Search results for: ultimate flexural strength capacity
690 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 244689 Material Chemistry Level Deformation and Failure in Cementitious Materials
Authors: Ram V. Mohan, John Rivas-Murillo, Ahmed Mohamed, Wayne D. Hodo
Abstract:
Cementitious materials, an excellent example of highly complex, heterogeneous material systems, are cement-based systems that include cement paste, mortar, and concrete that are heavily used in civil infrastructure; though commonly used are one of the most complex in terms of the material morphology and structure than most materials, for example, crystalline metals. Processes and features occurring at the nanometer sized morphological structures affect the performance, deformation/failure behavior at larger length scales. In addition, cementitious materials undergo chemical and morphological changes gaining strength during the transient hydration process. Hydration in cement is a very complex process creating complex microstructures and the associated molecular structures that vary with hydration. A fundamental understanding can be gained through multi-scale level modeling for the behavior and properties of cementitious materials starting from the material chemistry level atomistic scale to further explore their role and the manifested effects at larger length and engineering scales. This predictive modeling enables the understanding, and studying the influence of material chemistry level changes and nanomaterial additives on the expected resultant material characteristics and deformation behavior. Atomistic-molecular dynamic level modeling is required to couple material science to engineering mechanics. Starting at the molecular level a comprehensive description of the material’s chemistry is required to understand the fundamental properties that govern behavior occurring across each relevant length scale. Material chemistry level models and molecular dynamics modeling and simulations are employed in our work to describe the molecular-level chemistry features of calcium-silicate-hydrate (CSH), one of the key hydrated constituents of cement paste, their associated deformation and failure. The molecular level atomic structure for CSH can be represented by Jennite mineral structure. Jennite has been widely accepted by researchers and is typically used to represent the molecular structure of the CSH gel formed during the hydration of cement clinkers. This paper will focus on our recent work on the shear and compressive deformation and failure behavior of CSH represented by Jennite mineral structure that has been widely accepted by researchers and is typically used to represent the molecular structure of CSH formed during the hydration of cement clinkers. The deformation and failure behavior under shear and compression loading deformation in traditional hydrated CSH; effect of material chemistry changes on the predicted stress-strain behavior, transition from linear to non-linear behavior and identify the on-set of failure based on material chemistry structures of CSH Jennite and changes in its chemistry structure will be discussed.Keywords: cementitious materials, deformation, failure, material chemistry modeling
Procedia PDF Downloads 286688 Ethnobotanical Study, Phytochemical Screening, and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan
Authors: Randa M. T. Mohamed
Abstract:
Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation, and ethanolic extracts by maceration. Phytochemical screening was performed by thin-layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynecological problems were treated with 4 spices. Dermatological diseases were cured by 5 spices, while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated with one spice each. Other health problems like fatigue and loss of appetite, and low breast milk production were treated by 1, 3 and 2 spices, respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria, while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes, while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta-lactamase inhibitory activity. In conclusion, this study could contribute to conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effects. Detailed phytochemical and biological assays of these spices are recommended.Keywords: spices, enthnobotany, antioxidant, betalactamase inhibition
Procedia PDF Downloads 30687 Evaluation of Suspended Particles Impact on Condensation in Expanding Flow with Aerodynamics Waves
Authors: Piotr Wisniewski, Sławomir Dykas
Abstract:
Condensation has a negative impact on turbomachinery efficiency in many energy processes.In technical applications, it is often impossible to dry the working fluid at the nozzle inlet. One of the most popular working fluid is atmospheric air that always contains water in form of steam, liquid, or ice crystals. Moreover, it always contains some amount of suspended particles which influence the phase change process. It is known that the phenomena of evaporation or condensation are connected with release or absorption of latent heat, what influence the fluid physical properties and might affect the machinery efficiency therefore, the phase transition has to be taken under account. This researchpresents an attempt to evaluate the impact of solid and liquid particles suspended in the air on the expansion of moist air in a low expansion rate, i.e., with expansion rate, P≈1000s⁻¹. The numerical study supported by analytical and experimental research is presented in this work. The experimental study was carried out using an in-house experimental test rig, where nozzle was examined for different inlet air relative humidity values included in the range of 25 to 51%. The nozzle was tested for a supersonic flow as well as for flow with shock waves induced by elevated back pressure. The Schlieren photography technique and measurement of static pressure on the nozzle wall were used for qualitative identification of both condensation and shock waves. A numerical model validated against experimental data available in the literature was used for analysis of occurring flow phenomena. The analysis of the suspended particles number, diameter, and character (solid or liquid) revealed their connection with heterogeneous condensation importance. If the expansion of fluid without suspended particlesis considered, the condensation triggers so called condensation wave that appears downstream the nozzle throat. If the solid particles are considered, with increasing number of them, the condensation triggers upwind the nozzle throat, decreasing the condensation wave strength. Due to the release of latent heat during condensation, the fluid temperature and pressure increase, leading to the shift of normal shock upstream the flow. Owing relatively large diameters of the droplets created during heterogeneous condensation, they evaporate partially on the shock and continues to evaporate downstream the nozzle. If the liquid water particles are considered, due to their larger radius, their do not affect the expanding flow significantly, however might be in major importance while considering the compression phenomena as they will tend to evaporate on the shock wave. This research proves the need of further study of phase change phenomena in supersonic flow especially considering the interaction of droplets with the aerodynamic waves in the flow.Keywords: aerodynamics, computational fluid dynamics, condensation, moist air, multi-phase flows
Procedia PDF Downloads 118686 Control of an Outbreak of Vancomycin-Resistant Enterococci in a Tunisian Teaching Hospital
Authors: Hela Ghali, Sihem Ben Fredj, Mohamed Ben Rejeb, Sawssen Layouni, Salwa Khefacha, Lamine Dhidah, Houyem Said Laatiri
Abstract:
