Search results for: hybrid learning
1558 BIM Data and Digital Twin Framework: Preserving the Past and Predicting the Future
Authors: Mazharuddin Syed Ahmed
Abstract:
This research presents a framework used to develop The Ara Polytechnic College of Architecture Studies building “Kahukura” which is Green Building certified. This framework integrates the development of a smart building digital twin by utilizing Building Information Modelling (BIM) and its BIM maturity levels, including Levels of Development (LOD), eight dimensions of BIM, Heritage-BIM (H-BIM) and Facility Management BIM (FM BIM). The research also outlines a structured approach to building performance analysis and integration with the circular economy, encapsulated within a five-level digital twin framework. Starting with Level 1, the Descriptive Twin provides a live, editable visual replica of the built asset, allowing for specific data inclusion and extraction. Advancing to Level 2, the Informative Twin integrates operational and sensory data, enhancing data verification and system integration. At Level 3, the Predictive Twin utilizes operational data to generate insights and proactive management suggestions. Progressing to Level 4, the Comprehensive Twin simulates future scenarios, enabling robust “what-if” analyses. Finally, Level 5, the Autonomous Twin, represents the pinnacle of digital twin evolution, capable of learning and autonomously acting on behalf of users.Keywords: building information modelling, circular economy integration, digital twin, predictive analytics
Procedia PDF Downloads 431557 Establishing a Strategic Agenda for Online MBA Program: A Case Study
Authors: Turkyh Alotibi, Ghadah Obeid Alrasheed, Afaf Saad Alshaibani, Moneerah Obeid Alrasheed
Abstract:
This study explores factors that influence MBA enrolment and investigates strategic prerequisites for developing a viable online MBA program at Alfaisal University in the Kingdom of Saudi Arabia. It compares students’ perspectives about online MBA against the face-to-face on-site MBA program. With the self-administered online survey tool, we collected data from 52 first- and second-year MBA students enrolled at Alfaisal University for the 2021 Fall Semester. The data from the survey questionnaire, distributed at the university’s College of Business, reports that approximately 60% of MBA students prefer face-to-face, in-person courses. Their preference for considering an online MBA, primarily rests on two factors, the university’s ranking (68% would enroll for an online MBA program offered by Harvard Business School) and 34.07% for the program timing (timetable). Alfaisal University’s outstanding ranking makes it viable to offer an online MBA either independently or in collaboration with other internationally reputed business schools. The paper contains useful insights to set “the strategic agenda for Online MBA program” in no accredited University but with a good reputation. The information from the case study could be useful for supporting the strategic intent to start an Online MBA program in Saudi Arabia.Keywords: online MBA, online education demand, university management, course evaluation, blended learning
Procedia PDF Downloads 1261556 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 4811555 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix to Pix GAN
Authors: Muhammad Atif, Cang Yan
Abstract:
The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on convolutional neural networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an autoencoder-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the PIX to PIX GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.Keywords: low light image enhancement, deep learning, convolutional neural network, image processing
Procedia PDF Downloads 801554 The Impact of Artificial Intelligence on Higher Education in Latin America
Authors: Luis Rodrigo Valencia Perez, Francisco Flores Aguero, Gibran Aguilar Rangel
Abstract:
Artificial Intelligence (AI) is rapidly transforming diverse sectors, and higher education in Latin America is no exception. This article explores the impact of AI on higher education institutions in the region, highlighting the imperative need for well-trained teachers in emerging technologies and a cultural shift towards the adoption and efficient use of these tools. AI offers significant opportunities to improve learning personalization, optimize administrative processes, and promote more inclusive and accessible education. However, the effectiveness of its implementation depends largely on the preparation and willingness of teachers to integrate these technologies into their pedagogical practices. Furthermore, it is essential that Latin American countries develop and implement public policies that encourage the adoption of AI in the education sector, thus ensuring that institutions can compete globally. Policies should focus on the continuous training of educators, investment in technological infrastructure, and the creation of regulatory frameworks that promote innovation and the ethical use of AI. Only through a comprehensive and collaborative approach will it be possible to fully harness the potential of AI to transform higher education in Latin America, thereby boosting the region's development and competitiveness on the global stage.Keywords: artificial intelligence (AI), higher education, teacher training, public policies, latin america, global competitiveness
Procedia PDF Downloads 281553 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1261552 Use of Mobile Phone Applications in Teaching Precalculus
Authors: Jay-R. Hosana Leonidas, Jayson A. Lucilo
