Search results for: pre-cooling device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1943

Search results for: pre-cooling device

1253 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 102
1252 Evaluation of Microbial Accumulation of Household Wastewater Purified by Advanced Oxidation Process

Authors: Nazlı Çetindağ, Pelin Yılmaz Çetiner, Metin Mert İlgün, Emine Birci, Gizemnur Yıldız Uysal, Özcan Hatipoğlu, Ehsan Tuzcuoğlu, Gökhan Sır

Abstract:

Water scarcity is an unavoidable issue impacting an increasing number of individuals daily, representing a global crisis stemming from swift population growth, urbanization, and excessive resource exploitation. Consequently, solutions that involve the reclamation of wastewater are considered essential. In this context, household wastewater, categorized as greywater, plays a significant role in freshwater used for residential purposes and is attributed to washing. This type of wastewater comprises diverse elements, including organic substances, soaps, detergents, solvents, biological components, and inorganic elements such as certain metal ions and particles. The physical characteristics of wastewater vary depending on its source, whether commercial, domestic, or from a hospital setting. Consequently, the treatment strategy for this wastewater type necessitates comprehensive investigation and appropriate handling. The advanced oxidation process (AOP) emerges as a promising technique associated with the generation of reactive hydroxyl radicals highly effective in oxidizing organic pollutants. This method takes precedence over others like coagulation, flocculation, sedimentation, and filtration due to its avoidance of undesirable by-products. In the current study, the focus was on exploring the feasibility of the AOP for treating actual household wastewater. To achieve this, a laboratory-scale device was designed to effectively target the formed radicals toward organic pollutants, resulting in lower organic compounds in wastewater. Then, the number of microorganisms present in treated wastewater, in addition to the chemical content of the water, was analyzed to determine whether the lab-scale device eliminates microbial accumulation with AOP. This was also an important parameter since microbes can indirectly affect human health and machine hygiene. To do this, water samples were taken from treated and untreated conditions and then inoculated on general purpose agar to track down the total plate count. Analysis showed that AOP might be an option to treat household wastewater and lower microorganism growth.

Keywords: usage of household water, advanced oxidation process, water reuse, modelling

Procedia PDF Downloads 47
1251 Development of the Web-Based Multimedia N-Screen Service System for Cross Platform

Authors: S. Bae, J. Shin, S. Lee

Abstract:

As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs.

Keywords: N-screen, web, cloud, multimedia

Procedia PDF Downloads 299
1250 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 95
1249 Management of Pressure Ulcer with a Locally Constructed Negative Pressure Device (NPD) in Traumatic Paraplegia Patients: A Randomized Controlled Clinical Trial

Authors: Mukesh K. Dwivedi, Rajeshwar N. Srivastava, Amit K. Bhagat, Saloni Raj

Abstract:

Introduction: Management of Pressure Ulcer (PU) is an ongoing clinical challenge particularly in traumatic paraplegia patients in developing countries where socio economic conditions often dictate treatment modalities. When negative pressure wound therapy (NPWT) was introduced, there were a series of devices (V.A.C., KCI, San Antonio, TX) manufactured. These devices for NPWT are costly and hard to afford by patients in developing countries like India. Considering this limitation, this study was planned to design an RCT to compare NPWT by an indigenized locally constructed NPD and conventional gauze dressing for the treatment of PU. Material and Methods: This RCT (CTRI/2014/09/0050) was conducted in the Department of Orthopaedic Surgery at King George’s Medical University (KGMU), India. Thirty-four (34) subjects of traumatic paraplegia having PU of stage 3 or 4, were enrolled and randomized in two treatment groups (NPWT Group & Conventional dressing group). The outcome measures of this study were surface area and depth of PU, exudates, microorganisms and matrix metalloproteinase-8 (MMP-8) during 0 to 9 weeks follow-ups. Levels of MMP-8 were analyzed in the tissues of PU at week 0, 3, 6 and week 9 by Enzyme Linked Immuno Sorbent Assay (ELISA). Results: Significantly reduced length of PU in NPWT group was observed at week 6 (p=0.04) which further reduced at week 9 (p=0.001) as compared to conventionally treated group. Similarly significant reduction of width and depth of PU was observed in NPWT at week 9 (p<0.05). The exudate became significantly (p=0.001) lower in NPWT group as compared with conventionally treated group from 6th to 9th week. Clearance and conversion of slough into red granulation tissue was significantly higher in NPWT group (p=0.001). At week 9, the wound culture was negative in all the subjects of NPWT group, while it was positive in 10 (41⋅6%) subjects of conventional group. Significantly lower level of MMP-8 was observed in subjects of NPWT group at week 6 (0.006**), and continually more reduction was observed at week 9 (<0.0001**) as compared to the conventional group. Conclusion: NPWT by locally constructed NPD is better wound care procedure for management of PU. Our device gave similar results as commercially available devices. Reduction of level of MMP-8 and increased rate of healing was achieved by negative pressure wound therapy (NPWT) as compared to conventional dressing.

