Search results for: probabilistic methods
14836 Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control
Authors: Bogusław Schreyer
Abstract:
The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking.Keywords: select-high, select-low, torque distribution, wheeled robots
Procedia PDF Downloads 11914835 Spectral Analysis Applied to Variables of Oil Wells Profiling
Authors: Suzana Leitão Russo, Mayara Laysa de Oliveira Silva, José Augusto Andrade Filho, Vitor Hugo Simon
Abstract:
Currently, seismic methods and prospecting methods are commonly applied in the oil industry and, according to the information reported every day; oil is a source of non-renewable energy. It is easier to understand why the ownership of areas of oil extraction is coveted by many nations. It is necessary to think about ways that will enable the maximization of oil production. The technique of spectral analysis can be used to analyze the behavior of the variables already defined in oil well the profile. The main objective is to verify the series dependence of variables, and to model the variables using the frequency domain to observe the model residuals.Keywords: oil, well, spectral analysis, oil extraction
Procedia PDF Downloads 53514834 Performance Comparison of Wideband Covariance Matrix Sparse Representation (W-CMSR) with Other Wideband DOA Estimation Methods
Authors: Sandeep Santosh, O. P. Sahu
Abstract:
In this paper, performance comparison of wideband covariance matrix sparse representation (W-CMSR) method with other existing wideband Direction of Arrival (DOA) estimation methods has been made.W-CMSR relies less on a priori information of the incident signal number than the ordinary subspace based methods.Consider the perturbation free covariance matrix of the wideband array output. The diagonal covariance elements are contaminated by unknown noise variance. The covariance matrix of array output is conjugate symmetric i.e its upper right triangular elements can be represented by lower left triangular ones.As the main diagonal elements are contaminated by unknown noise variance,slide over them and align the lower left triangular elements column by column to obtain a measurement vector.Simulation results for W-CMSR are compared with simulation results of other wideband DOA estimation methods like Coherent signal subspace method (CSSM), Capon, l1-SVD, and JLZA-DOA. W-CMSR separate two signals very clearly and CSSM, Capon, L1-SVD and JLZA-DOA fail to separate two signals clearly and an amount of pseudo peaks exist in the spectrum of L1-SVD.Keywords: W-CMSR, wideband direction of arrival (DOA), covariance matrix, electrical and computer engineering
Procedia PDF Downloads 47114833 Effect of Scalping on the Mechanical Behavior of Coarse Soils
Authors: Nadine Ali Hassan, Ngoc Son Nguyen, Didier Marot, Fateh Bendahmane
Abstract:
This paper aims at presenting a study of the effect of scalping methods on the mechanical properties of coarse soils by resorting to numerical simulations based on the discrete element method (DEM) and experimental triaxial tests. Two reconstitution methods are used, designated as scalping method and substitution method. Triaxial compression tests are first simulated on a granular materials with a grap graded particle size distribution by using the DEM. We study the effect of these reconstitution methods on the stress-strain behavior of coarse soils with different fine contents and with different ways to control the densities of the scalped and substituted materials. Experimental triaxial tests are performed on original mixtures of sands and gravels with different fine contents and on their corresponding scalped and substituted samples. Numerical results are qualitatively compared to experimental ones. Agreements and discrepancies between these results are also discussed.Keywords: coarse soils, mechanical behavior, scalping, replacement, triaxial devices
Procedia PDF Downloads 20714832 Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method
Authors: Maryam Akbarzadeh, F. Esmaeilzadeh, A. Poostvar, M. Manuchehri
Abstract:
Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table.Keywords: grit, input-output, table, regional
Procedia PDF Downloads 26014831 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 24314830 Some Issues of Measurement of Impairment of Non-Financial Assets in the Public Sector
Authors: Mariam Vardiashvili
Abstract:
