Search results for: low temperature stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10474

Search results for: low temperature stress

3214 Analysis of Eating Habits of Working People in Shopping Centers on a 12-Hour Basis

Authors: A. Sadowska, R. Polaniak, P. Boczarski, E. Grochowska-Niedworok

Abstract:

Working in a shopping center 12 hours a day as a shop assistant is a very demanding and stressful job, which is still underestimated. Proper eating habits, including recommended fruits, vegetables, products rich in fiber, omega-3 fatty acids, and proper hydration, can contribute to improvement in health and make shop assistants more resistant to stress. The aim of this study was to analyze the eating habits of shop assistants working in shopping centers 12 hours a day. Participant 101 sellers from Poland filled out authorial surveys. Nearly 50% of participants consumed the recommended number of 4 to 5 meals per day. There was a slight dependence between the number of meals consumed per day and the time that employers allowed for employee mealtimes. Respondents declared that they engaged in snacking, and they generally chose fruit, chocolates, and other sweets. Survey results indicated a low liquid intake, which was about 1,05 liters daily. Mineral water was chosen most often (63%) by participants. Participant fish consumption was very low in comparison with the norms, which can pose a risk of developing omega-3 fatty acids deficiency. Shop assistants stated that a change in their eating habits was necessary. Study findings suggest a moderate dependence between being on a diet and counting calories and macronutrients contained in meals. The number of meals eaten per day is correlated with the number of meals eaten at the worksite. The percentage of snacking by shop assistants was so high that it suggested a need for more nutrition education. The topic of eating habits among shop assistants should be examined using a larger group of participants. It is necessary to note a connection between nutrition and health problems.

Keywords: eating habits, work during 12 hours a day, shopping center, nutrition

Procedia PDF Downloads 126
3213 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 323
3212 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion

Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna

Abstract:

The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.

Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 253
3211 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 261
3210 An Overview on Aluminum Matrix Composites: Liquid State Processing

Authors: S. P. Jordan, G. Christian, S. P. Jeffs

Abstract:

Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.

Keywords: aluminium matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements

Procedia PDF Downloads 100
3209 Study of Some Factors Effecting on Productivity of Solar Distillers

Authors: Keshek M.H, Mohamed M.A, El-Shafey M.A

Abstract:

The aim of this research was increasing the productivity of solar distillation. In order to reach this aim, a solar distiller was created with three glass sides sloping 30o at the horizontal level, and the experiments were carried out on the solar distillation unit during the period from 24th August, 2016 till 24th May, 2017 at the Agricultural Engineering and Bio Systems Department, Faculty of Agriculture, Menoufia University. Three gap lengths were used between the water level and the inner glass cover, those were 3, 6, and 9 cm. As the result of change the gap length between the water level and the inner glass cover the total volume of basins were changed from 15.5, 13, and 11 L, respectively. The total basin volume was divided to three sections, to investigate the effect of water volume. The three water volumes were 100%, 75%, and 50%. Every section was supplied with one, two, or three heaters. The one heater power was 15 W. The results showed that, by increasing the distance between the basins edge and the inner edge of the glass cover, an increase occurs in the percentage of temperature difference with maximum value was 52% at distance 9 cm from each edge, an increase occurs in the productivity with maximum productivity was 3.3 L/m2 at distance 9 cm from each edge and an increase occurs in the efficiency with maximum efficiency was 70% at distance 9 cm from each edge.

Keywords: distillation, solar energy, still productivity, efficiency

Procedia PDF Downloads 105
3208 Irrigation and Thermal Buffering Mathematical Modeling

Authors: Yara Elborolosy, Harsho Sanyal, Joseph Cataldo

Abstract:

Two methods of irrigation, drip and sprinkler, were studied to determine the response of the Javits green roof to irrigation. The control study were dry unirrigated plots. Drip irrigation consisted of irrigation tubes running through the green roof that would water the soil throughout, and sprinkler irrigation used a sprinkler system to irrigate the green roof from above. In all cases, the irrigated roofs had increased the soil moisture, reduced temperatures of both the upper and lower surfaces, reduced growing medium temperatures and reduced air temperatures above the green roof relative to the unirrigated roof. The buffered temperature fluctuations were also studied via air conditioner energy consumption. There was a 28% reductionin air conditioner energy consumption and 33% reduction in overall energy consumption between dry and irrigated plots. Values of thermal resistance or S were determined for accuracy, and for this study, there was little change which is ideal. A series of infra-red and thermal probe measurements were used to determine temperatures in the air and sedum. It was determined that the sprinkler irrigation did a better job than the drip irrigation in keeping cooler temperatures within the green roof.

