Search results for: modal residual force
2543 New Teaching Tools for a Modern Representation of Chemical Bond in the Course of Food Science
Authors: Nicola G. G. Cecca
Abstract:
In Italian IPSSEOAs, high schools that give a vocational education to students that will work in the field of Enogastronomy and Hotel Management, the course of Food Science allows the students to start and see food as a mixture of substances that they will transform during their profession. These substances are characterized not only by a chemical composition but also by a molecular structure that makes them nutritionally active. But the increasing number of new products proposed by Food Industry, the modern techniques of production and transformation, the innovative preparations required by customers have made many information reported in the most wide spread Food Science textbooks not up-to-date or too poor for the people who will work in catering sector. Often Authors offer information aged to Bohr’s Atomic Model and to the ‘Octet Rule’ proposed by G.N. Lewis to describe the Chemical Bond, without giving any reference to new as Orbital Atomic Model and Molecular Orbital Theory that, in the meantime, start to be old themselves. Furthermore, this antiquated information precludes an easy understanding of a wide range of properties of nutritive substances and many reactions in which the food constituents are involved. In this paper, our attention is pointed out to use GEOMAG™ to represent the dynamics with which the chemical bond is formed during the synthesis of the molecules. GEOMAG™ is a toy, produced by the Swiss Company Geomagword S.A., pointed to stimulate in children, aged between 6-10 years, their fantasy and their handling ability and constituted by metallic spheres and metallic magnetic bars coated by coloured plastic materials. The simulation carried out with GEOMAG™ is based on the similitude existing between the Coulomb’s force and the magnetic attraction’s force and in particular between the formulae with which they are calculated. The electrostatic force (F in Newton) that allows the formation of the chemical bond can be calculated by mean Fc = kc q1 q2/d2 where: q1 e q2 are the charge of particles [in Coulomb], d is the distance between the particles [in meters] and kc is the Coulomb’s constant. It is surprising to observe that the attraction’s force (Fm) acting between the magnetic extremities of GEOMAG™ used to simulate the chemical bond can be calculated in the same way by using the formula Fm = km m1 m2/d2 where: m1 e m2 represent the strength of the poles [A•m], d is the distance between the particles [m], km = μ/4π in which μ is the magnetic permeability of medium [N•A-2]. The magnetic attraction can be tested by students by trying to keep the magnetic elements of GEOMAG™ separate by hands or trying to measure by mean an appropriate dynamometric system. Furthermore, by using a dynamometric system to measure the magnetic attraction between the GEOMAG™ elements is possible draw a graphic F=f(d) to verify that the curve obtained during the simulation is very similar to that one hypnotized, around the 1920’s by Linus Pauling to describe the formation of H2+ in according with Molecular Orbital Theory.Keywords: chemical bond, molecular orbital theory, magnetic attraction force, GEOMAG™
Procedia PDF Downloads 2712542 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test
Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi
Abstract:
Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete
Procedia PDF Downloads 1492541 A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model
Authors: Debabrata Auddya, Bradley J. Roth
Abstract:
The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge.Keywords: cell colony, integrin, mechanical bidomain model, stem cell, stress-strain, traction force
Procedia PDF Downloads 2412540 Analysis of the Operating Load of Gas Bearings in the Gas Generator of the Turbine Engine during a Deceleration to Dash Maneuver
Authors: Zbigniew Czyz, Pawel Magryta, Mateusz Paszko
Abstract:
The paper discusses the status of loads acting on the drive unit of the unmanned helicopter during deceleration to dash maneuver. Special attention was given for the loads of bearings in the gas generator turbine engine, in which will be equipped a helicopter. The analysis was based on the speed changes as a function of time for manned flight of helicopter PZL W3-Falcon. The dependence of speed change during the flight was approximated by the least squares method and then determined for its changes in acceleration. This enabled us to specify the forces acting on the bearing of the gas generator in static and dynamic conditions. Deceleration to dash maneuvers occurs in steady flight at a speed of 222 km/h by horizontal braking and acceleration. When the speed reaches 92 km/h, it dynamically changes