The economic value of the asset impairment process is quite large. Impairment reflects the reduction of future economic benefits or service potentials itemized in the asset. The assets owned by public sector entities bring economic benefits or are used for delivery of the free-of-charge services. Consequently, they are classified as cash-generating and non-cash-generating assets. IPSAS 21 - Impairment of non-cash-generating assets, and IPSAS 26 - Impairment of cash-generating assets, have been designed considering this specificity. When measuring impairment of assets, it is important to select the relevant methods. For measurement of the impaired Non-Cash-Generating Assets, IPSAS 21 recommends three methods: Depreciated Replacement Cost Approach, Restoration Cost Approach, and Service Units Approach. Impairment of Value in Use of Cash-Generating Assets (according to IPSAS 26) is measured by discounted value of the money sources to be received in future. Value in use of the cash-generating asserts (as per IPSAS 26) is measured by the discounted value of the money sources to be received in the future. The article provides classification of the assets in the public sector as non-cash-generating assets and cash-generating assets and, deals also with the factors which should be considered when evaluating impairment of assets. An essence of impairment of the non-financial assets and the methods of measurement thereof evaluation are formulated according to IPSAS 21 and IPSAS 26. The main emphasis is put on different methods of measurement of the value in use of the impaired Cash-Generating Assets and Non-Cash-Generation Assets and the methods of their selection. The traditional and the expected cash flow approaches for calculation of the discounted value are reviewed. The article also discusses the issues of recognition of impairment loss and its reflection in the financial reporting. The article concludes that despite a functional purpose of the impaired asset, whichever method is used for measuring the asset, presentation of realistic information regarding the value of the assets should be ensured in the financial reporting. In the theoretical development of the issue, the methods of scientific abstraction, analysis and synthesis were used. The research was carried out with a systemic approach. The research process uses international standards of accounting, theoretical researches and publications of Georgian and foreign scientists.Keywords: cash-generating assets, non-cash-generating assets, recoverable (usable restorative) value, value of use
Procedia PDF Downloads 14314829 Customizable Sonic EEG Neurofeedback Environment to Train Self-Regulation of Momentary Mental and Emotional State
Authors: Cyril Kaplan, Nikola Jajcay
Abstract:
We developed purely sonic, musical based, highly customizable EEG neurofeedback environment designed to administer a new neurofeedback training protocol. The training protocol concentrates on improving the ability to switch between several mental states characterized by different levels of arousal, each of them correlated to specific brain wave activity patterns in several specific regions of neocortex. This paper describes the neurofeedback training environment we developed and its specificities, thus can be helpful as a manual to guide other neurofeedback users (both researchers and practitioners) interested in our editable open source program (available to download and usage under CC license). Responses and reaction of first trainees that used our environment are presented in this article. Combination of qualitative methods (thematic analysis of neurophenomenological insights of trainees and post-session semi-structured interviews) and quantitative methods (power spectra analysis of EEG recorded during the training) were employed to obtain a multifaceted view on our new training protocol.Keywords: EEG neurofeedback, mixed methods, self-regulation, switch-between-states training
Procedia PDF Downloads 22814828 Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature
Authors: Madeline W. Miller
Abstract:
The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service.Keywords: leadership demographics, post-industrial textile waste, pre-consumer textile waste, industrial shoddy
Procedia PDF Downloads 15114827 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 7514826 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 28614825 Geospatial Curve Fitting Methods for Disease Mapping of Tuberculosis in Eastern Cape Province, South Africa
Authors: Davies Obaromi, Qin Yongsong, James Ndege
Abstract:
To interpolate scattered or regularly distributed data, there are imprecise or exact methods. However, there are some of these methods that could be used for interpolating data in a regular grid and others in an irregular grid. In spatial epidemiology, it is important to examine how a disease prevalence rates are distributed in space, and how they relate with each other within a defined distance and direction. In this study, for the geographic and graphic representation of the disease prevalence, linear and biharmonic spline methods were implemented in MATLAB, and used to identify, localize and compare for smoothing in the distribution patterns of tuberculosis (TB) in Eastern Cape Province. The aim of this study is to produce a more “smooth” graphical disease map for TB prevalence patterns by a 3-D curve fitting techniques, especially the biharmonic splines that can suppress noise easily, by