Abstract:
The K-12 Curriculum in the Philippines shed light to mathematics education as it recognizes the use of smartphones/mobile phones as appropriate tools necessary in teaching mathematics. However, there were limited pieces of evidence on the use of these devices in teaching and learning process. This descriptive study developed lessons integrating the use of mobile phone applications with basis on low-level competencies of students in Precalculus and determined its effects on students’ conceptual understanding, procedural skills, and attitudes towards Precalculus. Employing Bring Your Own Device (BYOD) scheme in the study, lessons developed were conducted among Grade 11 Science, Technology, Engineering, and Mathematics (STEM) students at Central Bicol State University of Agriculture for the academic year 2018-2019. This study found that there is a significant difference between the competency levels of students along conceptual understanding and procedural skills prior to and after the conduct of lessons developed. Also, it disclosed that the use of mobile phone applications had positive effects on students’ attitudes towards Precalculus. Thus, the use of mobile phone applications in teaching Precalculus can enrich students’ understanding of concepts and procedural skills (solving and graphing skills) and can increase students’ motivation, self-confidence, and enjoyment in dealing with Precalculus.Keywords: bring your own device, mathematics education, mobile phone applications, senior high school
Procedia PDF Downloads 1631551 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 441550 Performants: Making the Organization of Concerts Easier
Authors: Ioannis Andrianakis, Panagiotis Panagiotopoulos, Kyriakos Chatzidimitriou, Dimitrios Tampakis, Manolis Falelakis
Abstract:
Live music, whether performed in organized venues, restaurants, hotels or any other spots, creates value chains that support and develop local economies and tourism development. In this paper, we describe PerformAnts, a platform that increases the mobility of musicians and their accessibility to remotely located venues by rationalizing the cost of live acts. By analyzing the event history and taking into account their potential availability, the platform provides bespoke recommendations to both bands and venues while also facilitating the organization of tours and helping rationalize transportation expenses by realizing an innovative mechanism called “chain booking”. Moreover, the platform provides an environment where complicated tasks such as technical and financial negotiations, concert promotion or copyrights are easily manipulated by users using best practices. The proposed solution provides important benefits to the whole spectrum of small/medium size concert organizers, as the complexity and the cost of the production are rationalized. The environment is also very beneficial for local talent, musicians that are very mobile, venues located away from large urban areas or in touristic destinations, and managers who will be in a position to coordinate a larger number of musicians without extra effort.Keywords: machine learning, music industry, creative industries, web applications
Procedia PDF Downloads 971549 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration
Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.
Abstract:
Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.Keywords: artificial intelligence, space exploration, space missions, deep learning
Procedia PDF Downloads 331548 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility
Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva
Abstract:
The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment
Procedia PDF Downloads 1781547 Ultrasonic Atomizer for Turbojet Engines
Authors: Aman Johri, Sidhant Sood, Pooja Suresh
Abstract:
This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations
Procedia PDF Downloads 2401546 Numerical Optimization of Cooling System Parameters for Multilayer Lithium Ion Cell and Battery Packs
Authors: Mohammad Alipour, Ekin Esen, Riza Kizilel
Abstract:
Lithium-ion batteries are a commonly used type of rechargeable batteries because of their high specific energy and specific power. With the growing popularity of electric vehicles and hybrid electric vehicles, increasing attentions have been paid to rechargeable Lithium-ion batteries. However, safety problems, high cost and poor performance in low ambient temperatures and high current rates, are big obstacles for commercial utilization of these batteries. By proper thermal management, most of the mentioned limitations could be eliminated. Temperature profile of the Li-ion cells has a significant role in the performance, safety, and cycle life of the battery. That is why little temperature gradient can lead to great loss in the performances of the battery packs. In recent years, numerous researchers are working on new techniques to imply a better thermal management on Li-ion batteries. Keeping the battery cells within an optimum range is the main objective of battery thermal management. Commercial Li-ion cells are composed of several electrochemical layers each consisting negative-current collector, negative electrode, separator, positive electrode, and positive current collector. However, many researchers have adopted a single-layer cell to save in computing time. Their hypothesis is that thermal conductivity of the layer elements is so high and heat transfer rate is so fast. Therefore, instead of several thin layers, they model the cell as one thick layer unit. In previous work, we showed that single-layer