Background: Antimicrobial resistance is a growing threat to public health and motivates to improve prevention and control programs both at international (WHO) and national levels. Despite their low pathogenicity, vancomycin-resistant enterococci (VRE) are common nosocomial pathogens in several countries. The high potential for transmission of VRE between patients and the threat to send its resistance genes to other bacteria such as staphylococcus aureus already resistant to meticilin, justify strict control measures. Indeed, in Europe, the proportion of Enterococcus faecium responsible for invasive infections, varies from 1% to 35% in 2011 and less than 5% were resistant to vancomycin. In addition, it represents the second cause of urinary tract and wound infections and the third cause of nosocomial bacteremia in the United States. The nosocomial outbreaks of VRE have been mainly described in intensive care services, hematology-oncology and haemodialysis. An epidemic of VRE has affected our hospital and the objective of this work is to describe the measures put in place. Materials/Methods: Following the alert given by the service of plastic surgery concerning a patient carrier of VRE, a team of the prevention and healthcare security service (doctor + technician) made an investigation. A review of files was conducted to draw the synoptic table and the table of cases. Results: By contacting the microbiology laboratory, we have identified four other cases of VRE and who were hospitalized in Medical resuscitation department (2 cases, one of them was transferred to the Physical rehabilitation department), and Nephrology department (2 cases). The visit has allowed to detect several malfunctions in professional practice. A crisis cell has allowed to validate, coordinate and implement control measures following the recommendations of the Technical Center of nosocomial infections. In fact, the process was to technically isolate cases in their sector of hospitalization, to restrict the use of antibiotics, to strength measures of basic hygiene, and to make a screening by rectal swab for both cases and contacts (other patients and health staff). These measures have helped to control the situation and no other case has been reported for a month. 2 new cases have been detected in the intensive care unit after a month. However, these are short-term strategies, and other measures in the medium and long term should be taken into account in order to face similar outbreaks. Conclusion: The efforts to control the outbreak were not efficient since 2 new cases have been reported after a month. Therefore, a continuous monitoring in order to detect new cases earlier is crucial to minimize the dissemination of VRE.Keywords: hospitals, nosocomial infection, outbreak, vancomycin-resistant enterococci
Procedia PDF Downloads 301685 Working Conditions and Occupational Health: Analyzing the Stressing Factors in Outsourced Employees
Authors: Cledinaldo A. Dias, Isabela C. Santos, Marcus V. S. Siqueira
Abstract:
In the contemporary globalization, the competitiveness generated in the search of new markets aiming at the growth of productivity and, consequently, of profits, implies the redefinition of productive processes and new forms of work organization. As a result of this structuring, unemployment, labor force turnover and the increase in outsourcing and informal work occur. Considering the different relationships and working conditions of outsourced employees, this study aims to identify the most present stressors among outsourced service providers from a Federal Institution of Higher Education in Brazil. To reach this objective, a descriptive exploratory study with a quantitative approach was carried out. The qualitative approach was chosen to provide an in-depth analysis of the occupational conditions of outsourced workers since this method seeks to focus on the social as a world of investigated meanings and the language or speech of each subject as the object of this approach. The survey was conducted in the city of Montes Claros - Minas Gerais (Brazil) and involved eighty workers from companies hired by the institution, including armed security guards, porters, cleaners, drivers, gardeners, and administrative assistants. The choice of professionals obeyed non-probabilistic criteria for convenience or accessibility. Data collection was performed by means of a structured questionnaire composed of sixty questions, in a Likert-type frequency interval scale format, in order to identify potential organizational stressors. The results obtained evidence that the stress factors pointed out by the workers are, in most cases, a determining factor due to the low productive performance at work. Amongst the factors associated with stress, the ones that stood out most were those related to organizational communication failures, the incentive to competition, lack of expectations of professional growth, insecurity and job instability. Based on the results, the need for greater concern and organizational responsibility with the well-being and mental health of the outsourced worker and the recognition of their physical and psychological limitations, and care that goes beyond the functional capacity for the work. Specifically for the preservation of mental health, physical and quality of life, it is concluded that it is necessary for the professional to be inserted in the external world that favors it internally since this set is complemented so that the individual remains in balance and obtain satisfaction in your work.Keywords: occupational health, outsourced, organizational studies, stressors
Procedia PDF Downloads 103684 Low Frequency Ultrasonic Degassing to Reduce Void Formation in Epoxy Resin and Its Effect on the Thermo-Mechanical Properties of the Cured Polymer
Authors: A. J. Cobley, L. Krishnan
Abstract:
The demand for multi-functional lightweight materials in sectors such as automotive, aerospace, electronics is growing, and for this reason fibre-reinforced, epoxy polymer composites are being widely utilized. The fibre reinforcing material is mainly responsible for the strength and stiffness of the composites whilst the main role of the epoxy polymer matrix is to enhance the load distribution applied on the fibres as well as to protect the fibres from the effect of harmful environmental conditions. The superior properties of the fibre-reinforced composites are achieved by the best properties of both of the constituents. Although factors such as the chemical nature of the epoxy and how it is cured will have a strong influence on the properties of the epoxy matrix, the method of mixing and degassing of the resin can also have a significant impact. The production of a fibre-reinforced epoxy polymer composite will usually begin with the mixing of the epoxy pre-polymer with a hardener and accelerator. Mechanical methods of mixing are often employed for this stage but such processes naturally introduce air into the mixture, which, if it becomes entrapped, will lead to voids in the subsequent cured polymer. Therefore, degassing is normally utilised after mixing and this is often achieved by placing the epoxy resin mixture in a vacuum chamber. Although this is reasonably effective, it is another process stage and if a method of mixing could be found that, at the same time, degassed the resin mixture this would lead to shorter production times, more effective degassing and less voids in the final polymer. In this study the effect of four different methods for mixing and degassing of the pre-polymer with hardener and accelerator were investigated. The first two methods were manual stirring and magnetic stirring which were both followed by vacuum degassing. The other two techniques were ultrasonic mixing/degassing using a 40 kHz ultrasonic bath and a 20 kHz ultrasonic probe. The cured cast resin samples were examined under scanning electron microscope (SEM), optical microscope, and Image J analysis software to study morphological changes, void content and void distribution. Three point bending test and differential scanning calorimetry (DSC) were also performed to determine the thermal and mechanical properties of the cured resin. It was found that the use of the 20 kHz ultrasonic probe for mixing/degassing gave the lowest percentage voids of all the mixing methods in the study. In addition, the percentage voids found when employing a 40 kHz ultrasonic bath to mix/degas the epoxy polymer mixture was only slightly higher than when magnetic stirrer mixing followed by vacuum degassing was utilized. The effect of ultrasonic mixing/degassing on the thermal and mechanical properties of the cured resin will also be reported. The results suggest that low frequency ultrasound is an effective means of mixing/degassing a pre-polymer mixture and could enable a significant reduction in production times.Keywords: degassing, low frequency ultrasound, polymer composites, voids