seeking a least-squares fit rather than exact interpolation. The datasets are represented generally as a 3D or XYZ triplets, where X and Y are the spatial coordinates and Z is the variable of interest and in this case, TB counts in the province. This smoothing spline is a method of fitting a smooth curve to a set of noisy observations using a spline function, and it has also become the conventional method for its high precision, simplicity and flexibility. Surface and contour plots are produced for the TB prevalence at the provincial level for 2012 – 2015. From the results, the general outlook of all the fittings showed a systematic pattern in the distribution of TB cases in the province and this is consistent with some spatial statistical analyses carried out in the province. This new method is rarely used in disease mapping applications, but it has a superior advantage to be assessed at subjective locations rather than only on a rectangular grid as seen in most traditional GIS methods of geospatial analyses.Keywords: linear, biharmonic splines, tuberculosis, South Africa
Procedia PDF Downloads 23914824 A Survey of Dynamic QoS Methods in Sofware Defined Networking
Authors: Vikram Kalekar
Abstract:
Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay
Procedia PDF Downloads 19314823 Enhancing Rural Agricultural Value Chains through Electric Mobility Services in Ethiopia
Authors: Clemens Pizzinini, Philipp Rosner, David Ziegler, Markus Lienkamp
Abstract:
Transportation is a constitutional part of most supply and value chains in modern economies. Smallholder farmers in rural Ethiopia face severe challenges along their supply and value chains. In particular, suitable, affordable, and available transport services are in high demand. To develop a context-specific technical solutions, a problem-to-solution methodology based on the interaction with technology is developed. With this approach, we fill the gap between proven transportation assessment frameworks and general user-centered techniques. Central to our approach is an electric test vehicle that is implemented in rural supply and value chains for research, development, and testing. Based on our objective and the derived methodological requirements, a set of existing methods is selected. Local partners are integrated into an organizational framework that executes major parts of this research endeavour in the Arsi Zone, Oromia Region, Ethiopia.Keywords: agricultural value chain, participatory methods, agile methods, sub-Saharan Africa, Ethiopia, electric vehicle, transport service
Procedia PDF Downloads 7414822 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery
Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi
Abstract:
Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell
Procedia PDF Downloads 11614821 An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research
Authors: Ms Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study.Keywords: average treatment effect, propensity score, stratification, covariate adjusted, monte Calro estimation, breast cancer, case_control study
Procedia PDF Downloads 10614820 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development
Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Missler-Behr
Abstract:
This paper represents the conception that complex problems do not necessarily need a similar complex solution in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way to deal with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of the new product development process in the automotive sector. In this field, dealing with increasing complexity is essential, while only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided into four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from the change management field of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them into a powerful tool.Keywords: complexity management, new product development, engineering change management, flexibility
Procedia PDF Downloads 19714819 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods
Authors: H. J. Wattimanela, U. S. Passaribu, A. N. T. Puspito, S. W. Indratno
Abstract:
Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.Keywords: molluca collision zone, partition regions, conventional statistical methods, earthquakes, classifications, disaster management
Procedia PDF Downloads 49914818 The Effect of Simultaneous Application of Laser Beam and Magnet in Treatment of Intervertebral Disc Herniation
Authors: Alireza Moghtaderi, Negin Khakpour
Abstract:
Disc Herniation is a common complication in the society and it is one of the main reasons for referring to physical medicine and rehabilitation clinics. Despite of various methods proposed for treatingthis disease, still there is disagreement on success of these methods especially in non-surgical methods, and thus current study aims at determining effect of laser beam and magnet on treatment of Intervertebral Disc Herniation. During a clinical trial study, 80 patients with Intervertebral Disc Herniation underwent a combined package of treatment including magnet, laser beam, PRP and Prolotherapy during 6 months. Average age of patients was 51.25 ± 10.7 with range of 25 – 71 years. 30 men (37.5%) and 50 women (62.5%) took part in the study. average weight of patients was 64.3 ± 7.2 with range of 49 – 79 kg. highest level of Disc Herniation was L5 – S1 with frequency of 17 cases (21.3%). Disc Herniation was severe in 30 cases before treatment, but it reduced to 3 casesafter treatment. This study indicates effect of combined treatment using non-invasive laser beam and magnet therapy on disco genic diseases and mechanical pains of spine is highly effective.Keywords: hallux, valgus, botulinum toxin a, pain
Procedia PDF Downloads 9214817 Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam
Authors: Nguyen Tien Thanh, Günter Meon
Abstract:
Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels.Keywords: interpolation, precipitation, trend, vietnam
Procedia PDF Downloads 27514816 Students’ and Clinical Supervisors’ Experiences of Occupational Therapy Practice Education: A Structured Critical Review
Authors: Hamad Alhamad, Catriona Khamisha, Emma Green, Yvonne Robb
Abstract:
Introduction: Practice education is a key component of occupational therapy education. This critical review aimed to explore students’ and clinical supervisors’ experiences of practice education, and to make recommendations for research. Method: The literature was systematically searched using five databases. Qualitative, quantitative and mixed methods studies were included. Critical Appraisal Skills Programme checklist for qualitative studies and Mixed Methods Assessment Tool for quantitative and mixed methods studies were used to assess study quality. Findings: Twenty-two studies with high quality scores were included: 16 qualitative, 3 quantitative and 3 mixed methods. Studies were conducted in Australia, Canada, USA and UK. During practice education, students learned professional skills, practical skills, clinical skills and problem-solving skills, and improved confidence and creativity. Supervisors had an opportunity to reflect on their practice and get experience of supervising students. However, clear objectives and expectations for students, and sufficient theoretical knowledge, preparation and resources for supervisors were required. Conclusion: Practice education provides different skills and experiences, necessary to become competent professionals; but some areas of practice education need to improve. Studies in non-western countries are needed to explore the perspectives of students and clinical supervisors in different cultures, to ensure the practice education models adopted are relevant.Keywords: occupational therapy, practice education, fieldwork, students, clinical supervisors
Procedia PDF Downloads 20314815 Subjective Well-Being, Emotional Regulation and Motivational Orientation of Competition Athletes
Authors: Cristina Costa-Lobo, Priscila Martins, Silvia Amado Cordeiro, Ana Campina
Abstract:
Behavior directed toward high levels of sports performance and excellence implies task-focused processes, processes of cognitive and emotional regulation. This research aims to understand if subjective well-being, emotional regulation, and motivational orientation influence the performance of competitive athletes. The sample of this study is a non-probabilistic convenience sample, consisting of 50 male athletes, aged 14 to 15 years, who belong to training teams integrated in the pedagogical department of a sports club in the North of Portugal. In terms of performance, the distinction between team A and team B is due to the championships in which the respective athletes participate. Team A participates in national championships where the levels of demand and challenge are more pronounced and the team B only participates in championships at the district level. Was verified the internal consistency of the subjective happiness scale, the emotional regulation scale, and the motivational orientation questionnaire. SPSS, version 22.0, was used in the data treatment. When comparing the dimensions of emotional regulation with performance, it can be seen that athletes with lower sports scores have higher levels of emotional control and emotional self-awareness. As far as situational responsiveness is concerned, only the emotional self-control dimension and the emotional self-awareness dimension show an influence on the income, although, contrary to what would be expected, they appear to be associated with lower incomes. When comparing the motivational orientation with the athletic performance, it is verified that the athletes with the highest performance present an ego-oriented motivation, evidencing the athletes with a lower performance athletic tendency towards the task orientation. Only the ego-oriented dimension seems to be associated with high sport performance. The motivational orientation for the ego and the dimensions emotional control and emotional self-awareness are presented in this study as having influence on sports performance. Following these studies that have shown concern with the characterization of the best athletes and the promotion of higher sports performances, this work contributes to the signaling of psychological variables associated with high sports income.Keywords: subjective well-being, emotional regulation, motivational orientation, sports performance
