Search results for: finite element models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10088

Search results for: finite element models

2888 Digitalization of Functional Safety - Increasing Productivity while Reducing Risks

Authors: Michael Scott, Phil Jarrell

Abstract:

Digitalization seems to be everywhere these days. So if one was to digitalize Functional Safety, what would that require: • Ability to directly use data from intelligent P&IDs / process design in a PHA / LOPA • Ability to directly use data from intelligent P&IDs in the SIS Design to support SIL Verification Calculations, SRS, C&Es, Functional Test Plans • Ability to create Unit Operation / SIF Libraries to radically reduce engineering manhours while ensuring consistency and improving quality of SIS designs • Ability to link data directly from a PHA / LOPA to SIS Designs • Ability to leverage reliability models and SRS details from SIS Designs to automatically program the Safety PLC • Ability to leverage SIS Test Plans to automatically create Safety PLC application logic Test Plans for a virtual FAT • Ability to tie real-time data from Process Historians / CMMS to assumptions in the PHA / LOPA and SIS Designs to generate leading indicators on protection layer health • Ability to flag SIS bad actors for proactive corrective actions prior to a near miss or loss of containment event What if I told you all of this was available today? This paper will highlight how the digital revolution has revolutionized the way Safety Instrumented Systems are designed, configured, operated and maintained.

Keywords: IEC 61511, safety instrumented systems, functional safety, digitalization, IIoT

Procedia PDF Downloads 187
2887 Studies on Dye Removal by Aspergillus niger Strain

Authors: M. S. Mahmoud, Samah A. Mohamed, Neama A. Sobhy

Abstract:

For color removal from wastewater containing organic contaminants, biological treatment systems have been widely used such as physical and chemical methods of flocculation, coagulation. Fungal decolorization of dye containing wastewater is one of important goal in industrial wastewater treatment. This work was aimed to characterize Aspergillus niger strain for dye removal from aqueous solution and from raw textile wastewater. Batch experiments were studied for removal of color using fungal isolate biomass under different conditions. Environmental conditions like pH, contact time, adsorbent dose and initial dye concentration were studied. Influence of the pH on the removal of azo dye by Aspergillus niger was carried out between pH 1.0 and pH 11.0. The optimum pH for red dye decolonization was 9.0. Results showed the decolorization of dye was decreased with the increase of its initial dye concentration. The adsorption data was analyzed based on the models of equilibrium isotherm (Freundlich model and Langmuir model). During the adsorption isotherm studies; dye removal was better fitted to Freundlich model. The isolated fungal biomass was characterized according to its surface area both pre and post the decolorization process by Scanning Electron Microscope (SEM) analysis. Results indicate that the isolated fungal biomass showed higher affinity for dye in decolorization process.

Keywords: biomass, biosorption, dye, isotherms

Procedia PDF Downloads 308
2886 Enhancing a Recidivism Prediction Tool with Machine Learning: Effectiveness and Algorithmic Fairness

Authors: Marzieh Karimihaghighi, Carlos Castillo

Abstract:

This work studies how Machine Learning (ML) may be used to increase the effectiveness of a criminal recidivism risk assessment tool, RisCanvi. The two key dimensions of this analysis are predictive accuracy and algorithmic fairness. ML-based prediction models obtained in this study are more accurate at predicting criminal recidivism than the manually-created formula used in RisCanvi, achieving an AUC of 0.76 and 0.73 in predicting violent and general recidivism respectively. However, the improvements are small, and it is noticed that algorithmic discrimination can easily be introduced between groups such as national vs foreigner, or young vs old. It is described how effectiveness and algorithmic fairness objectives can be balanced, applying a method in which a single error disparity in terms of generalized false positive rate is minimized, while calibration is maintained across groups. Obtained results show that this bias mitigation procedure can substantially reduce generalized false positive rate disparities across multiple groups. Based on these results, it is proposed that ML-based criminal recidivism risk prediction should not be introduced without applying algorithmic bias mitigation procedures.

Keywords: algorithmic fairness, criminal risk assessment, equalized odds, recidivism

Procedia PDF Downloads 156
2885 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome

Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis

Abstract:

Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.