Procedia PDF Downloads 296683 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina
Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava
Abstract:
The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing
Procedia PDF Downloads 119682 A Geochemical Perspective on A-Type Granites of Khanak and Devsar Areas, Haryana, India: Implications for Petrogenesis
Authors: Naresh Kumar, Radhika Sharma, A. K. Singh
Abstract:
Granites from Khanak and Devsar areas, a part of Malani Igneous Suite (MIS) were investigated for their geochemical characteristics to understand the petrogenetic aspect of the research area. Neoproterozoic rocks of MIS are well exposed in Jhunjhunu, Jodhpur, Pali, Barmer, Jalor, Jaisalmer districts of Rajasthan and Bhiwani district of Haryana and also occur at Kirana hills of Pakistan. The MIS predominantly consists of acidic volcanic with acidic plutonic (granite of various types), mafic volcanic, mafic intrusive and minor amount of pyroclasts. Based on the field and petrographical studies, 28 samples were selected and analyzed for geochemical analysis of major, trace and rare earth elements at the Wadia Institute of Himalayan Geology, Dehradun by X-Ray Fluorescence Spectrometer (XRF) and ICP-MS (Inductively Coupled Plasma- Mass Spectrometry). Granites from the studied areas are categorized as grey, green and pink. Khanak granites consist of quartz, k-feldspar, plagioclase, and biotite as essential minerals and hematite, zircon, annite, monazite & rutile as accessory minerals. In Devsar granites, plagioclase is replaced by perthite and occurs as dominantly. Geochemically, granites from Khanak and Devsar areas exhibit typical A-type granites characteristics with their enrichment in SiO2, Na2O+K2O, Fe/Mg, Rb, Zr, Y, Th, U, REE (except Eu) and significant depletion in MgO, CaO, Sr, P, Ti, Ni, Cr, V and Eu suggested about A-type affinities in Northwestern Peninsular India. The amount of heat production (HP) in green and grey granites of Devsar area varies upto 9.68 & 11.70 μWm-3 and total heat generation unit (HGU) i.e. 23.04 & 27.86 respectively. Pink granites of Khanak area display a higher enrichment of HP (16.53 μWm-3) and HGU (39.37) than the granites from Devsar area. Overall, they have much higher values of HP and HGU than the average value of continental crust (3.8 HGU), which imply a possible linear relationship among the surface heat flow and crustal heat generation in the rocks of MIS. Chondrite-normalized REE patterns show enriched LREE, moderate to strong negative Eu anomalies and more or less flat heavy REE. In primitive mantle-normalized multi-element variation diagrams, the granites show pronounced depletions in the high-field-strength elements (HFSE) Nb, Zr, Sr, P, and Ti. Geochemical characteristics (major, trace and REE) along with the use of various discrimination schemes revealed their probable correspondence to magma derived from the crustal origin by a different degree of partial melting.Keywords: A-type granite, neoproterozoic, Malani igneous suite, Khanak, Devsar
Procedia PDF Downloads 272681 Ethnobotanical Study, Phytochemical Screening and Biological Activity of Culinary Spices Commonly Used in Ommdurman, Sudan
Authors: Randa M. T. Mohamed
Abstract:
Spices have long been used as traditional ingredients in the kitchen for seasoning, coloring, aromatic and food preservative properties. Besides, spices are equally used for therapeutic purposes. The objective of this study was to survey and document the medicinal properties of spices commonly used in the Sudanese kitchen for different food preparations. Also, extracts from reported spices were screened for the presence of secondary metabolites as well as their antioxidant and beta-lactamase inhibitory properties. This study was conducted in the Rekabbya Quartier in Omdurman, Khartoum State, Sudan. Information was collected by carrying out semi-structured interviews. All informants (30) in the present study were women. Spices were purchased from Attareen shop in Omdurman. Essential oils from spices were extracted by hydrodistillation and ethanolic extracts by maceration. Phytochemical screening was performed by thin layer chromatography (TLC). The antioxidant capacity of essential oils and ethanolic extracts was investigated through TLC bioautography. Beta lactamase inhibitory activity was performed by the acidimetric test. Ethnobotany study showed that a total of 16 spices were found to treat 36 ailments belonging to 10 categories. The most frequently claimed medicinal uses were for the digestive system diseases treated by 14 spices and respiratory system diseases treated by 8 spices. Gynaecological problems were treated by 4 spices. Dermatological diseases were cured by 5 spices while infections caused by tapeworms and other microbes causing dysentery were treated by 3 spices. 4 spices were used to treat bad breath, bleeding gum and toothache. Headache, eyes infection, cardiac stimulation and epilepsy were treated by one spice each. Other health problem like fatigue and loss of appetite and low breast milk production were treated by 1, 3 and 2 spices respectively. The majority (69%, 11/16) of spices were exported from different countries like India, China, Indonesia, Ethiopia, Egypt and Nigeria while 31% (5/16) was cultivated in Sudan. Essential oils of all spices were rich in terpenes while ethanolic extracts contained variable classes of secondary metabolites. Both essential oils and ethanolic extracts of all spices exerted considerable antioxidant activity. Only one extract, Syzygium aromaticum, possessed beta lactamase inhibitory activity. In conclusion, this study could contribute in conserving information on traditional medicinal uses of spices in Sudan. Also, the results demonstrated the potential of some of these spices to exert beneficial antimicrobial and antioxidant effect. Detailed phytochemical and biological assays of these spices are recommended.Keywords: spices, ethnobotany, phytoconstituents, antioxidant, beta lactamase inhibition
Procedia PDF Downloads 79680 Mitigating the Vulnerability of Subsistence Farmers through Ground Water Optimisation
Authors: Olayemi Bakre
Abstract:
The majoritant of the South African rural populace are directly or indirectly engaged in agricultural practices for a livelihood. However, impediments such as the climate change and inadequacy of governmental support has undermined the once thriving subsistence farming communities of South Africa. Furthermore, the poor leadership in hydrology, coupled with lack of depths in skills to facilitate the understanding and acceptance of groundwater from national level to local governance has made it near impossible for subsistence farmers to optimally benefit from the groundwater beneath their feet. The 2012 drought experienced in South Africa paralysed the farming activities across several subsistence farming communities across the KwaZulu-Natal Province. To revamp subsistence farming, a variety of interventions and strategies such as the Resource Poor Farmers (RPF) and Water Allocation Reforms (WAR) have been launched by the Department of Water and Sanitation (DWS) as an agendum to galvanising the defunct subsistence farming communities of KwaZulu-Natal as well as other subsistence farming communities across South Africa. Despite the enormous resources expended on the subsistence farming communities whom often fall under the Historically Disadvantaged Individuals (HDI); indicators such as the unsustainable farming practices, poor crop yield, pitiable living condition as well as the poor standard of living, are evidential to the claim that these afore cited interventions and a host of other similar strategies indicates that these initiatives have not yield the desired result. Thus, this paper seeks to suggest practicable interventions aimed at salvaging the vulnerability of subsistence farmers within the province understudy. The study pursued a qualitative approach as the view of experts on ground water and similarly related fields from the DWS were solicited as an agendum to obtaining in-depth perspective into the current study. Some of the core challenges undermining the sustainability and growth of subsistence farming in the area of study were - inadequacy of experts (engineers, scientist, researchers) in ground water; water shortages; lack of political will as well as lack of coordination among stakeholders. As an agendum to optimising the ground water usage for subsistence farming, this paper advocates the strengthening of geohydrological skills, development of technical training capacity, interactive participation among stakeholders as well as the initiation of Participatory Action Research as an agenda to optimising the available ground water in KwaZulu-Natal which is intended to orchestrate a sustainable and viable subsistence farming practice within the province.Keywords: subsistence farming, ground water optimisation, resource poor farmers, and water allocation reforms, hydrology