Keywords: green infrastructure, black roof, thermal buffering, irrigation

Procedia PDF Downloads 73
3207 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures

Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu

Abstract:

The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.

Keywords: electron beam irradiation, EPDM rubber, crosslinking density, gel fraction

Procedia PDF Downloads 156
3206 Assessment of Long-Term Changes in Surface Water Quality in the Almaty Water Body System

Authors: Aidana Vaikhanova

Abstract:

The article is devoted to monitoring the state of surface water quality in four water bodies, including three rivers (Kishi Almaty, Yessentai, and Ulken Almaty) and one lake (Ulken Almaty), on nine routes. Monitoring covers the period from 2013 to 2024 and also analyzes changes in water quality depending on time and factors affecting its composition. The study analyzed 31 physical and chemical parameters, including water temperature, dissolved oxygen, hydrogen index, suspended solids, transparency, salt composition ions, biogenic and organic substances (including nitrogen, phosphorus, iron, petroleum products, phenols, BPC5 and COD), as well as heavy metals. Monitoring results allow us to identify trends in the quality of water bodies and assess their suitability for use in various fields, including recreation, irrigation, industry, and water supply.

Keywords: water resources, water quality monitoring, surface waters, Kishi Rivers Almaty, Yessentai, Ulken Almaty, Ulken Lake Almaty, physical and chemical indicators, biogenic substances, heavy metals, environmental monitoring

Procedia PDF Downloads 7
3205 Non-Medical Prescription and Other Drug Use in Relation to Mental Health and World Beliefs: A Study of College Students

Authors: Sarah P. Wuebbolt, Ashlee N. Sawyer-Mays

Abstract:

Non-medical prescription and other drug (NMPOD) use has been a significant public health issue for the last few decades, with problematic use increasing among university students more recently. The current study focused on associations between NMPOD use and mental health, well-being, and world beliefs among young adults. Young adults (N=513) completed online questionnaires assessing stress, demographic characteristics, self-esteem, NMPOD use, coping mechanisms, and anxiety. A substantial portion of participants reported using cannabis (48.5%, n=249), while smaller portions of participants reported using stimulants (26.7%, n = 137), sedatives (17.2%, n=88), opioids (10.8%, n=55), and hallucinogens (14.4%, n=74). Five hierarchical logistic regressions were performed to determine the independent relationships between mental health, well-being, and world belief factors and NMPOD use for the five classes of substances. After controlling for demographic factors (age, gender, race/ethnicity, sexual orientation, and religious affiliation), depression was associated with increased non-medical stimulant, opioid, and cannabis use; coping self-efficacy was associated with increased hallucinogen use, and attendance of worship services was associated with decreased non-medical cannabis and hallucinogen use. Results suggest that depression was strongly associated with non-medical stimulant, opioid, and cannabis use, and attendance of worship services was protective against cannabis and hallucinogen use. To the best of our knowledge, this is one of the first studies to investigate the relationships between mental health, well-being, world beliefs, and NMPOD use among young adults. The present study illuminates future targets for intervention, such as increased access to mental health diagnosis and treatment and the exploration of the roles of religion and shared community in the prevention of drug use among young adults.