Keywords: protein-interactions, machine-learning, metagenomics, microbiome

Procedia PDF Downloads 378
2884 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 152
2883 Theology and Music in the XXI. Century: An Exploratory Study of Current Interrelation

Authors: Andrzej Kesiak

Abstract:

Contemporary theology is often accused of answering questions that nobody is asking, and of employing hermetic language that has lost its communication capacity. There is also a question that theology is asking itself: how theological discourse can still be influential on other disciplines and, how to overcome the separation of theology and belief. Undoubtedly, in the wider spectrum, the theological discourse has been and will be needed. The difficulty is how to find the right model of it, the model that would help theology to enter in dialogue with culture, art, science, and politics. Presumably, there is no only one such model, theology constantly needs to seek such models, and this is probably a never-ending journey; in other words, theology should adopt a profile of ‘a restless being’ if it wants to remain influential. Music, on the other hand, has always been very close to theology; in fact, a huge part of classical music is either sacred or religious. Many composers sought inspiration in religion, liturgy, religious painting and sacred texts. This paper will argue that despite all that it seems that a proper and factual dialogue is still in a starting phase. Such a thing as a reciprocal relationship between theology and music definitely exists, but it has not yet been theoretically developed enough. Correlation between musical and theological disciplines constitutes a very broad and complex discourse. Therefore this study would rather narrow the subject and put it in a specific context: Theology and Music in the XXI. Century. This paper is a text-based study; therefore it will be based on textual-analysis with elements of the text hermeneutics.

Keywords: music, theology, reciprocal relationship between theology and music, XXI Century

Procedia PDF Downloads 165
2882 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance

Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan

Abstract:

A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.

Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection

Procedia PDF Downloads 129
2881 Mobility Management for Pedestrian Accident Predictability and Mitigation Strategies Using Multiple Linear Regression Along Tom Mboya Street in Nairobi City

Authors: Oscar Nekesa, Yoshitaka Kajita, Mio Suzuki

Abstract:

This paper aims to establish and quantify factors affecting pedestrian accidents, with essential factors that have been identified as including time of day, traffic signal time, pedestrian flow rate, pedestrian speed and traffic flux. The average of these variables has been found to be relatively large compared to other similar studies, which indicates a large variability of these factors. Using correlation analysis, it is evident that there is a high correlation between pedestrian and traffic flow rates with accident rates. Traffic signal duration and pedestrian volume are seen as salient indicators of the probability of accidents by linear regression. Green signal touchdown time predictors indicated that longer green signal touchdown times reduce the probability of accidents, whereas pedestrian traffic volume increases accident probability. The study recommends signal timings to be improved, pedestrian infrastructure enhanced, and traffic and pedestrian flows to be regulated to increase safety levels. It is recommended for future research to adopt the nonlinear models and consider other factors that might characterize the nature of pedestrian accidents.

Keywords: pedestrian accidents, green signal duration, built environment, correlation and prediction

Procedia PDF Downloads 42
2880 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 113
2879 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France

Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet

Abstract:

Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.

Keywords: air temperature, neural network model, urban heat island, urban weather generator

Procedia PDF Downloads 96
2878 Urban Resilience: Relation between COVID-19 and Urban Environment in Amman City

Authors: Layla Mujahed

Abstract:

COVID-19 is an exam for all the city’s systems. It shows many gaps in the systems such as healthcare, economic, social, and environment. This pandemic is paving for a new era, an era of technology and it has changed people’s lives, such as physical, and emotional changes, and converting communication into digitalized. The effect of COVID-19 has covered all urban city parts. COVID-19 will not be the last pandemic our cities will face. For that, more researches focus on enhancing the quality of the urban environment. This pandemic encourages a rethinking of the environment’s role, especially in cities. Cities are trying to provide the best suitable strategies and regulations to prevent the spread of COVID-19, and an example of that is Amman city. Amman has a high increment in the number of COVID-19 infected people, while it has controlled the situation for months. For that, this paper studies the relation between COVID-19 and urban environmental studies cases about cities around the world, and learns from their models to face COVID-19. In Amman, people’s behavior has changed towards public transportation and public green spaces. N­ew governmental regulations focus on increasing people’s mental awareness, supporting local businesses, and enhancing neighborhood planning that can help Amman to face any future pandemics.