model is insufficient to simulate the thermal behavior and temperature nonuniformity of the high-capacity Li-ion cells. We also studied the effects of the number of layers on thermal behavior of the Li-ion batteries. In this work, first thermal and electrochemical behavior of the LiFePO₄ battery is modeled with 3D multilayer cell. The model is validated with the experimental measurements at different current rates and ambient temperatures. Real time heat generation rate is also studied at different discharge rates. Results showed non-uniform temperature distribution along the cell which requires thermal management system. Therefore, aluminum plates with mini-channel system were designed to control the temperature uniformity. Design parameters such as channel number and widths, inlet flow rate, and cooling fluids are optimized. As cooling fluids, water and air are compared. Pressure drop and velocity profiles inside the channels are illustrated. Both surface and internal temperature profiles of single cell and battery packs are investigated with and without cooling systems. Our results show that using optimized Mini-channel cooling plates effectively controls the temperature rise and uniformity of the single cells and battery packs. With increasing the inlet flow rate, cooling efficiency could be reached up to 60%.Keywords: lithium ion battery, 3D multilayer model, mini-channel cooling plates, thermal management
Procedia PDF Downloads 1641545 The Innovation of English Materials to Communicate the Identity of Bangpoo, Samut Prakan Province, for Ecotourism
Authors: Kitda Praraththajariya
Abstract:
The main purpose of this research was to study how to communicate the identity of the Mueang district, SamutSongkram province for ecotourism. The qualitative data was collected through studying related materials, exploring the area, in-depth interviews with three groups of people: three directly responsible officers who were key informants of the district, twenty foreign tourists and five Thai tourist guides. A content analysis was used to analyze the qualitative data. The two main findings of the study were as follows: (1) The identity of Amphur (District) Mueang, SamutSongkram province. This establishment was near the Mouth of Maekong River for normal people and tourists, consisting of rest accommodations. There are restaurants where food and drinks are served, rich mangrove forests, Hoy Lod (Razor Clam) and mangrove trees. Don Hoy Lod, is characterized by muddy beaches, is a coastal wetland for Ramsar Site. It is at 1099th ranging where the greatest number of Hoy Lod (Razor Clam) can be seen from March to May each year. (2) The communication of the identity of AmphurMueang, SamutSongkram province which the researcher could find and design to present in English materials can be summed up in 4 items: 1) The history of AmphurMueang, SamutSongkram province 2) WatPhetSamutWorrawihan 3) The Learning source of Ecotourism: Don Hoy Lod and Mangrove forest 4) How to keep AmphurMueang, SamutSongkram province for ecotourism.Keywords: foreigner tourists, signified, semiotics, ecotourism
Procedia PDF Downloads 3041544 Analyzing the Investment Decision and Financing Method of the French Small and Medium-Sized Enterprises
Authors: Eliane Abdo, Olivier Colot
Abstract:
SMEs are always considered as a national priority due to their contribution to job creation, innovation and growth. Once the start-up phase is crossed with encouraging results, the company enters the phase of growth. In order to improve its competitiveness, maintain and increase its market share, the company is in the necessity even the obligation to develop its tangible and intangible investments. SMEs are generally closed companies with special and critical financial situation, limited resources and difficulty to access the capital markets; their shareholders are always living in a conflict between their independence and their need to increase capital that leads to the entry of new shareholder. The capital structure was always considered the core of research in corporate finance; moreover, the financial crisis and its repercussions on the credit’s availability, especially for SMEs make SME financing a hot topic. On the other hand, financial theories do not provide answers to capital structure’s questions; they offer tools and mode of financing that are more accessible to larger companies. Yet, SME’s capital structure can’t be independent of their governance structure. The classic financial theory supposes independence between the investment decision and the financing decision. Thus, investment determines the volume of funding, but not the split between internal or external funds. In this context, we find interesting to study the hypothesis that SMEs respond positively to the financial theories applied to large firms and to check if they are constrained by conventional solutions used by large companies. In this context, this research focuses on the analysis of the resource’s structure of SME in parallel with their investments’ structure, in order to highlight a link between their assets and liabilities structure. We founded our conceptual model based on two main theoretical frameworks: the Pecking order theory, and the Trade Off theory taking into consideration the SME’s characteristics. Our data were generated from DIANE database. Five hypotheses were tested via a panel regression to understand the type of dependence between the financing methods of 3,244 French SMEs and the development of their investment over a period of 10 years (2007-2016). The results show dependence between equity and internal financing in