Keywords: NPWT, NPD, MMP8, ELISA

Procedia PDF Downloads 252
1248 Design and Implementation of Wave-Pipelined Circuit Using Reconfigurable Technique

Authors: Adhinarayanan Venkatasubramanian

Abstract:

For design of high speed digital circuit wave pipeline is the best approach this can be operated at higher operating frequencies by adjusting clock periods and skews so as latch the o/p of combinational logic circuit at the stable period. In this paper, there are two methods are proposed in automation task one is BIST (Built in self test) and second method is Reconfigurable technique. For the above two approaches dedicated AND gate (multiplier) by applying wave pipeline technique. BIST approach is implemented by Xilinx Spartan-II device. In reconfigurable technique done by ASIC. From the results, wave pipeline circuits are faster than nonpipeline circuit and area, power dissipation are reduced by reconfigurable technique.

Keywords: SOC, wave-pipelining, FPGA, self-testing, reconfigurable, ASIC

Procedia PDF Downloads 424
1247 Electronic States at SnO/SnO2 Heterointerfaces

Authors: A. Albar, U. Schwingenschlogel

Abstract:

Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface.

Keywords: density of states, ab-initio calculations, interface states, charge transfer

Procedia PDF Downloads 414
1246 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film

Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung

Abstract:

A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.

Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO

Procedia PDF Downloads 462
1245 Key Roles of the N-Type Oxide Layer in Hybrid Perovskite Solar Cells

Authors: Thierry Pauporté

Abstract:

Wide bandgap n-type oxide layers (TiO2, SnO2, ZnO etc.) play key roles in perovskite solar cells. They act as electron transport layers, and they permit the charge separation. They are also the substrate for the preparation of perovskite in the direct architecture. Therefore, they have a strong influence on the perovskite loading, its crystallinity and they can induce a degradation phenomenon upon annealing. The interface between the oxide and the perovskite is important, and the quality of this heterointerface must be optimized to limit the recombination of charges phenomena and performance losses. One can also play on the oxide and use two oxide contact layers for improving the device stability and durability. These aspects will be developed and illustrated on the basis of recent results obtained at Chimie-ParisTech.

Keywords: oxide, hybrid perovskite, solar cells, impedance

Procedia PDF Downloads 313
1244 Perfectly Keyless Commercial Vehicle

Authors: Shubha T., Latha H. K. E., Yogananth Karuppiah

Abstract:

Accessing and sharing automobiles will become much simpler thanks to the wide range of automotive use cases made possible by digital keys. This study aims to provide digital keys to car owners and drivers so they can lock or unlock their automobiles and start the engine using a smartphone or other Bluetooth low energy-enabled mobile device. Private automobile owners can digitally lend their car keys to family members or friends without having to physically meet them, possibly for a certain period of time. Owners of company automobile fleets can electronically distribute car keys to staff members, possibly granting access for a given day or length of time. Customers no longer need to physically pick up car keys at a rental desk because automobile owners can digitally transfer keys with them.

Keywords: NFC, BLE, CCC, digital key, OEM

Procedia PDF Downloads 144
1243 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design

Authors: Moulay Youssef El Hafidi

Abstract:

In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.

Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange

Procedia PDF Downloads 78
1242 Resistive Switching Characteristics of Resistive Random Access Memory Devices after Furnace Annealing Processes

Authors: Chi-Yan Chu, Kai-Chi Chuang, Huang-Chung Cheng

Abstract:

In this study, the RRAM devices with the TiN/Ti/HfOx/TiN structure were fabricated, then the electrical characteristics of the devices without annealing and after 400 °C and 500 °C of the furnace annealing (FA) temperature processes were compared. The RRAM devices after the FA’s 400 °C showed the lower forming, set and reset voltages than the other devices without annealing. However, the RRAM devices after the FA’s 500 °C did not show any electrical characteristics because the TiN/Ti/HfOx/TiN device was oxidized, as shown in the XPS analysis. From these results, the RRAM devices after the FA’s 400 °C showed the best electrical characteristics.