Keywords: COVID-19, urban environment, urban planning, urban resilience

Procedia PDF Downloads 128
2877 Understanding Children’s Visual Attention to Personal Protective Equipment Using Eye-Tracking

Authors: Vanessa Cho, Janet Hsiao, Nigel King, Robert Anthonappa

Abstract:

Background: The personal protective equipment (PPE) requirements for health care workers (HCWs) have changed significantly during the COVID-19 pandemic. Aim: To ascertain, using eye-tracking technology, what children notice the most when seeing HCWs in various PPE. Design: A Tobii nano pro-eye-tracking camera tracked 156 children's visual attention while they viewed photographs of HCWs in various PPEs. Eye Movement analysis with Hidden Markov Models (EMHMM) was employed to analyse 624 recordings using two approaches, namely (i) data-driven where children's fixation determined the regions of interest (ROIs), and (ii) fixed ROIs where the investigators predefined the ROIs. Results: Two significant eye movement patterns, namely distributed(85.2%) and selective(14.7%), were identified(P<0.05). Most children fixated primarily on the face regardless of the different PPEs. Children fixated equally on all PPE images in the distributed pattern, while a strong preference for unmasked faces was evident in the selective pattern (P<0.01). Conclusion: Children as young as 2.5 years used a top-down visual search behaviour and demonstrated their face processing ability. Most children did not show a strong visual preference for a specific PPE, while a minority preferred PPE with distinct facial features, namely without masks and loupes.

Keywords: COVID-19, PPE, dentistry, pediatric

Procedia PDF Downloads 95
2876 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 136
2875 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 400
2874 Orthodontic Treatment Using CAD/CAM System

Authors: Cristiane C. B. Alves, Livia Eisler, Gustavo Mota, Kurt Faltin Jr., Cristina L. F. Ortolani

Abstract:

The correct positioning of the brackets is essential for the success of orthodontic treatment. Indirect bracket placing technique has the main objective of eliminating the positioning errors, which commonly occur in the technique of direct system of brackets. The objective of this study is to demonstrate that the exact positioning of the brackets is of extreme relevance for the success of the treatment. The present work shows a case report of an adult female patient who attended the clinic with the complaint of being in orthodontic treatment for more than 5 years without noticing any progress. As a result of the intra-oral clinical examination and documentation analysis, a class III malocclusion, an anterior open bite, and absence of all third molars and first upper and lower bilateral premolars were observed. For the treatment, the indirect bonding technique with self-ligating ceramic braces was applied. The preparation of the trays was done after the intraoral digital scanning and printing of models with a 3D printer. Brackets were positioned virtually, using a specialized software. After twelve months of treatment, correction of the malocclusion was observed, as well as the closing of the anterior open bite. It is concluded that the adequate and precise positioning of brackets is necessary for a successful treatment.

Keywords: anterior open-bite, CAD/CAM, orthodontics, malocclusion, angle class III

Procedia PDF Downloads 198
2873 A Model for Solid Transportation Problem with Three Hierarchical Objectives under Uncertain Environment

Authors: Wajahat Ali, Shakeel Javaid

Abstract:

In this study, we have developed a mathematical programming model for a solid transportation problem with three objective functions arranged in hierarchical order. The mathematical programming models with more than one objective function to be solved in hierarchical order is termed as a multi-level programming model. Our study explores a Multi-Level Solid Transportation Problem with Uncertain Parameters (MLSTPWU). The proposed MLSTPWU model consists of three objective functions, viz. minimization of transportation cost, minimization of total transportation time, and minimization of deterioration during transportation. These three objective functions are supposed to be solved by decision-makers at three consecutive levels. Three constraint functions are added to the model, restricting the total availability, total demand, and capacity of modes of transportation. All the parameters involved in the model are assumed to be uncertain in nature. A solution method based on fuzzy logic is also discussed to obtain the compromise solution for the proposed model. Further, a simulated numerical example is discussed to establish the efficiency and applicability of the proposed model.

Keywords: solid transportation problem, multi-level programming, uncertain variable, uncertain environment

Procedia PDF Downloads 87
2872 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.

Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona

Procedia PDF Downloads 464
2871 Financial Information and Collective Bargaining: Conflicting or Complementing

Authors: Humayun Murshed, Shibly Abdullah

Abstract:

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision-making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organizations within which the case studies are conducted.