an inclination of the helicopter to the maximum acceleration and power to almost maximum and holds it until it reaches its initial speed. This type of maneuvers are used due to ineffective shots at significant cruising speeds. It is, therefore, important to reduce speed to the optimum as soon as possible and after giving a shot to return to the initial speed (cruising). In deceleration to dash maneuvers, we have to deal with the force of gravity of the rotor assembly, gas aerodynamics forces and the forces caused by axial acceleration during this maneuver. While we can assume that the working components of the gas generator are designed so that axial gas forces they create could balance the aerodynamic effects, the remaining ones operate with a value that results from the motion profile of the aircraft. Based on the analysis, we can make a compilation of the results. For this maneuver, the force of gravity (referring to statistical calculations) respectively equals for bearing A = 5.638 N and bearing B = 1.631 N. As overload coefficient k in this direction is 1, this force results solely from the weight of the rotor assembly. For this maneuver, the acceleration in the longitudinal direction achieved value a_max = 4.36 m/s2. Overload coefficient k is, therefore, 0.44. When we multiply overload coefficient k by the weight of all gas generator components that act on the axial bearing, the force caused by axial acceleration during deceleration to dash maneuver equals only 3.15 N. The results of the calculations are compared with other maneuvers such as acceleration and deceleration and jump up and jump down maneuvers. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: gas bearings, helicopters, helicopter maneuvers, turbine engines
Procedia PDF Downloads 3402539 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)
Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park
Abstract:
Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.Keywords: CLOF, natural circulation, PRHRS, SMART-ITL
Procedia PDF Downloads 4412538 Stability Design by Geometrical Nonlinear Analysis Using Equivalent Geometric Imperfections
Authors: S. Fominow, C. Dobert
Abstract:
The present article describes the research that deals with the development of equivalent geometric imperfections for the stability design of steel members considering lateral-torsional buckling. The application of these equivalent imperfections takes into account the stiffness-reducing effects due to inelasticity and residual stresses, which lead to a reduction of the load carrying capacity of slender members and structures. This allows the application of a simplified design method, that is performed in three steps. Application of equivalent geometric imperfections, determination of internal forces using geometrical non-linear analysis (GNIA) and verification of the cross-section resistance at the most unfavourable location. All three verification steps are closely related and influence the results. The derivation of the equivalent imperfections was carried out in several steps. First, reference lateral-torsional buckling resistances for various rolled I-sections, slenderness grades, load shapes and steel grades were determined. This was done either with geometric and material non-linear analysis with geometrical imperfections and residual stresses (GMNIA) or for standard cases based on the equivalent member method. With the aim of obtaining identical lateral-torsional buckling resistances as the reference resistances from the application of the design method, the required sizes for equivalent imperfections were derived. For this purpose, a program based on the FEM method has been developed. Based on these results, several proposals for the specification of equivalent geometric imperfections have been developed. These differ in the shape of the applied equivalent geometric imperfection, the model of the cross-sectional resistance and the steel grade. The proposed design methods allow a wide range of applications and a reliable calculation of the lateral-torsional buckling resistances, as comparisons between the calculated resistances and the reference resistances have shown.Keywords: equivalent geometric imperfections, GMNIA, lateral-torsional buckling, non-linear finite element analysis
Procedia PDF Downloads 1562537 Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits
Authors: Ainul Haque, Ameeye Kumar Nayak
Abstract:
Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation.Keywords: electroosmotic flow, hydrophobic surface, power-law fluid, shear effect
Procedia PDF Downloads 3782536 Structural Changes and Formation of Calcium Complexes in Corn Starch Processed by Nixtamalization
Authors: Arámbula-Villa Gerónimo, García-Lara Kenia Y., Figueroa-Cárdenas J. D., Pérez-Robles J. F., Jiménez-Sandoval S., Salazar-López R., Herrera-Corredor J. A.