Keywords: RRAM, furnace annealing (FA), forming, set and reset voltages, XPS

Procedia PDF Downloads 369
1241 Dynamic Study of a Two Phase Thermosyphon Loop

Authors: Selva Georgena D., Videcoq Etienne, Caner Julien, Benselama Adel, Girault Manu

Abstract:

A Two-Phase Thermosyphon Loop (TPTL) is a passive cooling system which does not require a pump to function. Therefore, TPTL is a simple and robust device and its physics is complex to describe because of the coupled phenomena: heat flux, nucleation, fluid dynamics and gravitational effects. Moreover, the dynamic behavior of TPTL shows some physical instabilities and the actual occurrence of such a behavior remains unknown. The aim of this study is to propose a thermal balance of the TPTL to better identify the fundamental reasons for the appearance of the instabilities.

Keywords: Two-phase flow, passive cooling system, thermal reliability, thermal experimental study, liquid-vapor phase change

Procedia PDF Downloads 110
1240 New Scheme of Control and Air Supply in a Low-Power Hot Water Boiler

Authors: М. Zh. Khazimov, А. B. Kudasheva

Abstract:

The article presents the state of solid fuel reserves and their share in the world energy sector. The air pollution caused by the operation of heating devices using solid fuels is a significant problem. In order to improve the air quality, heating device producers take constant measures to improve their products. However, the emission results achieved during an initial test of heating devices in the laboratory may be much worse during operation in real operating conditions. The ways of increasing the efficiency of the boiler by improving its design for combustion in full-layer mode are shown. The results of the testing of the improved КВТС-0.2 hot water boiler is presented and the technical and economic indicators are determined, which indicate an increase in the efficiency of the boiler.

Keywords: boiler unit, grate, furnace, coal, ash

Procedia PDF Downloads 68
1239 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 168
1238 Effects of Vertimax Training on Agility, Quickness and Acceleration

Authors: Dede Basturk, Metin Kaya, Halil Taskin, Nurtekin Erkmen

Abstract:

In total, 29 students studying in Selçuk University Physical Training and Sports School who are recreationally active participated voluntarilyin this study which was carried out in order to examine effects of Vertimax trainings on agility, quickness and acceleration. 3 groups took their parts in this study as Vertimax training group (N=10), Ordinary training group (N=10) and Control group (N=9). Measurements were carried out in performance laboratory of Selçuk University Physical Training and Sports School. A training program for quickness and agility was followed up for subjects 3 days a week (Monday, Wednesday, Friday) for 8 weeks. Subjects taking their parts in vertimax training group and ordinary training group participated in the training program for quickness and agility. Measurements were applied as pre-test and post-test. Subjects of vertimax training group followed the training program with vertimax device and subjects of ordinary training group followed the training program without vertimax device. As to control group who are recreationally active, they did not participate in any program. 4 gate photocells were used for measuring and measurement of distances was carried out in m. Furthermore, single gate photocell and honi were used for agility test. Measurements started with 15 minutes of warm-up. Acceleration, quickness and agility tests were applied on subjects. 3 measurements were made for each subject at 3 minutes resting intervals. The best rating of three measurements was recorded. 5 m quickness pre-test value of vertimax training groups has been determined as 1,11±0,06 s and post-test value has been determined as 1,06 ± 0,08 s (P<0,05). 5 m quickness pre-test value of ordinary training group has been determined as 1,11±0,06 s and post-test value has been determined as 1,07±0,07 s (P<0,05).5 m quickness pre-test value of control group has been determined as 1,13±0,08 s and post-test value has been determined as 1,10 ± 0,07 s (P>0,05). Upon examination of 10 m acceleration value before and after the training, 10 m acceleration pre-test value of vertimax training group has been determined as 1,82 ± 0,07 s and post-test value has been determined as 1,76±0,83 s (P>0,05). 10 m acceleration pre-test value of ordinary training group has been determined as 1,83±0,05 s and post-test value has been determined as 1,78 ± 0,08 s (P>0,05).10 m acceleration pre-test value of control group has been determined as 1,87±0,11 s and post-test value has been determined as 1,83 ± 0,09 s (P>0,05). Upon examination of 15 m acceleration value before and after the training, 15 m acceleration pre-test value of vertimax training group has been determined as 2,52±0,10 s and post-test value has been determined as 2,46 ± 0,11 s (P>0,05).15 m acceleration pre-test value of ordinary training group has been determined as 2,52±0,05 s and post-test value has been determined as 2,48 ± 0,06 s (P>0,05). 15 m acceleration pre-test value of control group has been determined as 2,55 ± 0,11 s and post-test value has been determined as 2,54 ± 0,08 s (P>0,05).Upon examination of agility performance before and after the training, agility pre-test value of vertimax training group has been determined as 9,50±0,47 s and post-test value has been determined as 9,66 ± 0,47 s (P>0,05). Agility pre-test value of ordinary training group has been determined as 9,99 ± 0,05 s and post-test value has been determined as 9,86 ± 0,40 s (P>0,05). Agility pre-test value of control group has been determined as 9,74 ± 0,45 s and post-test value has been determined as 9,92 ± 0,49 s (P>0,05). Consequently, it has been observed that quickness and acceleration features were developed significantly following 8 weeks of vertimax training program and agility features were not developed significantly. It is suggested that training practices used for the study may be used for situations which may require sudden moves and in order to attain the maximum speed in a short time. Nevertheless, it is also suggested that this training practice does not make contribution in development of moves which may require sudden direction changes. It is suggested that productiveness and innovation may come off in terms of training by using various practices of vertimax trainings.