Procedia PDF Downloads 27614814 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016
Authors: Dimitra Alexiou
Abstract:
During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used.Keywords: tourism, statistical methods, exponential smoothing, land spatial planning, economy
Procedia PDF Downloads 26514813 Integrated Risk Assessment of Storm Surge and Climate Change for the Coastal Infrastructure
Authors: Sergey V. Vinogradov
Abstract:
Coastal communities are presently facing increased vulnerabilities due to rising sea levels and shifts in global climate patterns, a trend expected to escalate in the long run. To address the needs of government entities, the public sector, and private enterprises, there is an urgent need to thoroughly investigate, assess, and manage the present and projected risks associated with coastal flooding, including storm surges, sea level rise, and nuisance flooding. In response to these challenges, a practical approach to evaluating storm surge inundation risks has been developed. This methodology offers an integrated assessment of potential flood risk in targeted coastal areas. The physical modeling framework involves simulating synthetic storms and utilizing hydrodynamic models that align with projected future climate and ocean conditions. Both publicly available and site-specific data form the basis for a risk assessment methodology designed to translate inundation model outputs into statistically significant projections of expected financial and operational consequences. This integrated approach produces measurable indicators of impacts stemming from floods, encompassing economic and other dimensions. By establishing connections between the frequency of modeled flood events and their consequences across a spectrum of potential future climate conditions, our methodology generates probabilistic risk assessments. These assessments not only account for future uncertainty but also yield comparable metrics, such as expected annual losses for each inundation event. These metrics furnish stakeholders with a dependable dataset to guide strategic planning and inform investments in mitigation. Importantly, the model's adaptability ensures its relevance across diverse coastal environments, even in instances where site-specific data for analysis may be limited.Keywords: climate, coastal, surge, risk
Procedia PDF Downloads 5614812 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods
Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard
Abstract:
The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.Keywords: algorithms, genetics, matching, population
Procedia PDF Downloads 14314811 Bacteriological Culture Methods and its Uses in Clinical Pathology
Authors: Prachi Choudhary, Jai Gopal Sharma
Abstract:
Microbial cultures determine the type of organism, its abundance in the tested sample, or both. It is one of the primary diagnostic methods of microbiology. It is used to determine the cause of infectious disease by letting the agent multiply in a predetermined medium. Different bacteria produce colonies that may be very distinct from the bacterial species that produced them. To culture any pathogen or microorganism, we should first know about the types of media used in microbiology for culturing. Sometimes sub culturing is also done in various microorganisms if some mixed growth is seen in culture. Nearly 3 types of culture media based on consistency – solid, semi-solid, and liquid (broth) media; are further explained in the report. Then, The Five I's approach is a method for locating, growing, observing, and characterizing microorganisms, including inoculation and incubation. Isolation, inspection, and identification. For identification of bacteria, we have to culture the sample like urine, sputum, blood, etc., on suitable media; there are different methods of culturing the bacteria or microbe like pour plate method, streak plate method, swabbing by needle, pipetting, inoculation by loop, spreading by spreader, etc. After this, we see the bacterial growth after incubation of 24 hours, then according to the growth of bacteria antibiotics susceptibility test is conducted; this is done for sensitive antibiotics or resistance to that bacteria, and also for knowing the name of bacteria. Various methods like the dilution method, disk diffusion method, E test, etc., do antibiotics susceptibility tests. After that, various medicines are provided to the patients according to antibiotic sensitivity and resistance.Keywords: inoculation, incubation, isolation, antibiotics suspectibility test, characterizing