Abstract:
The nixtamalization process (thermal-alkaline method) improves the nutritional part of the corn grain. In this process, the using of Ca(OH)₂ is basic, although the chemical mechanisms between this alkali and the carbohydrates (starch), proteins, lipids, and fiber have not been fully identified. In this study, the native corn starch was taken as a model, and it was subjected to cooking with different concentrations of lime (nixtamalization process) and specific studies of FTIR and XRD were carried out to identify the formation of chemical compounds, and the physical, physicochemical, rheological (paste) and structural properties of material obtained were determined. The FTIR spectra showed the formation of calcium-starch complexes. The treatments with Ca(OH)₂ showed a band shift towards 1675 cm⁻¹ and a band in 1436 cm⁻¹ (COO⁻), indicating the oxidation of starch. Three bands were identified (1575, 1550, and 1540 cm⁻¹) characteristics of carboxylic acid salts for three types of coordinated structures: monodentate, pseudo-bridged, and bidentate. The XRD spectra of starch treated with Ca(OH)₂ showed a peak corresponding to CaCO₃ (29.40°). The oxidation of starch was favored with low concentrations of Ca(OH)₂, producing carboxyl and carbonyl groups and increasing the residual CaCO₃. The increased concentration of Ca(OH)₂ showed the formation of calcium carboxylates, with a decrease in relative crystallinity and residual CaCO₃. Samples with low concentrations of Ca(OH)₂ slowed the onset of gelatinization and increased the swelling of the granules and the peak viscosity. The higher concentrations of Ca(OH)₂ difficulted the water absorption and decreased the viscosity rate and peak viscosity. These results can be used to improve the quality characteristics of the dough and tortillas and to get better acceptance by consumers.Keywords: maize starch, nixtamalization, gelatinization, calcium carboxylates
Procedia PDF Downloads 962535 Design Modification of Lap Joint of Fiber Metal Laminates (CARALL)
Authors: Shaher Bano, Samia Fida, Asif Israr
Abstract:
The synergistic effect of properties of metals and fibers reinforced laminates has diverted attention of the world towards use of robust composite materials known as fiber-metal laminates in many high performance applications. In this study, modification of an adhesively bonded joint as a single lap joint of carbon fibers based CARALL FML has done to increase interlaminar shear strength of the joint. The effect of different configurations of joint designs such as spews, stepped and modification in adhesive by addition of nano-fillers was studied. Both experimental and simulation results showed that modified joint design have superior properties as maximum force experienced stepped joint was 1.5 times more than the simple lap joint. Addition of carbon nano-tubes as nano-fillers in the adhesive joint increased the maximum force due to crack deflection mechanism.Keywords: adhesive joint, Carbon Reinforced Aluminium Laminate (CARALL), fiber metal laminates, spews
Procedia PDF Downloads 2372534 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process
Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei
Abstract:
Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.Keywords: Iranian processed cheese, emulsifying salt, rheology, texture
Procedia PDF Downloads 4332533 Identifying the Determinants of Compliance with Maritime Environmental Legislation in the North and Baltic Sea Area: A Model Developed from Exploratory Qualitative Data Collection
Authors: Thea Freese, Michael Gille, Andrew Hursthouse, John Struthers
Abstract:
Ship operators on the North and Baltic Sea have been experiencing increased political interest in marine environmental protection and cleaner vessel operations. Stricter legislation on SO2 and NOx emissions, ballast water management and other measures of protection are currently being phased in or will come into force in the coming years. These measures benefit the health of the marine environment, while increasing company’s operational costs. In times of excess shipping capacity and linked consolidation in the industry non-compliance with environmental rules is one way companies might hope to stay competitive with both intra- and inter-modal trade. Around 5-15% of industry participants are believed to neglect laws on vessel-source pollution willingly or unwillingly. Exploratory in-depth interviews conducted with 12 experts from various stakeholder groups informed the researchers about variables influencing compliance levels, including awareness and apprehension, willingness to comply, ability to comply and effectiveness of controls. Semi-structured expert interviews were evaluated using qualitative content analysis. A model of determinants of compliance was developed and is presented here. While most vessel operators endeavour to achieve full compliance with environmental rules, a lack of availability of technical solutions, expediency of implementation and operation and economic feasibility might prove a hindrance. Ineffective control systems on the other hand foster willing non-compliance. With respect to motivations, lacking time, lacking financials and the absence of commercial advantages decrease compliance levels. These and other variables were inductively developed from qualitative data and integrated into a model on environmental compliance. The outcomes presented here form part of a wider research project on economic effects of maritime environmental legislation. Research on determinants of compliance might inform policy-makers about actual behavioural effects of shipping companies and might further the development of a comprehensive legal system for environmental protection.Keywords: compliance, marine environmental protection, exploratory qualitative research study, clean vessel operations, North and Baltic Sea area