Procedia PDF Downloads 246679 A Temporary Shelter Proposal for Displaced People
Authors: İrem Yetkin, Feray Maden, Seda Tosun, Yenal Akgün, Özgür Kilit, Koray Korkmaz, Gökhan Kiper, Mustafa Gündüzalp
Abstract:
Forced migration, whether caused by conflicts or other factors, frequently places individuals in vulnerable situations, necessitating immediate access to shelter. To promptly address the immediate needs of affected individuals, temporary shelters are often established. These shelters are characterized by their adaptable and functional nature, encompassing lightweight and sustainable structural systems, rapid assembly capabilities, modularity, and transportability. The shelter design is contingent upon demand, resulting in distinct phases for different structural forms. A multi-phased shelter approach covers emergency response, temporary shelter, and permanent reconstruction. Emergency shelters play a critical role in providing immediate life-saving aid, while temporary and transitional shelters, which are also called “t-shelters,” offer longer-term living environments during the recovery and rebuilding phases. Among these, temporary shelters are more extensively covered in the literature due to their diverse inhabiting functions. The roles of emergency shelters and temporary shelters are inherently separate, addressing distinct aspects of sheltering processes. Given their prolonged usage, temporary shelters are built for greater durability compared to emergency shelters. Nonetheless, inadequacies in temporary shelters can lead to challenges in ensuring habitability. Issues like non-expandable structures unsuitable for accommodating large families, the use of short-term shelters that worsen conditions, non-waterproof materials providing insufficient protection against bad weather conditions, and complex installation systems contribute to these problems. Given the aforementioned problems, there arises a need to develop adaptive shelters featuring lightweight components for ease of transport, possess the ability for rapid assembly, and utilize durable materials to withstand adverse weather conditions. In this study, first, the state-of-the-art on temporary shelters is presented. Then, an adaptive temporary shelter composed of foldable plates is proposed, which can easily be assembled and transportable. The proposed shelter is deliberated upon its movement capacity, transportability, and flexibility. This study makes a valuable contribution to the literature since it not only offers a systematic analysis of temporary shelters utilizing kinetic systems but also presents a practical solution that meets the necessary design requirements.Keywords: deployable structures, foldable plates, forced migration, temporary shelters
Procedia PDF Downloads 72678 Schema Therapy as Treatment for Adults with Autism Spectrum Disorder and Comorbid Personality Disorder: A Multiple Baseline Case Series Study Testing Cognitive-Behavioral and Experiential Interventions
Authors: Richard Vuijk, Arnoud Arntz
Abstract:
Rationale: To our knowledge treatment of personality disorder comorbidity in adults with autism spectrum disorder (ASD) is understudied and is still in its infancy: We do not know if treatment of personality disorders may be applicable to adults with ASD. In particular, it is unknown whether patients with ASD benefit from experiential techniques that are part of schema therapy developed for the treatment of personality disorders. Objective: The aim of the study is to investigate the efficacy of a schema mode focused treatment with adult clients with ASD and comorbid personality pathology (i.e. at least one personality disorder). Specifically, we investigate if they can benefit from both cognitive-behavioral, and experiential interventions. Study design: A multiple baseline case series study. Study population: Adult individuals (age > 21 years) with ASD and at least one personality disorder. Participants will be recruited from Sarr expertise center for autism in Rotterdam. The study requires 12 participants. Intervention: The treatment protocol consists of 35 weekly offered sessions, followed by 10 monthly booster sessions. A multiple baseline design will be used with baseline varying from 5 to 10 weeks, with weekly supportive sessions. After baseline, a 5-week exploration phase follows with weekly sessions during which current and past functioning, psychological symptoms, schema modes are explored, and information about the treatment will be given. Then 15 weekly sessions with cognitive-behavioral interventions and 15 weekly sessions with experiential interventions will be given. Finally, there will be a 10-month follow-up phase with monthly booster sessions. Participants are randomly assigned to baseline length, and respond weekly during treatment and monthly at follow-up on Belief Strength of negative core beliefs (by VAS), and fill out SMI, SCL-90 and SRS-A 7 times during screening procedure (i.e. before baseline), after baseline, after exploration, after cognitive and behavioral interventions, after experiential interventions, and after 5- and 10- month follow-up. The SCID-II will be administered during screening procedure (i.e. before baseline), at 5- and at 10-month follow-up. Main study parameters: The primary study parameter is negative core beliefs. Secondary study parameters include schema modes, personality disorder manifestations, psychological symptoms, and social interaction and communication. Discussion: To the best of author’s knowledge so far no study has been published on the application of schema mode focused interventions in adult patients with ASD and comorbid PD(s). This study offers the first systematic test of application of schema therapy for adults with ASD. The results of this study will provide initial evidence for the effectiveness of schema therapy in treating adults with both ASD and PD(s). The study intends to provide valuable information for future development and implementation of therapeutic interventions for adults with both ASD and PD(s).Keywords: adults, autism spectrum disorder, personality disorder, schema therapy
Procedia PDF Downloads 239677 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites
Authors: J. R. Büttler, T. Pham
Abstract:
Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite
Procedia PDF Downloads 129676 Use of Cellulosic Fibres in Double Layer Porous Asphalt
Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael
Abstract:
Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.Keywords: binder drainage, cellulosic fibres, permanent deformation, porous asphalt
Procedia PDF Downloads 226675 Always Keep in Control: The Pattern of TV Policy Changes in China
Authors: Shan Jiang
Abstract:
China is a country with a distinct cultural system. The Chinese Communist Party (CCP) is the central factor for everything, which naturally includes culture. There are quite a lot of cultural policies in China. The same goes for TV dramas. This paper traces the evolution of Chinese TV drama policy since 1986, examines the realistic situation behind the changes, and explores the structure and role of the government in shaping the process. Using historical documents and media reports, it first analyzes four key time nodes: 1986, 2003, 2012, and 2022. It shows how the policy shifts from restricting private production to opening up to public participation, from imposing one censorship to another, and from promoting some content to restricting some other area. It finds that the policy process is not simply rectilinear but rather wandering between deregulation and strengthening control. Secondly, it divides the policies into "basic" policies that establish the overall layout and more refined "strategic" policies that respond to more refined needs. It argues that the "basic" policy process is caused by China's political, economic, and cultural system reform, and then the "strategic" policy process is affected by more environmental factors, such as the government's follow-up development strategy, industrial development, technological innovation, and specific situations. Thirdly, it analysis the main body of the 104 policies from 2000 to 2021 and puts these subjects into China's power structure and cultural system, revealing that the policy issuers are all under the highest leadership of the Chinese Central Committee. Further, the paper challenges the typical description of Chinese cultural policy, which focuses on state control exclusively, identifies the forces within and outside the system that participate in or affect the policy-making process, and reveals the inter-subjective mechanism of policy change. In conclusion, the paper reveals that China's TV drama policy is under the unified leadership of the Party and the government, which greatly guarantees the consistency of the overall direction of cultural policy, that is, the right to speak firmly in the hands. The forces within the system can sometimes promote policy changes due to common development needs. However, folk discourse is only the object of control: when it breeds a certain amount of industrial space, the government will strengthen control over this space, suppress its potential "adverse effects", and instead provide protection and create conditions for the cultivation and growth of its mainstream discourse. However, the policy combination of basic policy and strategic policy, while having a strong effect and emergency capacity, also inhibits the innovation and diversification of the TV drama market. However, the state's substantial regulation will continue to exist in the future.Keywords: TV Policy, China, policy process, cultural policy, culture management
Procedia PDF Downloads 91674 Examining the Role of Farmer-Centered Participatory Action Learning in Building Sustainable Communities in Rural Haiti
Authors: Charles St. Geste, Michael Neumann, Catherine Twohig
Abstract:
Our primary aim is to examine farmer-centered participatory action learning as a tool to improve agricultural production, build resilience to climate shocks and, more broadly, advance community-driven solutions for sustainable development in rural communities across Haiti. For over six years, sixty plus farmers from Deslandes, Haiti, organized in three traditional work groups called konbits, have designed and tested low-input agroecology techniques as part of the Konbit Vanyan Kapab Pwoje Agroekoloji. The project utilizes a participatory action learning approach, emphasizing social inclusion, building on local knowledge, experiential learning, active farmer participation in trial design and evaluation, and cross-community sharing. Mixed methods were used to evaluate changes in knowledge and adoption of agroecology techniques, confidence in advancing agroecology locally, and innovation among Konbit Vanyan Kapab farmers. While skill and knowledge in application of agroecology techniques varied among individual farmers, a majority of farmers successfully adopted techniques outside of the trial farms. The use of agroecology techniques on trial and individual farms has doubled crop production in many cases. Farm income has also increased, and farmers report less damage to crops and property caused by extreme weather events. Furthermore, participatory action strategies have led to greater local self-determination and greater capacity for sustainable community development. With increased self-confidence and the knowledge and skills acquired from participating in the project, farmers prioritized sharing their successful techniques with other farmers and have developed a farmer-to-farmer training program that incorporates participatory action learning. Using adult education methods, farmers, trained as agroecology educators, are currently providing training in sustainable farming practices to farmers from five villages in three departments across Haiti. Konbit Vanyan Kapab farmers have also begun testing production of value-added food products, including a dried soup mix and tea. Key factors for success include: opportunities for farmers to actively participate in all phases of the project, group diversity, resources for application of agroecology techniques, focus on group processes and overcoming local barriers to inclusive decision-making.Keywords: agroecology, participatory action learning, rural Haiti, sustainable community development
Procedia PDF Downloads 156673 A Quality Improvement Approach for Reducing Stigma and Discrimination against Young Key Populations in the Delivery of Sexual Reproductive Health and Rights Services
Authors: Atucungwiire Rwebiita
Abstract:
Introduction: In Uganda, provision of adolescent sexual reproductive health and rights (SRHR) services for key population is still hindered by negative attitudes, stigma and discrimination (S&D) at both the community and facility levels. To address this barrier, Integrated Community Based Initiatives (ICOBI) with support from SIDA is currently implementing a quality improvement (QI) innovative approach for strengthening the capacity of key population (KP) peer leaders and health workers to deliver friendly SRHR services without S&D. Methods: Our innovative approach involves continuous mentorship and coaching of 8 QI teams at 8 health facilities and their catchment areas. Each of the 8 teams (comprised of 5 health workers and 5 KP peer leaders) are facilitated twice a month by two QI Mentors in a 2-hour mentorship session over a period of 4 months. The QI mentors were provided a 2-weeks training on QI approaches for reducing S&D against young key populations in the delivery of SRHR Services. The mentorship sessions are guided by a manual where teams base to analyse root causes of S&D and develop key performance indicators (KPIs) in the 1st and 2nd second sessions respectively. The teams then develop action plans in the 3rd session and review implementation progress on KPIs at the end of subsequent sessions. The KPIs capture information on the attitude of health workers and peer leaders and the general service delivery setting as well as clients’ experience. A dashboard is developed to routinely track the KPIs for S&D across all the supported health facilities and catchment areas. After 4 months, QI teams share documented QI best practices and tested change packages on S&D in a learning and exchange session involving all the teams. Findings: The implementation of this approach is showing positive results. So far, QI teams have already identified the root causes of S&D against key populations including: poor information among health workers, fear of a perceived risk of infection, perceived links between HIV and disreputable behaviour. Others are perceptions that HIV & STIs are divine punishment, sex work and homosexuality are against religion and cultural values. They have also noted the perception that MSM are mentally sick and a danger to everyone. Eight QI teams have developed action plans to address the root causes of S&D. Conclusion: This approach is promising, offers a novel and scalable means to implement stigma-reduction interventions in facility and community settings.Keywords: key populations, sexual reproductive health and rights, stigma and discrimination , quality improvement approach
Procedia PDF Downloads 173672 Analysis of Storm Flood in Typical Sewer Networks in High Mountain Watersheds of Colombia Based on SWMM
Authors: J. C. Hoyos, J. Zambrano Nájera
Abstract:
Increasing urbanization has led to changes in the natural dynamics of watersheds, causing problems such as increases in volumes of runoff, peak flow rates, and flow rates so that the risk of storm flooding increases. Sewerage networks designed 30 – 40 years ago don’t account for these increases in flow volumes and velocities. Besides, Andean cities with high slopes worsen the problem because velocities are even higher not allowing sewerage network work and causing cities less resilient to landscape changes and climatic change. In Latin America, especially Colombia, this is a major problem because urban population at late XX century was more than 70% is in urban areas increasing approximately in 790% in 1940-1990 period. Thus, it becomes very important to study how changes in hydrological behavior affect hydraulic capacity of sewerage networks in Andean Urban Watersheds. This research aims to determine the impact of urbanization in high-sloped urban watersheds in its hydrology. To this end it will be used as study area experimental urban watershed named Palogrande-San Luis watershed, located in the city of Manizales, Colombia. Manizales is a city in central western Colombia, located in Colombian Central Mountain Range (part of Los Andes Mountains) with an abrupt topography (average altitude is 2.153 m). The climate in Manizales is quite uniform, but due to its high altitude it presents high precipitations (1.545 mm/year average) with high humidity (83% average). Behavior of the current sewerage network will be reviewed by the hydraulic model SWMM (Storm Water Management Model). Based on SWMM the hydrological response of urban watershed selected will be evaluated under the design storm with different frequencies in the region, such as drainage effect and water-logging, overland flow on roads, etc. Cartographic information was obtained from a Geographic Information System (GIS) thematic maps of the Institute of Environmental Studies of the Universidad Nacional de Colombia and the utility Aguas de Manizales S.A. Rainfall and streamflow data is obtained from 4 rain gages and 1 stream gages. This information will allow determining critical issues on drainage systems design in urban watershed with very high slopes, and which practices will be discarded o recommended.Keywords: land cover changes, storm sewer system, urban hydrology, urban planning
Procedia PDF Downloads 261671 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec
Authors: Nairy Kechichian
Abstract:
The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.Keywords: covered bridge, wood-steel, short span, town Québécois structure
Procedia PDF Downloads 67670 Functional Dimension of Reuse: Use of Antalya Kaleiçi Traditional Dwellings as Hotel
Authors: Dicle Aydın, Süheyla Büyükşahin Sıramkaya
Abstract:
Conservation concept gained importance especially in 19th century, it found value with the change and developments lived globally. Basic values in the essence of the concept are important in the continuity of historical and cultural fabrics which have character special to them. Reuse of settlements and spaces carrying historical and cultural values in the frame of socio-cultural and socio-economic conditions is related with functional value. Functional dimension of reuse signifies interrogation of the usage potential of the building with a different aim other than its determined aim. If a building carrying historical and cultural values cannot be used with its own function because of environmental, economical, structural and functional reasons, it is advantageous to maintain its reuse from the point of environmental ecology. By giving a new function both a requirement of the society is fulfilled and a culture entity is conserved because of its functional value. In this study, functional dimension of reuse is exemplified in Antalya Kaleiçi where has a special location and importance with its natural, cultural and historical heritage characteristics. Antayla Kaleiçi settlement preserves its liveliness as a touristic urban fabric with its almost fifty thousand years of past, traditional urban form, civil architectural examples of 18th–19th century reflecting the life style of the region and monumental buildings. The civil architectural examples in the fabric have a special character formed according to Mediterranean climate with their outer sofa (open or closed), one, two or three storey, courtyards and oriels. In the study reuse of five civil architectural examples as boutique hotel by forming a whole with their environmental arrangements is investigated, it is analyzed how the spatial requirements of a boutique hotel are fulfilled in traditional dwellings. Usage of a cultural entity as a boutique hotel is evaluated under the headlines of i.functional requirement, ii.satisfactoriness of spatial dimensions, iii.functional organization. There are closed and open restaurant, kitchen, pub, lobby, administrative offices in the hotel with 70 bed capacity and 28 rooms in total. There are expansions to urban areas on second and third floors by the means of oriels in the hotel surrounded by narrow streets in three directions. This boutique hotel, formed by unique five different dwellings having similar plan scheme in traditional fabric, is different with its structure opened to outside and connected to each other by the means of courtyards, and its outside spaces which gained mobility because of the elevation differences in courtyards.Keywords: reuse, adaptive reuse, functional dimension of reuse, traditional dwellings
Procedia PDF Downloads 319669 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems
Authors: Alexander J. Severinsky
Abstract:
Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.Keywords: greenhouse radiative force, greenhouse air temperature, greenhouse thermodynamics, greenhouse historical, greenhouse radiative force on ice, greenhouse radiative force on plants, greenhouse radiative force in air
Procedia PDF Downloads 104668 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 252667 Data Quality and Associated Factors on Regular Immunization Programme at Ararso District: Somali Region- Ethiopia
Authors: Eyob Seife, Molla Alemayaehu, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew
Abstract:
Globally, immunization averts between 2 and 3 million deaths yearly, but Vaccine-Preventable Diseases still account for more in Sub-Saharan African countries and takes the majority of under-five deaths yearly, which indicates the need for consistent and on-time information to have evidence-based decision so as to save lives of these vulnerable groups. However, ensuring data of sufficient quality and promoting an information-use culture at the point of collection remains critical and challenging, especially in remote areas where the Ararso district is selected based on a hypothesis of there is a difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Ararso district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers and reporting documents were reviewed at 4 health facilities (1 health center and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio, availability and timeliness of reports. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and at the district health office. A quality index (QI), availability and timeliness of reports were assessed. Accuracy ratios formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), TT2+ and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed poor timeliness at all levels and both over-reporting and under-reporting were observed at all levels when computing the accuracy ratio of registration to health post reports found at health centers for almost all antigens verified. A quality index (QI) of all facilities also showed poor results. Most of the verified immunization data accuracy ratios were found to be relatively better than that of quality index and timeliness of reports. So attention should be given to improving the capacity of staff, timeliness of reports and quality of monitoring system components, namely recording, reporting, archiving, data analysis and using information for decisions at all levels, especially in remote and areas.Keywords: accuracy ratio, ararso district, quality of monitoring system, regular immunization program, timeliness of reports, Somali region-Ethiopia
Procedia PDF Downloads 70666 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection
Authors: Pukhrambam Helena Chanu, Janardan Yadav
Abstract:
This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.