Keywords: collective bargaining, developing countries, disclosures, financial information

Procedia PDF Downloads 474
2870 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, K. E. Shanjay, H. Sujith Kumar, N. A. Abhilash, D. Aswin Ram, V. R. Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: external aerodynamics, external flow choking, race car aerodynamics, wing in ground effect

Procedia PDF Downloads 360
2869 Fractal: Formative Reflective Assessment and Critical Thinking in Learning

Authors: Yannis Stavrakakis, Damian Gordon

Abstract:

Critical Thinking and Reflective Practice are two vital skills that students undertaking postgraduate studies should ideally possess. To help students develop and enhance these skills, this research developed several authentic activities to be undertaken as part of a module that is delivered early in a taught MSc to enhance these skills. One of the challenges of these topics is that they are somewhat ill-defined in terms of precisely what they mean, and also, there is no clear route to operationalizing the teaching of these skills. This research focuses on identifying suitable models of these skills and delivering them in a manner that is both clear and highly motivating. To achieve this, a class of 22 Master's students was divided into two groups, one was provided with a presentation and checklist about critical thinking skills, and the other group was given the same materials on the reflective practice process. The groups were given two scenarios each to analyze using their respective checklists and were asked to present their outcomes to each other and give peer review. The results were coded and compared, and key differences were noted, including the fact that the Critical Thinking outcomes were more future-focused, and the Reflective Practice outcomes were more past-focused and present-focused, as well as the fact that the Reflective Practice process generated a significantly wider range of perspectives on the scenarios.

Keywords: critical thinking, ethical scenarios, formative assessment, reflective practice

Procedia PDF Downloads 73
2868 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 38
2867 Deliberative Democracy: As an Approach for Analyzing Gezi Movement Public Forums

Authors: Çisem Gündüz Arabacı

Abstract:

Deliberation has been seen one of the most important components of democratic ideals especially since liberal democratic attributions have been under fire. Deliberative democracy advocates that people should participate in collective decision-making processes by other mechanisms rather than conventional ones in order to reach legitimate decisions. Deliberative democratic theory makes emphasis on deliberative communication between people and encourages them not to merely express their political opinions (through surveys and referendum) but to form those opinions through public debates. This paper focuses on deliberative democratic visions of Gezi Park Public Forums by taking deliberative democracy as theoretical basis and examining Gezi Park Public Forums in the light of core elements of deliberative democracy. Gezi Movement started on 28 May 2013 in İstanbul as a reaction to local government's revision plans for Taksim Gezi Park, spread throughout the country and created new zones in public sphere which are called Public Park Forums. During the summer of 2013, especially in İstanbul but also in other cities, people gathered in public parks, discussed and took collective decisions concerning actions which they will take. It is worth to mention that since 3 and half years some Public Park Forums are still continuing their meetings regularly in city of İzmir. This paper analyzes four 'Public Park Forums' in İzmir which are called Bornova Public Forum; Karşıyaka Public Forum, Foça Public Forum and Güzelyalı Public Forum. These Forums are under investigation in terms of their understanding of democracy and the values that support that understanding. Participant observation and in-depth interview methods are being used as research methods. Core element of deliberative democracy are being collected under three main category: common interest versus private interest, membership, rational argument and these values are being questioning within one of each Forum in order to draw an overall picture and also make comparison between them. Discourse analysis is being used in order to examine empirical data and paper aims to reveal how participants of public forums perceive deliberative democratic values and whether they give weight to these values.

Keywords: deliberative democracy, Gezi Park movement, public forums, social movement

Procedia PDF Downloads 322
2866 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation

Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki

Abstract:

Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.

Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity

Procedia PDF Downloads 156
2865 A Comprehensive Review of Electronic Health Records Implementation in Healthcare

Authors: Lateefat Amao, Misagh Faezipour

Abstract:

Implementing electronic health records (EHR) in healthcare is a pivotal transition aimed at digitizing and optimizing patient health information management. The expectations associated with this transition are high, even towards other health information systems (HIS) and health technology. This multifaceted process involves careful planning and execution to improve the quality and efficiency of patient care, especially as healthcare technology is a sensitive niche. Key considerations include a thorough needs assessment, judicious vendor selection, robust infrastructure development, and training and adaptation of healthcare professionals. Comprehensive training programs, data migration from legacy systems and models, interoperability, as well as security and regulatory compliance are imperative for healthcare staff to navigate EHR systems adeptly. The purpose of this work is to offer a comprehensive review of the literature on EHR implementation. It explores the impact of this health technology on health practices, highlights challenges and barriers to its successful utility, and offers practical strategies that can impact its success in healthcare. This paper provides a thorough review of studies on the adoption of EHRs, emphasizing the wide range of experiences and results connected to EHR use in the medical field, especially across different types of healthcare organizations.