Procedia PDF Downloads 3832532 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 3162531 Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: flexural strength, durabilty, lime, coir fibers, bending force, ductility
Procedia PDF Downloads 4672530 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 1962529 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum
Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park
Abstract:
When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.Keywords: floating floor, heavy-weight impact, prediction, vibration
Procedia PDF Downloads 3722528 Evaluate the Changes in Stress Level Using Facial Thermal Imaging
Authors: Amin Derakhshan, Mohammad Mikaili, Mohammad Ali Khalilzadeh, Amin Mohammadian
Abstract:
This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods.Keywords: stress, thermal imaging, face, SVM, polygraph
Procedia PDF Downloads 4872527 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis
Authors: Mouataz Zreika, Maria Estela Varua
Abstract:
Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.Keywords: clustering, force-directed, graph drawing, stock investment analysis
Procedia PDF Downloads 3022526 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model
Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan
Abstract:
Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket
Procedia PDF Downloads 3952525 Bowing of a Pipeline from Longitudinal Compressive Stress Induced by Ground Movement
Authors: Gennaro Marino
Abstract:
This paper concerns a case of a 10.75 inch diameter buried gas transmission line which was exposed to mine subsidence ground movements. The pipeline was buried about 4ft. below the surface with maximum operating pressure of 1440 psi. The mine subsidence movement was the result of long walling ore at a depth of approximately 1600 ft. As ore extraction progressed, the stress in the monitored pipeline worsened and was approaching unacceptable levels. The excessive pipe compression resulted when it was exposed to the compression zone of subsidence basin created by mining. The pipe stress reached a significant compressive level due to the extensive length of the pipe exposed to frictional ground-pipe slip resistance. The backfill ground movement slip resistance depends on normal stress around the pipe, the rate of slip, and the backfill characteristics. Normal stress depends on the burial depth of the backfill density and the lateral subsidence induced stress. The backfill in this site has a soil dry density of approximately 90 PCF. A suite of direct shear tests was conducted a residual friction angle of 36 was determined for the ambient backfill. These tests showed that the residual shearing resistance was reached within a fraction of an inch. The pipe was coated with fusion-bonded epoxy, so friction reduce factory of 0.6 can be considered. To relieve ground movement induced compressive stress, the line was uncovered. As more of the pipeline was exposed, the pipe abruptly bowed in the excavation. An analysis of this pipe formation which was performed is provided in this paper. Also discussed in this paper are ways to mitigate this pipe deformation or upheaval buckling from occurring. Keywords: Pipe Upheaval, Pipe Buckling, Ground subsidence, Buried Pipeline, Pipe Stress Mitigation.Keywords: pipe upheaval, pipe buckling, ground subsidence, buried pipeline, pipe stress mitigation
Procedia PDF Downloads 1622524 Best Practices and Recommendations for CFD Simulation of Hydraulic Spool Valves
Authors: Jérémy Philippe, Lucien Baldas, Batoul Attar, Jean-Charles Mare
Abstract:
The proposed communication deals with the research and development of a rotary direct-drive servo valve for aerospace applications. A key challenge of the project is to downsize the electromagnetic torque motor by reducing the torque required to drive the rotary spool. It is intended to optimize the spool and the sleeve geometries by combining a Computational Fluid Dynamics (CFD) approach with commercial optimization software. The present communication addresses an important phase of the project, which consists firstly of gaining confidence in the simulation results. It is well known that the force needed to pilot a sliding spool valve comes from several physical effects: hydraulic forces, friction and inertia/mass of the moving assembly. Among them, the flow force is usually a major contributor to the steady-state (or Root Mean Square) driving torque. In recent decades, CFD has gradually become a standard simulation tool for studying fluid-structure interactions. However, in the particular case of high-pressure valve design, the authors have experienced that the calculated overall hydraulic force depends on the parameterization and options used to build and run the CFD model. To solve this issue, the authors have selected the standard case of the linear spool valve, which is addressed in detail in numerous scientific references (analytical models, experiments, CFD simulations). The first CFD simulations run by the authors have shown that the evolution of the equivalent discharge coefficient vs. Reynolds number at the metering orifice corresponds