Keywords: cannabis, mental health, non-medical prescription and other drug use, world beliefs

Procedia PDF Downloads 66
3204 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery

Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat

Abstract:

The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs

Procedia PDF Downloads 421
3203 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 365
3202 The Using of Liquefied Petroleum Gas (LPG) on a Low Heat Loss Si Engine

Authors: Hanbey Hazar, Hakan Gul

Abstract:

In this study, Thermal Barrier Coating (TBC) application is performed in order to reduce the engine emissions. Piston, exhaust, and intake valves of a single-cylinder four-cycle gasoline engine were coated with chromium carbide (Cr3C2) at a thickness of 300 µm by using the Plasma Spray coating method which is a TBC method. Gasoline engine was converted into an LPG system. The study was conducted in 4 stages. In the first stage, the piston, exhaust, and intake valves of the gasoline engine were coated with Cr3C2. In the second stage, gasoline engine was converted into the LPG system and the emission values in this engine were recorded. In the third stage, the experiments were repeated under the same conditions with a standard (uncoated) engine and the results were recorded. In the fourth stage, data obtained from both engines were loaded on Artificial Neural Networks (ANN) and estimated values were produced for every revolution. Thus, mathematical modeling of coated and uncoated engines was performed by using ANN. While there was a slight increase in exhaust gas temperature (EGT) of LPG engine due to TBC, carbon monoxide (CO) values decreased.

Keywords: LPG fuel, thermal barrier coating, artificial neural network, mathematical modelling

Procedia PDF Downloads 429
3201 Evaluation of Antioxidant and Antimicrobial Potential of Rutin in Cheddar Cheese

Authors: Haroon Jamshaid Qazi, Namrah Wahid, Sanaullah Iqbal, Raheel Suleman

Abstract:

The aim of the current study was to evaluate the antioxidant and antimicrobial potential of Rutin in cheddar cheese. The study was conducted by adding the Rutin in the cheddar cheese in different concentrations according to experimental design, i.e., T1 (20 ppm Rutin), T2 (40 ppm Rutin), T3 (60 ppm Rutin), T4 (80 ppm Rutin). BHT was taken as a positive control at a concentration of 200 ppm, and negative control had neither Rutin nor BHT. The ripening time for cheeses was 90 days at a temperature of 8°C. The results of the various antioxidants assays (Total phenolic contents (TPC) and Antioxidant activity (AA), with storage stability tests (Anisidine value (AV) and Thiobarbituric acid value (TBARS)) performed during different storage intervals 0, 30, 60 and 90 days exhibited that AA in linoleic acid and TPC were significantly (p < 0.05) increased by the addition of rutin to cheese at all concentrations. Moreover, significant reduction in the TBARS values was also observed during the storage period. Rutin also showed a good potential to inhibit the microbial proliferation in the treated samples of cheese. There was a significant decreasing trend seen in total plate count and yeasts and molds count. The sensorial attributes i.e., color, flavor, odor and overall acceptability were increased after adding Rutin to cheddar cheese.

Keywords: cheddar cheese, Rutin, antioxidant, antimicrobial

Procedia PDF Downloads 186
3200 Synthesis of Magnetic Chitosan Beads and Its Cross-Linked Derivatives for Sorption of Zinc Ions from Water Samples of Yamuna and Hindon Rivers in India

Authors: Priti Rani, Rajni Johar, P. S. Jassal

Abstract:

The magnetic chitosan beads (MCB) were synthesized using co-precipitation method and made to react with epichlorohydrin (ECH) to get the cross-linked derivative (ECH-MCB). The beads were characterized by FTIR, SEM, EDX, and TGA. It is found that zinc metal ion sorption efficiency of ECH-MCB is significantly higher than MCB. Various factors affecting the uptake behavior of metal ions, such as pH, adsorbent dosage, contact time, and temperature effects, were investigated. The adsorption parameters fitted well with Langmuir and Freundlich isotherms. The equilibrium parameter RL values support that the adsorption (0 < RL < 1) is favorable and spontaneous process. The thermodynamic parameters confirm that it is an endothermic reaction, which results in an increase in the randomness of adsorption process. The beads were regenerated using ethylene diamine tetraacetic acid (EDTA) for further use. These beads prove as promising materials for the removal of pollutants from industrial wastewater. Water samples from Yamuna and Hindon rivers were analysed for the detection of Zn (II) ions.

Keywords: chitosan magnetic beads, EDTA, epichlorohydrin, removal efficiency

Procedia PDF Downloads 152
3199 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions

Authors: Shivam Patel, Abdullah Y. Usmani

Abstract:

Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.

Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid

Procedia PDF Downloads 235
3198 Amino Acid Responses of Wheat Cultivars under Glasshouse Drought Accurately Predict Yield-Based Drought Tolerance in the Field

Authors: Arun K. Yadav, Adam J. Carroll, Gonzalo M. Estavillo, Greg J. Rebetzke, Barry J. Pogson

Abstract:

Water limits crop productivity, so selecting for minimal yield-gap in drier environments is critical to mitigate against climate change and land-use pressures. To date, no markers measured in glasshouses have been reported to predict field-based drought tolerance. In the field, the best measure of drought tolerance is yield-gap; but this requires multisite trials that are an order of magnitude more resource intensive and can be impacted by weather variation. We investigated the responses of relative water content (RWC), stomatal conductance (gs), chlorophyll content and metabolites in flag leaves of commercial wheat (Triticum aestivum L.) cultivars to three drought treatments in the glasshouse and field environments. We observed strong genetic associations between glasshouse-based RWC, metabolites and Yield gap-based Drought Tolerance (YDT): the ratio of yield in water-limited versus well-watered conditions across 24 field environments spanning sites and seasons. Critically, RWC response to glasshouse drought was strongly associated with both YDT (r2 = 0.85, p < 8E-6) and RWC under field drought (r2 = 0.77, p < 0.05). Multiple regression analyses revealed that 98% of genetic YDT variance was explained by drought responses of four metabolites: serine, asparagine, methionine and lysine (R2 = 0.98; p < 0.01). Fitted coefficients suggested that, for given levels of serine and asparagine, stronger methionine and lysine accumulation was associated with higher YDT. Collectively, our results demonstrate that high-throughput, targeted metabolic phenotyping of glasshouse-grown plants may be an effective tool for the selection of wheat cultivars with high YDT in the field.

Keywords: drought stress, grain yield, metabolomics, stomatal conductance, wheat

Procedia PDF Downloads 267
3197 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall

Authors: Muzna Tariq, Ihtzaz Qamar

Abstract:

In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.

Keywords: computational fluid dynamics, conduction, conjugate heat transfer, convection, fluid flow, thermocouples

Procedia PDF Downloads 151
3196 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 273
3195 Investigation of the Properties of Biochar Obtained by Dry and Wet Torrefaction in a Fixed and in a Fluidized Bed

Authors: Natalia Muratova, Dmitry Klimov, Rafail Isemin, Sergey Kuzmin, Aleksandr Mikhalev, Oleg Milovanov

Abstract:

We investigated the processing of poultry litter into biochar using dry torrefaction methods (DT) in a fixed and fluidized bed of quartz sand blown with nitrogen, as well as wet torrefaction (WT) in a fluidized bed in a medium of water steam at a temperature of 300 °C. Torrefaction technology affects the duration of the heat treatment process and the characteristics of the biochar: the process of separating CO₂, CO, H₂ and CH₄ from a portion of fresh poultry litter during torrefaction in a fixed bed is completed after 2400 seconds, but in a fluidized bed — after 480 seconds. During WT in a fluidized bed of quartz sand, this process ends in 840 seconds after loading a portion of fresh litter, but in a fluidized bed of litter particles previously subjected to torrefaction, the process ends in 350 - 450 seconds. In terms of the ratio between (H/C) and (O/C), the litter obtained after DT and WT treatment corresponds to lignite. WT in a fluidized bed allows one to obtain biochar, in which the specific pore area is two times larger than the specific pore area of biochar obtained after DT in a fluidized bed. Biochar, obtained as a result of the poultry litter treatment in a fluidized bed using DT or WT method, is recommended to be used not only as a biofuel but also as an adsorbent or the soil fertilizer.

Keywords: biochar, poultry litter, dry and wet torrefaction, fixed bed, fluidized bed

Procedia PDF Downloads 159
3194 The Effect of Incorporating Animal Assisted Interventions with Trauma Focused Cognitive Behavioral Therapy

Authors: Kayla Renteria

Abstract:

This study explored the role animal-assisted psychotherapy (AAP) can play in treating Post-Traumatic Stress Disorder (PTSD) when incorporated into Trauma-informed cognitive behavioral therapy (TF-CBT). A review of the literature was performed to show how incorporating AAP could benefit TF-CBT since this treatment model often presents difficulties, such as client motivation and avoidance of the exposure element of the intervention. In addition, the fluidity of treatment goals during complex trauma cases was explored, as this issue arose in the case study. This study follows the course of treatment of a 12-year-old female presenting with symptoms of PTSD. Treatment consisted of traditional components of the TF-CBT model, with the added elements of AAP to address typical treatment obstacles in TF-CBT. A registered therapy dog worked with the subject in all sessions throughout her treatment. The therapy dog was incorporated into components such as relaxation and coping techniques, narrative therapy techniques, and psychoeducation on the cognitive triangle. Throughout the study, the client’s situation and clinical needs required the therapist to switch goals to focus on current safety and stability. The therapy dog provided support and neurophysiological benefits to the client through AAP during this shift in treatment. The client was assessed quantitatively using the Child PTSD Symptom Scale Self Report for DSM-5 (CPSS-SR-5) before and after therapy and qualitatively through a feedback form given after treatment. The participant showed improvement in CPSS-SR-V scores, and she reported that the incorporation of the therapy animal improved her therapy. The results of this study show how the use of AAP provided the client a solid, consistent relationship with the therapy dog that supported her through processing various types of traumas. Implications of the results of treatment and for future research are discussed.

Keywords: animal-assisted therapy, trauma-focused cognitive behavioral therapy, PTSD in children, trauma treatment

Procedia PDF Downloads 221
3193 An Experimental and Numerical Study on the Pultruded GFRP I-Sections Beams

Authors: Parinaz Arashnia, Farzad Hatami, Saeed Ghaffarpour Jahromi

Abstract:

Using steel in bridges’ construction because of their desired tensile and compressive strength and light weight especially in large spans was widely popular. Disadvantages of steel such as corrosion, buckling and weaknesses in high temperature and unsuitable weld could be solve with using Fibres Reinforced Polymer (FRP) profiles. The FRP is a remarkable class of composite polymers that can improve structural elements behaviour like corrosion resistance, fir resistance with good proofing and electricity and magnetic non-conductor. Nowadays except FRP reinforced bars and laminates, FRP I-beams are made and studied. The main reason for using FRP profiles is, prevent of corrosion and increase the load carrying capacity and durability, especially in large spans in bridges’ deck. In this paper, behaviour of I-section glass fibres reinforced polymer (GFRP) beam is discussed under point loads with numerical models and results has been compared and verified with experimental tests.

Keywords: glass fibres reinforced polymer, composite, I-section beam, durability, finite element method, numerical model

Procedia PDF Downloads 257
3192 The Effect of Combustion Chamber Deposits (CCD) on Homogeneous Change Compression Ignition (HCCI)

Authors: Abdulmagid A. Khattabi, Ahmed A. Hablus, Osama Ab. M. Shafah

Abstract:

The goal of this work is to understand how the thermal influence of combustion chamber deposits can be utilized to expand the operating range of HCCI combustion. In order to do this, two main objectives must first be met; tracking deposit formation trends in an HCCI engine and determining the sensitivity of HCCI combustion to CCD. This requires testing that demonstrates the differences in combustion between a clean engine and one with deposits coating the chamber. This will involve a long-term test that tracks the effects of CCD on combustion. The test will start with a clean engine. One baseline HCCI operating point is maintained for the duration of the test during which gradual combustion chamber deposit formation will occur. Combustion parameters, including heat release rates and emissions will be tracked for the duration and compared to the case of a clean engine. This work will begin by detailing the specifics of the test procedure and measurements taken throughout the test. Then a review of the effects of the gradual formation of deposits in the engine will be given.

Keywords: fuels, fuel atomization, pattern factor, alternate fuels combustion, efficiency gas turbine combustion, lean blow out, exhaust and liner wall temperature

Procedia PDF Downloads 531
3191 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 354
3190 Influence of an External Magnetic Field on the Acoustomagnetoelectric Field in a Rectangular Quantum Wire with an Infinite Potential by Using a Quantum Kinetic Equation

Authors: N. Q. Bau, N. V. Nghia

Abstract:

The acoustomagnetoelectric (AME) field in a rectangular quantum wire with an infinite potential (RQWIP) is calculated in the presence of an external magnetic field (EMF) by using the quantum kinetic equation for the distribution function of electrons system interacting with external phonons and electrons scattering with internal acoustic phonon in a RQWIP. We obtained ananalytic expression for the AME field in the RQWIP in the presence of the EMF. The dependence of AME field on the frequency of external acoustic wave, the temperature T of system, the cyclotron frequency of the EMF and the intensity of the EMF is obtained. Theoretical results for the AME field are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAl. This result has shown that the dependence of the AME field on intensity of the EMF is nonlinearly and it is many distinct maxima in the quantized magnetic region. We also compared received fields with those for normal bulk semiconductors, quantum well and quantum wire to show the difference. The influence of an EMF on AME field in a RQWIP is newly developed.

Keywords: rectangular quantum wire, acoustomagnetoelectric field, electron-phonon interaction, kinetic equation method

Procedia PDF Downloads 337
3189 Molecular Mechanism on Inflammation and Antioxidant Role of Pterocarpus Marsupiumin in Experimental Hyperglycaemia

Authors: Leelavinothan Pari , Ayyasamy Rathinam

Abstract:

Diabetes mellitus (DM) is a major and growing public health problem throughout the world. Pterocarpus marsupium (Roxb.) (Family: Fabaceae) is widely used as a traditional medicine to treat various diseases including diabetes. However, the molecular mechanism of Pterocarpus marsupium has not been investigated so far. Two fractions (2.5% and 5%) of extract from the medicinal plant, Pterocarpus marsupium (PME) were conducted in a dose dependent manner in streptozotocin (45 mg/kg b.w.) induced type 2 diabetic rats. Each fraction of PME was administered to diabetic rats intragastrically at a dose of 50, 100 and 200 mg/kg b.w for 45 days. The effective dose 200 mg/kg b.w of 5% fraction was more pronounced in reducing the levels of blood glucose (95.65 mg/dL) and glycosylated hemoglobin (HbA1c) (0.41 mg/g Hb), and increasing the plasma insulin (16.20 µU/mL) level. Moreover, PME (200 mg/kg b.w) significantly ameliorated lipid peroxidation products (thiobarbituric reactive substances, lipid hydroperoxides) enzymatic (superoxide dismutase, catalase and glutathione peroxidase) and non-enzymatic antioxidants (Vitamin C, Vitamin E and reduced glutathione) levels. The altered activities of the key enzymes of lipid metabolism along with the lipid profile in diabetic rats were significantly reverted to near normal levels by the administration of PME 5% 200 mg/kg b.w fraction. PME (200 mg/kg b.w) has the ability to reduce the inflammatory cytokines, such as TNF-α, IL-6 mRNA, as well as protein expression and apoptotic marker, such as caspase-3 enzyme in diabetic hepatic tissue. The above biochemical findings were also supported by histological studies such as improvement in pancreas and liver. Pterocarpus marsupium could effectively reduce the hyperglycemia, oxidative-stress, inflammation and hyperlipedimea in diabetic rats; hence it could be a useful drug in the management of diabetes without any side effects.

Keywords: diabetes mellitus, streptozotocin, Pterocarpus marsupium, lipid peroxidation, Antioxidants, inflammatory cytokines

Procedia PDF Downloads 377
3188 Optimization of Diluted Organic Acid Pretreatment on Rice Straw Using Response Surface Methodology

Authors: Rotchanaphan Hengaroonprasan, Malinee Sriariyanun, Prapakorn Tantayotai, Supacharee Roddecha, Kraipat Cheenkachorn

Abstract:

Lignocellolusic material is a substance that is resistant to be degraded by microorganisms or hydrolysis enzymes. To be used as materials for biofuel production, it needs pretreatment process to improve efficiency of hydrolysis. In this work, chemical pretreatments on rice straw using three diluted organic acids, including acetic acid, citric acid, oxalic acid, were optimized. Using Response Surface Methodology (RSM), the effect of three pretreatment parameters, acid concentration, treatment time, and reaction temperature, on pretreatment efficiency were statistically evaluated. The results indicated that dilute oxalic acid pretreatment led to the highest enhancement of enzymatic saccharification by commercial cellulase and yielded sugar up to 10.67 mg/ml when using 5.04% oxalic acid at 137.11 oC for 30.01 min. Compared to other acid pretreatment by acetic acid, citric acid, and hydrochloric acid, the maximum sugar yields are 7.07, 6.30, and 8.53 mg/ml, respectively. Here, it was demonstrated that organic acids can be used for pretreatment of lignocellulosic materials to enhance of hydrolysis process, which could be integrated to other applications for various biorefinery processes.