case of intangible investments development. Moreover, this type of business is constraint to financial debts since the guarantees provided are not sufficient to meet the banks' requirements. However, for tangible investments development, SMEs count sequentially on internal financing, bank borrowing, and new shares issuance or hybrid financing. This is compliant to the Pecking Order Theory. We, therefore, conclude that unlisted SMEs incur more financial debts to finance their tangible investments more than their intangible. However, they always prefer internal financing as a first choice. This seems to be confirmed by the assumption that the profitability of the company is negatively related to the increase of the financial debt. Thus, the Pecking Order Theory predictions seem to be the most plausible. Consequently, SMEs primarily rely on self-financing and then go, into debt as a priority to finance their financial deficit.Keywords: capital structure, investments, life cycle, pecking order theory, trade off theory
Procedia PDF Downloads 1131543 Truancy and Academic Performance of Colleges of Education Students in South Western Nigeria: Implication for Evaluation
Authors: Oloyede Akinniyi Ojo
Abstract:
This study investigated the relationship between truancy and academic performance of Colleges of Education students in southwestern, Nigeria. It also examined the relationship between College Physical environment and truancy behavior among students. Furthermore, it examined the relationship between male and female students involvement in truancy behavior. Purposive sampling was used to select four colleges of education in south-western Nigeria and 120 students per college were selected from year 3 while stratified sampling was used to select schools and courses. A total of 480 students participated in the study. Three research instruments were used for this study namely: Lecturers Attendance Record, Students Statement of Result and ‘College Environment Questionnaires’ (CEQ). Four research questions guided the study. Data was analyzed using descriptive, Chi-square and T-Test. CEQ was validated by a team of experts in the field of educational evaluation. Test reliability was established at an r=0-74. The study concluded that truancy exist in colleges of education and that there was a significant relationship between truancy and academic performance of male and female truants, the study also revealed that physical environment has so much effect on the truancy behavior of the students, hence the study recommended that effort should be made to provide attractive college environment for effective learning.Keywords: academic performance, colleges of education, students, truancy
Procedia PDF Downloads 1911542 Optimizing Pediatric Pneumonia Diagnosis with Lightweight MobileNetV2 and VAE-GAN Techniques in Chest X-Ray Analysis
Authors: Shriya Shukla, Lachin Fernando
Abstract:
Pneumonia, a leading cause of mortality in young children globally, presents significant diagnostic challenges, particularly in resource-limited settings. This study presents an approach to diagnosing pediatric pneumonia using Chest X-Ray (CXR) images, employing a lightweight MobileNetV2 model enhanced with synthetic data augmentation. Addressing the challenge of dataset scarcity and imbalance, the study used a Variational Autoencoder-Generative Adversarial Network (VAE-GAN) to generate synthetic CXR images, improving the representation of normal cases in the pediatric dataset. This approach not only addresses the issues of data imbalance and scarcity prevalent in medical imaging but also provides a more accessible and reliable diagnostic tool for early pneumonia detection. The augmented data improved the model’s accuracy and generalization, achieving an overall accuracy of 95% in pneumonia detection. These findings highlight the efficacy of the MobileNetV2 model, offering a computationally efficient yet robust solution well-suited for resource-constrained environments such as mobile health applications. This study demonstrates the potential of synthetic data augmentation in enhancing medical image analysis for critical conditions like pediatric pneumonia.Keywords: pneumonia, MobileNetV2, image classification, GAN, VAE, deep learning
Procedia PDF Downloads 1251541 Challenges of Technical and Engineering Students in the Application of Scientific Cancer Knowledge to Preserve the Future Generation in Sub-Saharan Africa
Authors: K. Shaloom Mbambu, M. Pascal Tshimbalanga, K. Ruth Mutala, K. Roger Kabuya, N. Dieudonné Kabeya, Y. L. Kabeya Mukeba
Abstract:
In this article, the authors examine the even more worrying situation of girls in sub-Saharan Africa. Two-girls on five are private of Global Education, which represents a real loss to the development of communities and countries. Cultural traditions, poverty, violence, early and forced marriages, early pregnancies, and many other gender inequalities were the causes of this cancer development. Namely, "it is no more efficient development tool that is educating girls." The non-schooling of girls and their lack of supervision by liberal professions have serious consequences for the life of each of them. To improve the conditions of their inferior status, girls to men introduce poverty and health risks. Raising awareness among parents and communities on the importance of girls' education, improving children's access to school, girl-boy equality with their rights, creating income, and generating activities for girls, girls, and girls learning of liberal trades to make them self-sufficient. Organizations such as the United Nations Organization can save the children. ASEAD and the AEDA group are predicting the impact of this cancer on the development of a nation's future generation must be preserved.Keywords: young girl, Sub-Saharan Africa, higher and vocational education, development, society, environment