Keywords: vertimax, training, quickness, agility, acceleration

Procedia PDF Downloads 491
1237 Diagnostics via Biophysical Resistotrons

Authors: Matt Vellkorn, Mara Sarinski

Abstract:

The field of advanced diagnostics is a very rapidly changing one. A new technology that has not been fully used yet are resistotrons. A resistotron is a physical device thatis used to detect the presence of low energy alpha particles. It has been used for many years in nuclear physics as an alpha particle detector. Since they are used in nuclear physics, they have to be accurate. They have to be able to differentiate between alpha particles and other types of radiation. The resistotrons are primarily used for safety. They are used in areas where people or animals can get exposed to radiation. A typical example is in the treatment of nuclear waste. As it is with any nuclear physics instrument, a resistotron has to be very accurate and reliable. In the past, the instrument was very expensive because they were made out of copper. Today, they are made out of brass. The main difference is that brass is much less expensive than copper.

Keywords: biosensors, resistotrons, biophysics, diagnostics

Procedia PDF Downloads 120
1236 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee

Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan

Abstract:

This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.

Keywords: bio-medical sensors, monitoring, logging, cloud service

Procedia PDF Downloads 519
1235 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles

Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.

Keywords: mobile mapping, GNSS, IMU, similarity, classification

Procedia PDF Downloads 81
1234 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling

Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose

Abstract:

The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.

Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE

Procedia PDF Downloads 257
1233 A Measurement Device of Condensing Flow Rate, an Order of MilliGrams per Second

Authors: Hee Joon Lee

Abstract:

There are many difficulties in measuring a small flow rate of an order of milli grams per minute (LPM) or less using a conventional flowmeter. Therefore, a flow meter with minimal loss and based on a new concept was designed as part of this paper. A chamber was manufactured with a level transmitter and an on-off control valve. When the level of the collected condensed water reaches the top of the chamber, the valve opens to allow the collected water to drain back into the tank. To allow the water to continue to drain when the signal is lost, the valve is held open for a few seconds by a time delay switch and then closed. After an examination, the condensing flow rate was successfully measured with the uncertainty of ±5.7% of the full scale for the chamber.

Keywords: chamber, condensation, flow meter, milli-grams

Procedia PDF Downloads 280
1232 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions

Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili

Abstract:

This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.

Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability

Procedia PDF Downloads 140
1231 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 400
1230 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations

Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane

Abstract:

In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.

Keywords: chaos, fractional-order, Melnikov method, nanobeam

Procedia PDF Downloads 159
1229 Development of Portable Hybrid Renewable Energy System for Sustainable Electricity Supply to Rural Communities in Nigeria

Authors: Abdulkarim Nasir, Alhassan T. Yahaya, Hauwa T. Abdulkarim, Abdussalam El-Suleiman, Yakubu K. Abubakar

Abstract:

The need for sustainable and reliable electricity supply in rural communities of Nigeria remains a pressing issue, given the country's vast energy deficit and the significant number of inhabitants lacking access to electricity. This research focuses on the development of a portable hybrid renewable energy system designed to provide a sustainable and efficient electricity supply to these underserved regions. The proposed system integrates multiple renewable energy sources, specifically solar and wind, to harness the abundant natural resources available in Nigeria. The design and development process involves the selection and optimization of components such as photovoltaic panels, wind turbines, energy storage units (batteries), and power management systems. These components are chosen based on their suitability for rural environments, cost-effectiveness, and ease of maintenance. The hybrid system is designed to be portable, allowing for easy transportation and deployment in remote locations with limited infrastructure. Key to the system's effectiveness is its hybrid nature, which ensures continuous power supply by compensating for the intermittent nature of individual renewable sources. Solar energy is harnessed during the day, while wind energy is captured whenever wind conditions are favourable, thus ensuring a more stable and reliable energy output. Energy storage units are critical in this setup, storing excess energy generated during peak production times and supplying power during periods of low renewable generation. These studies include assessing the solar irradiance, wind speed patterns, and energy consumption needs of rural communities. The simulation results inform the optimization of the system's design to maximize energy efficiency and reliability. This paper presents the development and evaluation of a 4 kW standalone hybrid system combining wind and solar power. The portable device measures approximately 8 feet 5 inches in width, 8 inches 4 inches in depth, and around 38 feet in height. It includes four solar panels with a capacity of 120 watts each, a 1.5 kW wind turbine, a solar charge controller, remote power storage, batteries, and battery control mechanisms. Designed to operate independently of the grid, this hybrid device offers versatility for use in highways and various other applications. It also presents a summary and characterization of the device, along with photovoltaic data collected in Nigeria during the month of April. The construction plan for the hybrid energy tower is outlined, which involves combining a vertical-axis wind turbine with solar panels to harness both wind and solar energy. Positioned between the roadway divider and automobiles, the tower takes advantage of the air velocity generated by passing vehicles. The solar panels are strategically mounted to deflect air toward the turbine while generating energy. Generators and gear systems attached to the turbine shaft enable power generation, offering a portable solution to energy challenges in Nigerian communities. The study also addresses the economic feasibility of the system, considering the initial investment costs, maintenance, and potential savings from reduced fossil fuel use. A comparative analysis with traditional energy supply methods highlights the long-term benefits and sustainability of the hybrid system.

Keywords: renewable energy, solar panel, wind turbine, hybrid system, generator

Procedia PDF Downloads 40
1228 The Complexity of Testing Cryptographic Devices on Input Faults

Authors: Alisher Ikramov, Gayrat Juraev

Abstract:

The production of logic devices faces the occurrence of faults during manufacturing. This work analyses the complexity of testing a special type of logic device on inverse, adhesion, and constant input faults. The focus of this work is on devices that implement cryptographic functions. The complexity values for the general case faults and for some frequently occurring subsets were determined and proved in this work. For a special case, when the length of the text block is equal to the length of the key block, the complexity of testing is proven to be asymptotically half the complexity of testing all logic devices on the same types of input faults.

Keywords: complexity, cryptographic devices, input faults, testing

Procedia PDF Downloads 223
1227 An Elegant Technique to Achieve ZCS in a Boost Converter Incorporating Complete Energy Transfer

Authors: Nagesh Vangala, Rayudu Mannam

Abstract:

Soft switching has attracted the interest of various researchers constantly. Many techniques are in vogue to achieve soft switching (ZVS and/or ZCS) in Boost converters. These techniques utilize an auxiliary switch to incorporate the ZCS/ZVS. Such schemes require additional control circuit and induce complexity in design. This paper proposes an elegant fly back approach which guarantees zero current switching of the main Switch without the need for any additional active device. A simple flyback transformer scheme is implemented which absorbs the initial turn ON energy (or the Reverse recovery energy of Boost diode) and delivers to the output.

Keywords: boost converter, complete energy transfer, flyback, zero current switching

Procedia PDF Downloads 394
1226 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage

Procedia PDF Downloads 257
1225 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 458
1224 Electability of Stable Insiders’ Coalition Governments

Authors: Tryphon Kollintzas, Lambros Pechlivanos

Abstract:

In this paper, we formulate a general equilibrium theory that explains the existence and stability of democratically elected governments that support certain groups of individuals in society (insiders) to the detriment of everybody else (outsiders), even if the latter constitute a majority. The vehicle is a dynamic general equilibrium model, where insiders get monopoly rents and outsiders get less than what they would have gotten under a common good regime. We construct such political economy equilibria, and we identify the conditions under which such political regimes (coalitions of insiders): (a) can safeguard against opportunistic behavior (i.e., do not fall from within) and (b) may come to power in the first place (i.e., manage to get elected). To that end, we highlight the role of perception manipulation and self-serving bias as a gluing device to garner an electable coalition.

Keywords: insiders, coalition governments, stability, electability, politico-economic equilibrium, perceptions manipulation

Procedia PDF Downloads 65