Keywords: healthcare, electronic health records, EHR implementation, patient care, interoperability

Procedia PDF Downloads 85
2864 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 112
2863 Identifying Necessary Words for Understanding Academic Articles in English as a Second or a Foreign Language

Authors: Stephen Wagman

Abstract:

This paper identifies three common structures in English sentences that are important for understanding academic texts, regardless of the characteristics or background of the readers or whether they are reading English as a second or a foreign language. Adapting a model from the Humanities, the explication of texts used in literary studies, the paper analyses sample sentences to reveal structures that enable the reader not only to decide which words are necessary for understanding the main ideas but to make the decision without knowing the meaning of the words. By their very syntax noun structures point to the key word for understanding them. As a rule, the key noun is followed by easily identifiable prepositions, relative pronouns, or verbs and preceded by single adjectives. With few exceptions, the modifiers are unnecessary for understanding the idea of the sentence. In addition, sentences are often structured by lists in which the items frequently consist of parallel groups of words. The principle of a list is that all the items are similar in meaning and it is not necessary to understand all of the items to understand the point of the list. This principle is especially important when the items are long or there is more than one list in the same sentence. The similarity in meaning of these items enables readers to reduce sentences that are hard to grasp to an understandable core without excessive use of a dictionary. Finally, the idea of subordination and the identification of the subordinate parts of sentences through connecting words makes it possible for readers to focus on main ideas without having to sift through the less important and more numerous secondary structures. Sometimes a main idea requires a subordinate one to complete its meaning, but usually, subordinate ideas are unnecessary for understanding the main point of the sentence and its part in the development of the argument from sentence to sentence. Moreover, the connecting words themselves indicate the functions of the subordinate structures. These most frequently show similarity and difference or reasons and results. Recognition of all of these structures can not only enable students to read more efficiently but to focus their attention on the development of the argument and this rather than a multitude of unknown vocabulary items, the repetition in lists, or the subordination in sentences are the one necessary element for comprehension of academic articles.

Keywords: development of the argument, lists, noun structures, subordination

Procedia PDF Downloads 249
2862 Effective Design Factors for Bicycle-Friendly Streets

Authors: Zohreh Asadi-Shekari, Mehdi Moeinaddini, Muhammad Zaly Shah, Amran Hamzah

Abstract:

Bicycle level of service (BLOS) is a measure for evaluating street conditions for cyclists. Currently, various methods are proposed for BLOS. These analytical methods however have some drawbacks: they usually assume cyclists as users that can share street facilities with motorized vehicles, it is not easy to link them to design process and they are not easy to follow. In addition, they only support a narrow range of cycling facilities and may not be applicable for all situations. Along this, the current paper introduces various effective design factors for bicycle-friendly streets. This study considers cyclists as users of streets who have special needs and facilities. Therefore, the key factors that influence BLOS based on different cycling facilities that are proposed by developed guidelines and literature are identified. The combination of these factors presents a complete set of effective design factors for bicycle-friendly streets. In addition, the weight of each factor in existing BLOS models is estimated and these effective factors are ranked based on these weights. These factors and their weights can be used in further studies to propose special bicycle-friendly street design model.

Keywords: bicycle level of service, bicycle-friendly streets, cycling facilities, rating system, urban streets

Procedia PDF Downloads 489
2861 Customer Relationship Management: An Essential Tool for Librarians

Authors: Pushkar Lal Sharma, Sanjana Singh, Umesh Kumar Sahu

Abstract:

This paper helps to understand the need of Customer Relationship Management in Libraries and why Librarians should implement the marketing concept of Customer Relationship Management in their libraries. As like any industry, libraries too face growing challenges to continuously meet customer expectations, and attract and retain users in light of overflowing competition. The ability to understand customers, build relationships and market diverse services is essential when considering ways to expand service offerings and improve Return on Investment. Since Library is service oriented Enterprise, hence the Customer/User/ Reader/Patron are the most important element of Library & Information System to whom and for whom library offers various services. How to provide better and most efficient services to its users is the main concern of every Library & Information centre in the present era. The basic difference between Business Enterprise and Library Information System is that ‘in Business System ‘the efficiency is measured in terms of ’profit’ or ‘monetary gains’; whereas in a Library & Information System, the efficiency is measured in terms of ‘services’ and therefore the goals that are set in Business Enterprise are’ profit oriented’ whereas goals set in the Library & Information Centre are ‘Service-oriented’. With the explosion of information and advancement of technology readers have so many choices to get information rather than visiting a library. Everything is available at the click of a mouse, library customers have become more knowledgeable and demanding in an era marked by abundance of information resources and services. With this explosion of information in every field of knowledge and choice in selection of service, satisfying user has become a challenge now a day for libraries. Accordingly, Libraries have to build good relationship with its users by adopting Customer relationship Management. CRM refers to the methods and tools which help an organization to manage its relationship with its customers in an organized way. The Customer Relationship Management (CRM) combines business strategy and technology to identify, acquire and retain good customer relationship. The goal of CRM is to optimize management of customer information needs & interests and increase customer satisfaction and loyalty. Implementing CRM in Libraries can improve customer data and process management, customer loyalty, retention and satisfaction.

Keywords: customer relationship management, CRM, CRM tools, customer satisfaction

Procedia PDF Downloads 74
2860 The Gender Digital Divide in Education: The Case of Students from Rural Area from Republic of Moldova

Authors: Bărbuță Alina

Abstract:

The inter-causal relationship between social inequalities and the digital divide raises the relation issue of gender and information and communication technologies (ICT) - a key element in achieving sustainable development. In preparing generations as future digital citizens and for active socio-economic participation, ICT plays a key role in respecting gender equality. Although several studies over the years have shown that gender plays an important role in digital exclusion, in recent years, many studies with a focus on economically developed or developing countries identify an improvement in these aspects and a gap narrowing. By measuring students' digital competencies level, this paper aims to identify and analyse the existing gender digital inequalities among students. Our analyses are based on a sample of 1526 middle school students residing in rural areas from Republic of Moldova (54.2% girls, mean age 14,00, SD = 1.02). During the online survey they filled in a questionnaire adapted from the (yDSI) ”The Youth Digital Skills Indicator”. The instrument measures the level of five digital competence areas indicated in The European Digital Competence Framework (DigiCom 2.3.). Our results, based on t-test, indicate that depending on gender, there are no statistically significant differences regarding the levels of digital skills in 3 areas: Information navigation and processing; Communication and interaction; Problem solving. However, were identified significant differences in the level of digital skills in the area of ”Digital content creation” [t(1425) = 4.20, p = .000] and ”Safety” [t(1421) = 2.49, p = .000], with higher scores recorded by girls. Our results contradicts the general stereotype regarding the low level of digital competence among girls, in our sample girls scores being on pear with boys and even bigger in knowledge related to digital content creation and online safety skills. Additional investigations related to boys competence on digital safety are necessary as the implication of their low scores on this dimension may suggest boys exposure to digital threats.

Keywords: digital divide, education, gender digital divide, digital literacy, remote learning

Procedia PDF Downloads 106
2859 Neurostatistics of Cognitive Functions

Authors: Ajay Panchal

Abstract:

This research introduces the Law of Activity Dominancy (LAD), a foundational theory in neuroscience postulating that simultaneous brain-regulated activities cannot share identical brain wave frequencies. The study explores the LAD through comprehensive observational and statistical analyses, illustrating its applicability across all cognitive functions. Utilizing brain wave frequency data across diverse scenarios, the research derives probabilistic models to predict the likelihood of concurrent cognitive activities. The LAD theory's predictive power extends to all neurological conditions, offering insights into Alzheimer's disease, major depressive disorder, epilepsy, schizophrenia, anxiety disorders, OCD, ASD, ADHD etc... By analyzing EEG patterns, the research demonstrates how overlapping brain wave frequencies disrupt specific cognitive and motor functions, aligning with clinical observations. This study also outlines the statistical properties of the LAD, presenting equations to calculate activity probabilities and emphasizing its utility in personalizing cognitive assessments, early disease detection, tailored therapies, optimizing cognitive performance etc... By bridging theoretical neuroscience with practical applications, the research establishes the LAD as a pivotal framework for understanding and enhancing human cognitive functions.

Keywords: Ajay Panchal, cognitive neuroscience, computational neuroscience, theoretical neuroscience

Procedia PDF Downloads 12