Procedia PDF Downloads 2541540 Children Protection in the Digital Space
Authors: Beverly Komen
Abstract:
Online crimes have been on the rise in the recent days, especially with the hit of the covid-19 pandemic. The coronavirus pandemic has led to an unprecedented rise in screen time, this means more families are relying on technology and digital solutions to keep children learning, spending more time on the virtual platforms can leave children vulnerable to online abuse and exploitation. With ease access of affordable phones, internet, and increased online activities, all children are at risk of being abused online hence making the digital space unsafe for children. With these increased use of technology and its accessibility, children are at risk of facing challenges such as access to inappropriate content, online grooming, identity theft, cyber bullying, among other risks. The big question is; as we enjoy the benefits brought in by technology, how do we ensure that our children are save in this digital space? With the analysis of the current trends, there is a gap in knowledge on people’s understanding on child online protection and safety measures when using the digital space. A survey conducted among 50 parents in Nairobi in Kenya indicated that there is a gap in knowledge on online protection of children and over 50 % of the participants shared that for sure they have no idea on how to protect children online. This paper seeks to address the concept of child protection in the digital space and come up with viable solutions in protecting children from online vices.Keywords: child protection, digital space, online risks, online grooming, cyber bulying, online child sexual exploitation, and abuse
Procedia PDF Downloads 1861539 L2 Learning and Teaching through Digital Tools
Authors: Bâlc Denisa-Maria
Abstract:
This paper aims to present some ways of preserving a language heritage in the global era. Teaching a second language to foreign students does not imply only teaching the grammar and the vocabulary in order to reach the 4 skills, but it means constant work on developing strategies to make the students aware of the heritage that the language they learn has. Teachers and professors need to be aware of the fact that language is in constant change, they need to adjust their techniques to the digital era, but they also have to be aware of the changes, the good and the bad parts of globalizations. How is it possible to preserve the patrimony of a certain language in a globalized era? What transformations does a language face in time? What does it mean to preserve the heritage of a language through L2 teaching? What makes a language special? What impact does it have on the foreign students? How can we, as teachers, preserve the heritage of our language? Would it be everything about books, films, music, cultural events or what else? How is it possible to include digital programs in your teaching and preserving the patrimony of a language at the same time? How does computational linguistics help us in teaching a certain language? All these questions will be tackled during the essay, with special accent on the definition of a language heritage, the new perspectives for teachers/ professors, everything in a multimodal and complex way of presenting the context. The objectives of this research are: - to present some ways of preserving the heritage of a certain language against globalization - to illustrate what preservation means for L2 teaching - to encourage teachers to be aware of their language patrimony The main contributions of my research are on moving the discussion of preserving a certain language patrimony in the context of L2 teaching.Keywords: preservation, globalization, language heritage, L2 teaching
Procedia PDF Downloads 621538 Students’ Perceptions of Formative Assessment Feedback: A Case Study for Undergraduate Students in Bahrain
Authors: Hasan Husain Ali Abdulnabi
Abstract:
Formative assessment feedback is increasingly practiced in higher education. Instructors allocate great time and effort to provide assessment feedback. However, educators are not sure about students’ perceptions, understanding and respond to the feedback given, as very limited research have been done about what students do with feedback and whether if they understand it. This study aims to explore students’ conceptions and perceptions of formative assessment feedback through questionnaire and focus group interviews. One hundred eighty undergraduate students doing different courses filled the questionnaire, and ten focus group discussions were conducted. Basic descriptive and content analyses were used to analyze students’ responses to the questionnaire, while grounded theory with open coding was used to analyze the focus group interviews. The study revealed that most students believe assessment feedback is helpful to improve their academic performance, and they take time to read, think and discuss their feedback. Also, the study shows most students understand the feedback given. However, students expressed that most of the written feedback given are too general, and they prefer individual oral feedback as it can lead to better understanding on how what and where to improve. The study concluded that students believe formative assessment feedback is valuable, students have reasonable understanding and respond to the feedback provided. However, this practice could be improved by requesting lecturers to make more specific feedback and communicate with students on the way of interpreting and using assessment feedback as a part of the learning and teaching process.Keywords: assessment, feedback, formative, undergraduate, higher education