Procedia PDF Downloads 8214810 Analysis of Non-Coding Genome in Streptococcus pneumoniae for Molecular Epidemiology Typing
Authors: Martynova Alina, Lyubov Buzoleva
Abstract:
Streptococcus pneumoniae is the causative agent of pneumonias and meningitids throught all the world. Having high genetic diversity, this microorganism can cause different clinical forms of pneumococcal infections and microbiologically it is really difficult diagnosed by routine methods. Also, epidemiological surveillance requires more developed methods of molecular typing because the recent method of serotyping doesn't allow to distinguish invasive and non-invasive isolates properly. Non-coding genome of bacteria seems to be the interesting source for seeking of highly distinguishable markers to discriminate the subspecies of such a variable bacteria as Streptococcus pneumoniae. Technically, we proposed scheme of discrimination of S.pneumoniae strains with amplification of non-coding region (SP_1932) with the following restriction with 2 types of enzymes of Alu1 and Mn1. Aim: This research aimed to compare different methods of typing and their application for molecular epidemiology purposes. Methods: we analyzed population of 100 strains of S.pneumoniae isolated from different patients by different molecular epidemiology methods such as pulse-field gel electophoresis (PFGE), restriction polymorphism analysis (RFLP) and multilolocus sequence typing (MLST), and all of them were compared with classic typing method as serotyping. The discriminative power was estimated with Simpson Index (SI). Results: We revealed that the most discriminative typing method is RFLP (SI=0,97, there were distinguished 42 genotypes).PFGE was slightly less discriminative (SI=0,95, we identified 35 genotypes). MLST is still the best reference method (SI=1.0). Classic method of serotyping showed quite weak discriminative power (SI=0,93, 24 genotypes). In addition, sensivity of RFLP was 100%, specificity was 97,09%. Conclusion: the most appropriate method for routine epidemiology surveillance is RFLP with non-coding region of Streptococcsu pneumoniae, then PFGE, though in some cases these results should be obligatory confirmed by MLST.Keywords: molecular epidemiology typing, non-coding genome, Streptococcus pneumoniae, MLST
Procedia PDF Downloads 40014809 Liquefaction Potential Assessment Using Screw Driving Testing and Microtremor Data: A Case Study in the Philippines
Authors: Arturo Daag
Abstract:
The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is enhancing its liquefaction hazard map towards a detailed probabilistic approach using SDS and geophysical data. Target sites for liquefaction assessment are public schools in Metro Manila. Since target sites are in highly urbanized-setting, the objective of the project is to conduct both non-destructive geotechnical studies using Screw Driving Testing (SDFS) combined with geophysical data such as refraction microtremor array (ReMi), 3 component microtremor Horizontal to Vertical Spectral Ratio (HVSR), and ground penetrating RADAR (GPR). Initial test data was conducted in liquefaction impacted areas from the Mw 6.1 earthquake in Central Luzon last April 22, 2019 Province of Pampanga. Numerous accounts of liquefaction events were documented areas underlain by quaternary alluvium and mostly covered by recent lahar deposits. SDS estimated values showed a good correlation to actual SPT values obtained from available borehole data. Thus, confirming that SDS can be an alternative tool for liquefaction assessment and more efficient in terms of cost and time compared to SPT and CPT. Conducting borehole may limit its access in highly urbanized areas. In order to extend or extrapolate the SPT borehole data, non-destructive geophysical equipment was used. A 3-component microtremor obtains a subsurface velocity model in 1-D seismic shear wave velocity of the upper 30 meters of the profile (Vs30). For the ReMi, 12 geophone array with 6 to 8-meter spacing surveys were conducted. Microtremor data were computed through the Factor of Safety, which is the quotient of Cyclic Resistance Ratio (CRR) and Cyclic Stress Ratio (CSR). Complementary GPR was used to study the subsurface structure and used to inferred subsurface structures and groundwater conditions.Keywords: screw drive testing, microtremor, ground penetrating RADAR, liquefaction
Procedia PDF Downloads 20214808 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 15514807 Flicker Detection with Motion Tolerance for Embedded Camera
Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan
Abstract:
CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.Keywords: illumination flicker, embedded camera, rolling shutter, detection
Procedia PDF Downloads 420