well to the values that can be predicted by the classical analytical models. Oppositely, the simulated flow force was found to be quite different from the value calculated analytically. This drove the authors to investigate minutely the influence of the studied domain and the setting of the CFD simulation. It was firstly shown that the flow recirculates in the inlet and outlet channels if their length is not sufficient regarding their hydraulic diameter. The dead volume on the uncontrolled orifice side also plays a significant role. These examples highlight the influence of the geometry of the fluid domain considered. The second action was to investigate the influence of the type of mesh, the turbulence models and near-wall approaches, and the numerical solver and discretization scheme order. Two approaches were used to determine the overall hydraulic force acting on the moving spool. First, the force was deduced from the momentum balance on a control domain delimited by the valve inlet and outlet and the spool walls. Second, the overall hydraulic force was calculated from the integral of pressure and shear forces acting at the boundaries of the fluid domain. This underlined the significant contribution of the viscous forces acting on the spool between the inlet and outlet orifices, which are generally not considered in the literature. This also emphasized the influence of the choices made for the implementation of CFD calculation and results analysis. With the step-by-step process adopted to increase confidence in the CFD simulations, the authors propose a set of best practices and recommendations for the efficient use of CFD to design high-pressure spool valves.Keywords: computational fluid dynamics, hydraulic forces, servovalve, rotary servovalve
Procedia PDF Downloads 452523 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs
Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter
Abstract:
The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.Keywords: initial water saturation, permeability, porosity, surfactant EOR
Procedia PDF Downloads 1632522 An Approach to Low Velocity Impact Damage Modelling of Variable Stiffness Curved Composite Plates
Authors: Buddhi Arachchige, Hessam Ghasemnejad
Abstract:
In this study, the post impact behavior of curved composite plates subjected to low velocity impact was studied analytically and numerically. Approaches to damage modelling are proposed through the degradation of stiffness in the damaged region by reduction of thickness in the damage region. Spring-mass models were used to model the impact response of the plate and impactor. The study involved designing two damage models to compare and contrast the model best fitted with the numerical results. The theoretical force-time responses were compared with the numerical results obtained through a detailed study carried out in LS-DYNA. The modified damage model established a good prediction with the analytical force-time response for different layups and geometry. This study provides a gateway in selecting the most effective layups for variable stiffness curved composite panels able to withstand a higher impact damage.Keywords: analytical modelling, composite damage, impact, variable stiffness
Procedia PDF Downloads 2782521 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method
Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer
Abstract:
This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper
Procedia PDF Downloads 3452520 Viability of Slab Sliding System for Single Story Structure
Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase
Abstract:
Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.Keywords: earthquake, isolation, slab, sliding
Procedia PDF Downloads 2522519 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine
Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez
Abstract:
An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.Keywords: blade, dynamic, fsi, wind turbine
Procedia PDF Downloads 4822518 Caped Intervention: A Single Country Comparative Study of the Role of Russia in Its Involvement in the Crimean Crisis 2014
Authors: Katrina Angeline Santos, Francis Mark Fernandez, Francheska Esmao
Abstract:
Intervention is defined as a forcible interference by a state or states with power in the affairs of another state using force or the threat of force. On the other hand, a military intervention is an intervention, specifically used to define an intervention which uses force. With these, the authors realized a lack in the concept of intervention wherein it is an invited one.The authors wrote this paper to introduce a concept of intervention wherein the intervening state is offering assistance to the state in crisis which asked for one. The authors decided to make a contextual description of this phenomenon because of the lack of concepts regarding intervention between the idea of a single state performing a ‘heroic’ role of intervening in the crisis of another state. The problem that the authors would like to address is regarding the lack of availability in the concept of intervention wherein the state in crisis is seeking the assistance of another state. The authors utilized a contextual description approach to the study through the descriptive presentation of the series of events, by utilizing the news articles and news reports published, which happened in Ukraine and Crimea. This concept is further demonstrated through the utilization of a conceptual framework which shows the mutual relationship