Procedia PDF Downloads 49665 The Influence of the Variety and Harvesting Date on Haskap Composition and Anti-Diabetic Properties
Authors: Aruma Baduge Kithma Hansanee De Silva
Abstract:
Haskap (Lonicera caerulea L.), also known as blue honeysuckle, is a recently commercialized berry crop in Canada. Haskap berries are rich in polyphenols, including anthocyanins, which are known for potential health-promoting effects. Cyanidin-3-O-glucoside (C3G) is the most prominent anthocyanin of haskap berries. Recent literature reveals the efficacy of C3G in reducing the risk of type 2 diabetes (T2D), which has become an increasingly common health issue around the world. The T2D is characterized as a metabolic disorder of hyperglycemia and insulin resistance. It has been demonstrated that C3G has anti-diabetic effects in various ways, including improvement in insulin sensitivity, and inhibition of activities of carbohydrate-hydrolyzing enzymes, including alpha-amylase and alpha-glucosidase. The goal of this study was to investigate the influence of variety and harvesting date on haskap composition, biological properties, and antidiabetic properties. The polyphenolic compounds present in four commercially grown haskap cultivars, Aurora, Rebecca, Larissa and Evie among five harvesting stages (H1-H5), were extracted separately in 80% ethanol and analyzed to characterize their phenolic profiles. The haskap berries contain different types of polyphenols including flavonoids and phenolic acids. Anthocyanin is the major type of flavonoid. C3G is the most prominent type of anthocyanin, which accounts for 79% of total anthocyanin in all extracts. The variety Larissa at H5 contained the highest average C3G content, and its ethanol extract had the highest (1212.3±63.9 mg/100g FW) while, Evie at H1 contained the lowest C3G content (96.9±40.4 mg/100g FW). The average C3G content of Larissa from H1 – H5 varies from 208 – 1212 mg/100g FW. Quarcetin-3-Rutinoside (Q3Rut) is the major type of flavonol and highest is observed in Rebecca at H4 (47.81 mg/100g FW). The haskap berries also contained phenolic acids, but approximately 95% of the phenolic acids consisted of chlorogenic acid. The cultivar Larissa has a higher level of anthocyanin than the other four cultivars. The highest total phenolic content is observed in Evie at H5 (2.97±1.03 mg/g DW) while the lowest in Rebecca at H1 (1.47±0.96 mg/g DW). The antioxidant capacity of Evie at H5 was higher (14.40±2.21 µmol TE/ g DW) among other cultivars and the lowest observed in Aurora at H3 (5.69±0.34 µmol TE/ g DW). Furthermore, Larissa H5 shows the greatest inhibition of carbohydrate-hydrolyzing enzymes including alpha-glucosidase and alpha-amylase. In conclusion Larissa, at H5 demonstrated highest polyphenol composition and antidiabetic properties.Keywords: anthocyanin, cyanidin-3-O-glucoside, haskap, type 2 diabetes
Procedia PDF Downloads 456664 Influence of Genotypic Variability on Symbiotic and Agrophysiological Performances of Chickpea Under Mesorhizobium-PSB Inoculation and RP-Fertilization Likely Due to Shipping Rhizosphere Diversity
Authors: Rym Saidi, Pape Alioune Ndiaye, Mohamed Idbella, Ammar Ibnyasser, Zineb Rchiad, Issam Kadmiri Meftahi, Khalid Daoui, Adnane Bargaz
Abstract:
Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide, and the second most important food legume in Morocco. In addition, that chickpea plays a significant role in humans’ dietary consumption, it has key ecological interest in terms of biological N-fixation (BNF) having the ability to symbiotically secure 20-80% of needed. Alongside nitrogen (N), low soil phosphorus (P) availability is one of the major factors limiting chickpea growth and productivity. After nitrogen, P is the most important macronutrient for plants growth and development as well as the BNF. In the context of improving chickpea symbiotic performance, co-application of beneficial bacterial inoculants (including Mesorhizobium) and Rock P-fertilizer could boost chickpea performance and productivity, owing to increasing P-utilization efficiency and overall nutrient acquisition under P-deficiency conditions. Greenhouse experiment was conducted to evaluate the response of two chickpea varieties (Arifi “A” and Bochra “B”) to co-application of RP-fertilizer alongside Mesorhizobium and phosphate solubilizing bacteria (PSB) consortium under P-deficient soil in Morocco. Our findings demonstrate that co-applying RP50 with bacterial inoculant significantly increased NDW by 85.71% and 109.09% in A and B chickpea varieties respectively, compared to uninoculated RP-fertilized plants. Nodule Pi and leghemoglobin (LHb) contents also increased in RP-fertilized bacterial inoculants plants. Likewise, shoot and root dry weights of both chickpea varieties increased with bacterial inoculation and RP-fertilization. This is due to enhanced Pi content in shoot (282.54% and 291.42%) and root (334.30% and 408.32%) in response to RP50-Inc compared to unfertilized uninoculated plants, for A and B chickpea varieties respectively. Rhizosphere available P was also increased by 173.86% and 182.25% in response to RP50-Inc as compared to RP-fertilized uninoculated plants, with a positive correlation between soil available P and root length in inoculated plants of A. and B. chickpea varieties (R= 0.49; 0.6) respectively. Furthermore, Mesorhizobium was among the dominant genera in rhizosphere bacterial diversity of both chickpea varieties. This can be attributed to its capacity to enhance plant growth traits, with a more pronounced effect observed in B. variety. Our research demonstrates that integrated fertilization with bacterial inoculation effectively improves biological N-fixation and P nutrition, enhancing the agrophysiological performance of Moroccan chickpea varieties, particularly in restricted P-availability conditions.Keywords: chickpea varieties, bacterial consortium, inoculants, Mesorhizobium, Rock-P fertilizer, phosphorus deficiency, agrophysiological performance
Procedia PDF Downloads 19663 Research on the Optimization of Satellite Mission Scheduling
Authors: Pin-Ling Yin, Dung-Ying Lin
Abstract:
Satellites play an important role in our daily lives, from monitoring the Earth's environment and providing real-time disaster imagery to predicting extreme weather events. As technology advances and demands increase, the tasks undertaken by satellites have become increasingly complex, with more stringent resource management requirements. A common challenge in satellite mission scheduling is the limited availability of resources, including onboard memory, ground station accessibility, and satellite power. In this context, efficiently scheduling and managing the increasingly complex satellite missions under constrained resources has become a critical issue that needs to be addressed. The core of Satellite Onboard Activity Planning (SOAP) lies in optimizing the scheduling of the received tasks, arranging them on a timeline to form an executable onboard mission plan. This study aims to develop an optimization model that considers the various constraints involved in satellite mission scheduling, such as the non-overlapping execution periods for certain types of tasks, the requirement that tasks must fall within the contact range of specified types of ground stations during their execution, onboard memory capacity limits, and