Keywords: lignocellolusic biomass, pretreatment, organic acid response surface methodology, biorefinery

Procedia PDF Downloads 656
3187 Dependence of Ionomer Loading on the Hydrogen Generation Rate of a Proton Exchange Membrane Electrolyzer

Authors: Yingjeng James Li, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies MEAs for proton exchange membrane PEM water electrolyzers were prepared by employing 175um perfluorosulfonic acid PFSA membranes as the PEM, onto which iridium oxide catalyst was coated on one side as the anode and platinum catalyst was coated on the other side as the cathode. The cathode catalyst ink was prepared so that the weight ratio of the catalyst powder to ionomer was 75:25, 70:30, 65:35, 60:40, and 55:45, respectively. Whereas, the ratio of catalyst powder to ionomer of the anode catalyst ink keeps constant at 50:50. All the MEAs have a catalyst coated area of 5cm*5cm. The test cell employs a platinum plated titanium grid as anode gas diffusion media; whereas, carbon paper was employed as the cathode gas diffusion media. The measurements of the MEA gases production rate were carried out by holding the cell voltage ranging from 1.6 to 2.8 volts at room temperature. It was found that the MEA with cathode catalyst to ionomer ratio of 65:35 gives the largest hydrogen production rate which is 2.8mL/cm2*min.

Keywords: electrolyzer, membrane electrode assembly, proton exchange membrane, ionomer, hydrogen

Procedia PDF Downloads 255
3186 Experimentally Validated Analytical Model for Thermal Analysis of Multi-Stage Depressed Collector

Authors: Vishant Gahlaut, A Mercy Latha, Sanjay Kumar Ghosh

Abstract:

Multi-stage depressed collectors (MDC) are used as an efficiency enhancement technique in traveling wave tubes the high-energy electron beam, after its interaction with the RF signal, gets velocity sorted and collected at various depressed electrodes of the MDC. The ultimate goal is to identify an optimum thermal management scheme (cooling mechanism) that could extract the heat efficiently from the electrodes. Careful thermal analysis, incorporating the cooling mechanism is required to ensure that the maximum temperature does not exceed the safe limits. A simple analytical model for quick prediction of the thermal has been developed. The model has been developed for the worst-case un-modulated DC condition, where all the thermal power is dissipated in the last electrode (typically, fourth electrode in the case of the four-stage depressed collector). It considers the thermal contact resistances at various braze joints accounting for the practical non-uniformities. Analytical results obtained from the model have been validated with simulated and experimental results.

Keywords: multi-stage depressed collector, TWTs, thermal contact resistance, thermal management

Procedia PDF Downloads 225
3185 Characterization of Onion Peels Extracts and Its Utilization in a Deep Fried Snack

Authors: Nabia Siddiqui, Tahira Mohsin Ali, Tanveer Abbas, Abid Hasnain

Abstract:

The present study proposed the use of different onion peel extracts in a South Asian snacks called ‘sew’. The polyphenols extracted from peels were initially analyzed for their antimicrobial potential and bioactive components following three different extraction systems. A relatively higher level of total phenolic content (TP), total flavonoid (TF) and antioxidant activity was observed for EWE (ethanol and water based) extracts followed by EAAE (ethanol and acetic acid) and WE (water extract) sample. Onion extracts showed ability to inhibit gram-positive as well as gram-negative bacteria. The incorporation of onion peel extracts in sew showed a marked increase in bioactive components. Besides bioactivity, sensory attributes, textural characteristics and storage stability of these snacks containing onion peel extract also significantly improved during the shelf study at ambient temperature for up to two months. Thus, these results justify the utilization of these plant polyphenols in fried snacks.

Keywords: onion peels extract, South Asian snacks, antioxidant capacity, bioactivity

Procedia PDF Downloads 246