Procedia PDF Downloads 861537 Students Reading and Viewing the American Novel in a University EFL/ESL Context: A Picture of Real Life
Authors: Nola Nahla Bacha
Abstract:
Research has indicated that ESL/EFL (nonnative students of English) students have difficulty in reading at the university as often times the requirements are long texts in which both cultural and linguistic factors impede their understanding and thus their motivation. This is especially the case in literature courses. It is the author’s view that if readings are selected according to the students’ interests and linguistic level, related to life situations and coupled with film study they will not only be motivated to read, but they will find reading interesting and exciting. They will view novels, and thus literature, as a picture of life. Students will also widen their vocabulary repertoire and overcome many of their linguistic problems. This study describes the procedure used in in a 20th Century American Novel class at one English medium university in Lebanon and explores students’ views on the novels assigned and their recommendations. Findings indicate that students significantly like to read novels, contrary to what some faculty claim and view the inclusion of novels as helping them with expanding their vocabulary repertoire and learning about real life which helps them linguistically, pedagogically, and above all personally during their life in and out of the university. Annotated texts, pictures and film will be used through technological aids to show how the class was conducted and how the students’ interacted with the novels assigned. Implications for teaching reading in the classroom are made.Keywords: language, literature, novels, reading, university teaching
Procedia PDF Downloads 3791536 The Effectiveness of Implementing Interactive Training for Teaching Kazakh Language
Authors: Samal Abzhanova, Saule Mussabekova
Abstract:
Today, a new system of education is being created in Kazakhstan in order to develop the system of education and to satisfy the world class standards. For this purpose, there have been established new requirements and responsibilities to the instructors. Students should not be limited with providing only theoretical knowledge. Also, they should be encouraged to be competitive, to think creatively and critically. Moreover, students should be able to implement these skills into practice. These issues could be resolved through the permanent improvement of teaching methods. Therefore, a specialist who teaches the languages should use up-to-date methods and introduce new technologies. The result of the investigation suggests that an interactive teaching method is one of the new technologies in this field. This paper aims to provide information about implementing new technologies in the process of teaching language. The paper will discuss about necessity of introducing innovative technologies and the techniques of organizing interactive lessons. At the same time, the structure of the interactive lesson, conditions, principles, discussions, small group works and role-playing games will be considered. Interactive methods are carried out with the help of several types of activities, such as working in a team (with two or more group of people), playing situational or role-playing games, working with different sources of information, discussions, presentations, creative works and learning through solving situational tasks and etc.Keywords: interactive education, interactive methods, system of education, teaching a language
Procedia PDF Downloads 2941535 An Informetrics Analysis of Research on Phishing in Scopus and Web of Science Databases from 2012 to 2021
Authors: Nkosingiphile Mbusozayo Zungu
Abstract:
The purpose of the current study is to adopt informetrics methods to analyse the research on phishing from 2012 to 2021 in three selected databases in order to contribute to global cybersecurity through impactful research. The study follows a quantitative research methodology. We opted for the positivist epistemology and objectivist ontology. The analysis focuses on: (i) the productivity of individual authors, institutions, and countries; (ii) the research contributions, using co-authorship as a measure of collaboration; (iii) the altmetrics of selected research contributions; (iv) the citation patterns and research impact of research on phishing; and (v) research contributions by keywords, to discover the concepts that are related to phishing. The preliminary findings favour developed countries in terms of quantity and quality of research in the domain. There are unique research trends and patterns in the developing countries, including those in Africa, that provide opportunities for research development in the domain in the region. This study explores an important research domain by using unexplored method in the region. The study supports the SDG Agenda 2030, such as ending abuse, exploitation, trafficking, and all other forms of violence and torture of children through the use of cyberspace (SDG 16). Further, the results from this study can inform research, teaching, and learning largely in Africa. Invariably, the study contributes to cybersecurity awareness that will mitigate cybersecurity threats against vulnerable communities.Keywords: phishing, cybersecurity, informetrics, information security