the collaborative constraints between different types of tasks. Specifically, this research constructs a mixed-integer programming mathematical model and solves it with a commercial optimization package. Simultaneously, as the problem size increases, the problem becomes more difficult to solve. Therefore, in this study, a heuristic algorithm has been developed to address the challenges of using commercial optimization package as the scale increases. The goal is to effectively plan satellite missions, maximizing the total number of executable tasks while considering task priorities and ensuring that tasks can be completed as early as possible without violating feasibility constraints. To verify the feasibility and effectiveness of the algorithm, test instances of various sizes were generated, and the results were validated through feedback from on-site users and compared against solutions obtained from a commercial optimization package. Numerical results show that the algorithm performs well under various scenarios, consistently meeting user requirements. The satellite mission scheduling algorithm proposed in this study can be flexibly extended to different types of satellite mission demands, achieving optimal resource allocation and enhancing the efficiency and effectiveness of satellite mission execution.Keywords: mixed-integer programming, meta-heuristics, optimization, resource management, satellite mission scheduling
Procedia PDF Downloads 25662 Exploration of in-situ Product Extraction to Increase Triterpenoid Production in Saccharomyces Cerevisiae
Authors: Mariam Dianat Sabet Gilani, Lars M. Blank, Birgitta E. Ebert
Abstract:
Plant-derived lupane-type, pentacyclic triterpenoids are biologically active compounds that are highly interesting for applications in medical, pharmaceutical, and cosmetic industries. Due to the low abundance of these valuable compounds in their natural sources, and the environmentally harmful downstream process, alternative production methods, such as microbial cell factories, are investigated. Engineered Saccharomyces cerevisiae strains, harboring the heterologous genes for betulinic acid synthesis, can produce up to 2 g L-1 triterpenoids, showing high potential for large-scale production of triterpenoids. One limitation of the microbial synthesis is the intracellular product accumulation. It not only makes cell disruption a necessary step in the downstream processing but also limits productivity and product yield per cell. To overcome these restrictions, the aim of this study is to develop an in-situ extraction method, which extracts triterpenoids into a second organic phase. Such a continuous or sequential product removal from the biomass keeps the cells in an active state and enables extended production time or biomass recycling. After screening of twelve different solvents, selected based on product solubility, biocompatibility, as well as environmental and health impact, isopropyl myristate (IPM) was chosen as a suitable solvent for in-situ product removal from S. cerevisiae. Impedance-based single-cell analysis and off-gas measurement of carbon dioxide emission showed that cell viability and physiology were not affected by the presence of IPM. Initial experiments demonstrated that after the addition of 20 vol % IPM to cultures in the stationary phase, 40 % of the total produced triterpenoids were extracted from the cells into the organic phase. In future experiments, the application of IPM in a repeated batch process will be tested, where IPM is added at the end of each batch run to remove triterpenoids from the cells, allowing the same biocatalysts to be used in several sequential batch steps. Due to its high biocompatibility, the amount of IPM added to the culture can also be increased to more than 20 vol % to extract more than 40 % triterpenoids in the organic phase, allowing the cells to produce more triterpenoids. This highlights the potential for the development of a continuous large-scale process, which allows biocatalysts to produce intracellular products continuously without the necessity of cell disruption and without limitation of the cell capacity.Keywords: betulinic acid, biocompatible solvent, in-situ extraction, isopropyl myristate, process development, secondary metabolites, triterpenoids, yeast
Procedia PDF Downloads 153661 Metalorganic Chemical Vapor Deposition Overgrowth on the Bragg Grating for Gallium Nitride Based Distributed Feedback Laser
Abstract:
Laser diodes fabricated from the III-nitride material system are emerging solutions for the next generation telecommunication systems and optical clocks based on Ca at 397nm, Rb at 420.2nm and Yb at 398.9nm combined 556 nm. Most of the applications require single longitudinal optical mode lasers, with very narrow linewidth and compact size, such as communication systems and laser cooling. In this case, the GaN based distributed feedback (DFB) laser diode is one of the most effective candidates with gratings are known to operate with narrow spectra as well as high power and efficiency. Given the wavelength range, the period of the first-order diffraction grating is under 100 nm, and the realization of such gratings is technically difficult due to the narrow line width and the high quality nitride overgrowth based on the Bragg grating. Some groups have reported GaN DFB lasers with high order distributed feedback surface gratings, which avoids the overgrowth. However, generally the strength of coupling is lower than that with Bragg grating embedded into the waveguide within the GaN laser structure by two-step-epitaxy. Therefore, the overgrowth on the grating technology need to be studied and optimized. Here we propose to fabricate the fine step shape structure of first-order grating by the nanoimprint combined inductively coupled plasma (ICP) dry etching, then carry out overgrowth high quality AlGaN film by metalorganic chemical vapor deposition (MOCVD). Then a series of gratings with different period, depths and duty ratios are designed and fabricated to study the influence of grating structure to the nano-heteroepitaxy. Moreover, we observe the nucleation and growth process by step-by-step growth to study the growth mode for nitride overgrowth on grating, under the condition that the grating period is larger than the mental migration length on the surface. The AFM images demonstrate that a smooth surface of AlGaN film is achieved with an average roughness of 0.20 nm over 3 × 3 μm2. The full width at half maximums (FWHMs) of the (002) reflections in the XRD rocking curves are 278 arcsec for the AlGaN film, and the component of the Al within the film is 8% according to the XRD mapping measurement, which is in accordance with design values. By observing the samples with growth time changing from 200s, 400s to 600s, the growth model is summarized as the follow steps: initially, the nucleation is evenly distributed on the grating structure, as the migration length of Al atoms is low; then, AlGaN growth alone with the grating top surface; finally, the AlGaN film formed by lateral growth. This work contributed to carrying out GaN DFB laser by fabricating grating and overgrowth on the nano-grating patterned substrate by wafer scale, moreover, growth dynamics had been analyzed as well.Keywords: DFB laser, MOCVD, nanoepitaxy, III-niitride
Procedia PDF Downloads 187