between the states. From the analysis of the behavior of Russia and its role in the Crimean Crisis 2014, the authors are able to coin the term, 'Caped Intervention' to describe an intervention of a state as a response to the invitation of assistance of a state in crisis in order for them to achieve their goals. This concept entails a mutual relationship between an intervening state and a sate in crisis. The concept of Caped Intervention describes the role of Russia as a Caped State or an intervening state observed through its action towards Crimea. This concept will help in the observation of the behavior of actors or states in events such as this. It will further help in analyzing the actors’ role in intervention by making it possible to classify the intervening acts into another concept.Keywords: assistance, caped intervention, crisis, heroic
Procedia PDF Downloads 3122517 Mathematical Properties of the Resonance of the Inner Waves in Rotating Stratified Three-Dimensional Fluids
Authors: A. Giniatoulline
Abstract:
We consider the internal oscillations of the ocean which are caused by the gravity force and the Coriolis force, for different models with changeable density, heat transfer, and salinity. Traditionally, the mathematical description of the resonance effect is related to the growing amplitude as a result of input vibrations. We offer a different approach: the study of the relation between the spectrum of the internal oscillations and the properties of the limiting amplitude of the solution for the harmonic input vibrations of the external forces. Using the results of the spectral theory of self-adjoint operators in Hilbert functional spaces, we prove that there exists an explicit relation between the localization of the frequency of the external input vibrations with respect to the essential spectrum of proper inner oscillations and the non-uniqueness of the limiting amplitude. The results may find their application in various problems concerning mathematical modeling of turbulent flows in the ocean.Keywords: computational fluid dynamics, essential spectrum, limiting amplitude, rotating fluid, spectral theory, stratified fluid, the uniqueness of solutions of PDE equations
Procedia PDF Downloads 2582516 Checking Planetary Clutch on the Romania Tractor Using Mathematical Equations
Authors: Mohammad Vahedi Torshizi
Abstract:
In this investigation, at first, bending stress, contact stress, Safety factor of bending and Safety factor of contact between sun gear and planet gear tooth was determined using mathematical equations. Also, The amount of Sun Revolution in, Speed carrier, power Transmitted of the sun, sun torque, sun peripheral speed, Enter the tangential force gears, was calculated using mathematical equations. According to the obtained results, maximum of bending stress and contact stress occurred in three plantary and low status of four plantary. Also, maximum of Speed carrier, sun peripheral speed, Safety factor of bending and Safety factor of contact obtained in four plantary and maximum of power Transmitted of the sun, Enter the tangential force gears, bending stress and contact stress was in three pantry and factors And other factors were equal in the two planets.Keywords: bending stress, contact stress, plantary, mathematical equations
Procedia PDF Downloads 2892515 The Acute Effects of Higher Versus Lower Load Duration and Intensity on Morphological and Mechanical Properties of the Healthy Achilles Tendon: A Randomized Crossover Trial
Authors: Eman Merza, Stephen Pearson, Glen Lichtwark, Peter Malliaras
Abstract:
The Achilles tendon (AT) exhibits volume changes related to fluid flow under acute load which may be linked to changes in stiffness. Fluid flow provides a mechanical signal for cellular activity and may be one mechanism that facilitates tendon adaptation. This study aimed to investigate whether isometric intervention involving a high level of load duration and intensity could maximize the immediate reduction in AT volume and stiffness compared to interventions involving a lower level of load duration and intensity. Sixteen healthy participants (12 males, 4 females; age= 24.4 ± 9.4 years; body mass= 70.9 ± 16.1 kg; height= 1.7 ± 0.1 m) performed three isometric interventions of varying levels of load duration (2 s and 8 s) and intensity (35% and 75% maximal voluntary isometric contraction) over a 3 week period. Freehand 3D ultrasound was used to measure free AT volume (at rest) and length (at 35%, 55%, and 75% of maximum plantarflexion force) pre- and post-interventions. The slope of the force-elongation curve over these force levels represented individual stiffness (N/mm). Large reductions in free AT volume and stiffness resulted in response to long-duration high-intensity loading whilst less reduction was produced with a lower load intensity. In contrast, no change in free AT volume and a small increase in AT stiffness occurred with lower load duration. These findings suggest that the applied load on the AT must be heavy and sustained for a long duration to maximize immediate volume reduction, which might be an acute response that enables optimal long-term tendon adaptation via mechanotransduction pathways.Keywords: Achilles tendon, volume, stiffness, free tendon, 3d ultrasound
Procedia PDF Downloads 1022514 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA
Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng
Abstract:
This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation
Procedia PDF Downloads 397