Procedia PDF Downloads 1131534 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 1941533 Daily Stand-up Meetings - Relationships with Psychological Safety and Well-being in Teams
Authors: Sarah Rietze, Hannes Zacher
Abstract:
Daily stand-up meetings are the most commonly used method in agile teams. In daily stand-ups, team members gather to coordinate and align their efforts, typically for a predefined period of no more than 15 minutes. The primary purpose is to ask and answer the following three questions: What was accomplished yesterday? What will be done today? What obstacles are impeding my progress? Daily stand-ups aim to enhance communication, mutual understanding, and support within the team, as well as promote collective learning from mistakes through daily synchronization and transparency. The use of daily stand-ups is intended to positively influence psychological safety within teams, which is the belief that it is safe to show oneself and take personal risks. Two studies will be presented, which explore the relationships between daily stand-ups, psychological safety, and psychological well-being. In a first study, based on survey results (n = 318), we demonstrated that daily stand-ups have a positive indirect effect on job satisfaction and a negative indirect effect on turnover intention through their impact on psychological safety. In a second study, we investigate, using an experimental design, how the use of daily stand-ups in teams enhances psychological safety and well-being compared to a control group that does not use daily stand-ups. Psychological safety is considered one of the most crucial cultural factors for a sustainable, agile organization. Agile approaches, such as daily stand-ups, are a critical part of the evolving work environment and offer a proactive means to shape and foster psychological safety within teams.Keywords: occupational wellbeing, agile work practices, psychological safety, daily stand-ups
Procedia PDF Downloads 651532 Linguistic Features for Sentence Difficulty Prediction in Aspect-Based Sentiment Analysis
Authors: Adrian-Gabriel Chifu, Sebastien Fournier
Abstract:
One of the challenges of natural language understanding is to deal with the subjectivity of sentences, which may express opinions and emotions that add layers of complexity and nuance. Sentiment analysis is a field that aims to extract and analyze these subjective elements from text, and it can be applied at different levels of granularity, such as document, paragraph, sentence, or aspect. Aspect-based sentiment analysis is a well-studied topic with many available data sets and models. However, there is no clear definition of what makes a sentence difficult for aspect-based sentiment analysis. In this paper, we explore this question by conducting an experiment with three data sets: ”Laptops”, ”Restaurants”, and ”MTSC” (Multi-Target-dependent Sentiment Classification), and a merged version of these three datasets. We study the impact of domain diversity and syntactic diversity on difficulty. We use a combination of classifiers to identify the most difficult sentences and analyze their characteristics. We employ two ways of defining sentence difficulty. The first one is binary and labels a sentence as difficult if the classifiers fail to correctly predict the sentiment polarity. The second one is a six-level scale based on how many of the top five best-performing classifiers can correctly predict the sentiment polarity. We also define 9 linguistic features that, combined, aim at estimating the difficulty at sentence level.Keywords: sentiment analysis, difficulty, classification, machine learning
Procedia PDF Downloads 891531 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 1361530 The Artificial Intelligence (AI) Impact on Project Management: A Destructive or Transformative Agent
Authors: Kwame Amoah
Abstract:
Artificial intelligence (AI) has the prospect of transforming project management, significantly improving efficiency and accuracy. By automating specific tasks with defined guidelines, AI can assist project managers in making better decisions and allocating resources efficiently, with possible risk mitigation. This study explores how AI is already impacting project management and likely future AI's impact on the field. The AI's reaction has been a divided opinion; while others picture it as a destroyer of jobs, some welcome it as an innovation advocate. Both sides agree that AI will be disruptive and revolutionize PM's functions. If current research is to go by, AI or some form will replace one-third of all learning graduate PM jobs by as early as 2030. A recent survey indicates AI spending will reach $97.9 billion by the end of 2023. Considering such a profound impact, the project management profession will also see a paradigm shift driven by AI. The study examines what the project management profession will look like in the next 5-10 years after this technological disruption. The research methods incorporate existing literature, develop trend analysis, and conduct structured interviews with project management stakeholders from North America to gauge the trend. PM professionals can harness the power of AI, ensuring a smooth transition and positive outcomes. AI adoption will maximize benefits, minimize adverse consequences, and uphold ethical standards, leading to improved project performance.Keywords: project management, disruptive teacnologies, project management function, AL applications, artificial intelligence
Procedia PDF Downloads 831529 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 316