD) localization in windings. The measurements are based on the transfer function methods in transformer windings by frequency response analysis (FRA). Numbers of tests conditions were applied to obtain the sensitivity frequency responses of a transformer for different type of faults simulated in a particular phase. The frequency responses were analyzed for the sensitivity of different test conditions to detect and identify the starting of small faults, which are sources of PD. In more detail, the aim is to explain applicability and sensitivity of advanced PD measurements for small short circuits and its localization. The experimental results presented in the paper will help in understanding the sensitivity of FRA measurements in detecting various types of internal winding short circuits in the transformer.

Keywords: frequency response analysis (FRA), measurements, transfer function, transformer

Procedia PDF Downloads 284
4743 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 233
4742 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 334
4741 Incorporating Polya’s Problem Solving Process: A Polytechnic Mathematics Module Case Study

Authors: Pei Chin Lim

Abstract:

School of Mathematics and Science of Singapore Polytechnic offers a Basic Mathematics module to students who did not pass GCE O-Level Additional Mathematics. These students are weaker in Mathematics. In particular, they struggle with word problems and tend to leave them blank in tests and examinations. In order to improve students’ problem-solving skills, the school redesigned the Basic Mathematics module to incorporate Polya’s problem-solving methodology. During tutorial lessons, students have to work through learning activities designed to raise their metacognitive awareness by following Polya’s problem-solving process. To assess the effectiveness of the redesign, students’ working for a challenging word problem in the mid-semester test were analyzed. Sixty-five percent of students attempted to understand the problem by making sketches. Twenty-eight percent of students went on to devise a plan and implement it. Only five percent of the students still left the question blank. These preliminary results suggest that with regular exposure to an explicit and systematic problem-solving approach, weak students’ problem-solving skills can potentially be improved.

Keywords: mathematics education, metacognition, problem solving, weak students

Procedia PDF Downloads 165
4740 The Stability of Vegetable-Based Synbiotic Drink during Storage

Authors: Camelia Vizireanu, Daniela Istrati, Alina Georgiana Profir, Rodica Mihaela Dinica

Abstract:

Globally, there is a great interest in promoting the consumption of fruit and vegetables to improve health. Due to the content of essential compounds such as antioxidants, important amounts of fruits and vegetables should be included in the daily diet. Juices are good sources of vitamins and can also help increase overall fruit and vegetable consumption. Starting from this trend (introduction into the daily diet of vegetables and fruits) as well as the desire to diversify the range of functional products for both adults and children, a fermented juice was made using probiotic microorganisms based on root vegetables, with potential beneficial effects in the diet of children, vegetarians and people with lactose intolerance. The three vegetables selected for this study, red beet, carrot, and celery bring a significant contribution to functional compounds such as carotenoids, flavonoids, betalain, vitamin B and C, minerals and fiber. By fermentation, the functional value of the vegetable juice increases due to the improved stability of these compounds. The combination of probiotic microorganisms and vegetable fibers resulted in a nutrient-rich synbiotic product. The stability of the nutritional and sensory qualities of the obtained synbiotic product has been tested throughout its shelf life. The evaluation of the physico-chemical changes of the synbiotic drink during storage confirmed that: (i) vegetable juice enriched with honey and vegetable pulp is an important source of nutritional compounds, especially carbohydrates and fiber; (ii) microwave treatment used to inhibit pathogenic microflora did not significantly affect nutritional compounds in vegetable juice, vitamin C concentration remained at baseline and beta-carotene concentration increased due to increased bioavailability; (iii) fermentation has improved the nutritional quality of vegetable juice by increasing the content of B vitamins, polyphenols and flavonoids and has a good antioxidant capacity throughout the shelf life; (iv) the FTIR and Raman spectra have highlighted the results obtained using physicochemical methods. Based on the analysis of IR absorption frequencies, the most striking bands belong to the frequencies 3330 cm⁻¹, 1636 cm⁻¹ and 1050 cm⁻¹, specific for groups of compounds such as polyphenols, carbohydrates, fatty acids, and proteins. Statistical data processing revealed a good correlation between the content of flavonoids, betalain, β-carotene, ascorbic acid and polyphenols, the fermented juice having a stable antioxidant activity. Also, principal components analysis showed that there was a negative correlation between the evolution of the concentration of B vitamins and antioxidant activity. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017 and by the Sectorial Operational Programme Human Resources Development of the Romanian Ministry of Education, Research, Youth and Sports trough the Financial Agreement POSDRU/159/1.5/S/132397 ExcelDOC.

Keywords: bioactive compounds, fermentation, synbiotic drink from vegetables, stability during storage

Procedia PDF Downloads 156
4739 Physico-Mechanical Properties of Chemically Modified Sisal Fibre Reinforced Unsaturated Polyester Composites

Authors: A. A. Salisu, M. Y. Yakasai, K. M. Aujara

Abstract:

Sisal leaves were subjected to enzymatic retting method to extract the sisal fibre. A portion of the fibre was pretreated with alkali (NaOH), and further treated with benzoyl chloride and silane treatment reagents. Both the treated and untreated Sisal fibre composites were used to fabricate the composite by hand lay-up technique using unsaturated polyester resin. Tensile, flexural, water absorption, density, thickness swelling and chemical resistant tests were conducted and evaluated on the composites. Results obtained for all the parameters showed an increase in the treated fibre compared to untreated fibre. FT-IR spectra results ascertained the inclusion of benzoyl and silane groups on the fibre surface. Scanning electron microscopy (SEM) result obtained showed variation in the morphology of the treated and untreated fibre. Chemical modification was found to improve adhesion of the fibre to the matrix, as well as physico-mechanical properties of the composites.

Keywords: chemical resistance, density test, polymer matrix sisal fibre, thickness swelling

Procedia PDF Downloads 440
4738 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images

Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam

Abstract:

The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.

Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy

Procedia PDF Downloads 84