Search results for: industrial robot
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3731

Search results for: industrial robot

3041 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.

Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation

Procedia PDF Downloads 451
3040 Modbus Gateway Design Using Arm Microprocessor

Authors: Semanur Savruk, Onur Akbatı

Abstract:

Integration of various communication protocols into an automation system causes a rise in setup and maintenance cost and make to control network devices in difficulty. The gateway becomes necessary for reducing complexity in network topology. In this study, Modbus RTU/Modbus TCP industrial ethernet gateway design and implementation are presented with ARM embedded system and FreeRTOS real-time operating system. The Modbus gateway can perform communication with Modbus RTU and Modbus TCP devices over itself. Moreover, the gateway can be adjustable with the user-interface application or messaging interface. Conducted experiments and the results are presented in the paper. Eventually, the proposed system is a complete, low-cost, real-time, and user-friendly design for monitoring and setting devices and useful for meeting remote control purposes.

Keywords: gateway, industrial communication, modbus, network

Procedia PDF Downloads 144
3039 The Digitalization of Occupational Health and Safety Training: A Fourth Industrial Revolution Perspective

Authors: Deonie Botha

Abstract:

Digital transformation and the digitization of occupational health and safety training have grown exponentially due to a variety of contributing factors. The literature suggests that digitalization has numerous benefits but also has associated challenges. The aim of the paper is to develop an understanding of both the perceived benefits and challenges of digitalization in an occupational health and safety context in an effort to design and develop e-learning interventions that will optimize the benefits of digitalization and address the associated challenges. The paper proposes, deliberate and tests the design principles of an e-learning intervention to ensure alignment with the requirements of a digitally transformed environment. The results of the research are based on a literature review regarding the requirements and effect of the Fourth Industrial Revolution on learning and e-learning in particular. The findings of the literature review are enhanced with empirical research in the form of a case study conducted in an organization that designs and develops e-learning content in the occupational health and safety industry. The primary findings of the research indicated that: (i) The requirements of learners and organizations in respect of e-learning are different than previously (i.e., a pre-Fourth Industrial Revolution related work setting). (ii) The design principles of an e-learning intervention need to be aligned with the entire value chain of the organization. (iii) Digital twins support and enhance the design and development of e-learning. (iv)Learning should incorporate a multitude of sensory experiences and should not only be based on visual stimulation. (v) Data that are generated as a result of e-learning interventions should be incorporated into big data streams to be analyzed and to become actionable. It is therefore concluded that there is general consensus on the requirements that e-learning interventions need to adhere to in a digitally transformed occupational health and safety work environment. The challenge remains for organizations to incorporate data generated as a result of e-learning interventions into the digital ecosystem of the organization.

Keywords: digitalization, training, fourth industrial revolution, big data

Procedia PDF Downloads 162
3038 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 617
3037 Improving Swelling Performance Using Industrial Waste Products

Authors: Mohieldin Elmashad, Salwa Yassin

Abstract:

Expansive soils regarded as one of the most problematic unsaturated formations in the Egyptian arid zones and present a great challenge in civil engineering, in general, and geotechnical engineering, in particular. Severe geotechnical complications and consequent structural damages have been arising due to an excessive and differential volumetric change upon wetting and change in water content. Different studies have been carried out concerning the swelling performance of the expansive soils using different additives including phospho-gypsum as an industrial waste product. However, this paper describes the results of a comprehensive testing programme that was carried out to investigate the effect of phospho-gypsum (PG) and sodium chloride (NaCl), as an additive mixture, on the swelling performance of constituent samples of swelling soils. The constituent samples comprise commercial bentonite collected from a natural site, mixed with different percentages of PG-NaCl mixture. The testing programme had been scoped to cover the physical and chemical properties of the constituent samples. In addition, a mineralogical study using x-ray diffraction (XRD) was performed on the collected bentonite and the mixed bentonite with PG-NaCl mixture samples. The obtained results of this study showed significant improvement in the swelling performance of the tested samples with the increase of the proposed PG-NaCl mixture content.

Keywords: expansive soils, industrial waste, mineralogical study, swelling performance, X-ray diffraction

Procedia PDF Downloads 275
3036 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 144
3035 A Systematic Analysis of Knowledge Development Trends in Industrial Maintenance Projects

Authors: Lilian Ogechi Iheukwumere-Esotu, Akilu Yunusa-Kaltungo, Paul Chan

Abstract:

Industrial assets are prone to degradation and eventual failures due to repetitive loads and harsh environments in which they operate. These failures often lead to costly downtimes, which may involve loss of critical assets and/or human lives. The rising pressures from stakeholders for optimized systems’ outputs have further placed strains on business organizations. Traditional means of combating such failures are by adopting strategies capable of predicting, controlling, and/or reducing the likelihood of systems’ failures. Turnarounds, shutdowns, and outages (TSOs) projects are popular maintenance management activities conducted over a certain period of time. However, despite the critical and significant cost implications of TSOs, the management of the interface of knowledge between academia and industry to our best knowledge has not been fully explored in comparison to other aspects of industrial operations. This is perhaps one of the reasons for the limited knowledge transfer between academia and industry, which has affected the outcomes of most TSOs. Prior to now, the study of knowledge development trends as a failure analysis tool in the management of TSOs projects have not gained the required level of attention. Hence, this review provides useful references and their implications for future studies in this field. This study aims to harmonize the existing research trends of TSOs through a systematic review of more than 3,000 research articles published over 7 decades (1940- till date) which were extracted using very specific research criteria and later streamlined using nominated inclusion and exclusion parameters. The information obtained from the analysis were then synthesized and coded into 8 parameters, thereby allowing for a transformation into actionable outputs. The study revealed a variety of information, but the most critical findings can be classified into 4 folds: (1) Empirical validation of available conceptual frameworks and models is still a far cry in practice, (2) traditional project management views for managing uncertainties are still dominant, (3) Inconsistent approaches towards the adoption and promotion of knowledge management systems which supports creation, transfer and application of knowledge within and outside the project organization and, (4) exploration of social practices in industrial maintenance project environments are under-represented within the existing body of knowledge. Thus, the intention of this study is to depict the usefulness of a framework which incorporates fact findings emanating from careful analysis and illustrations of evidence based results as a suitable approach which can tackle reoccurring failures in industrial maintenance projects.

Keywords: industrial maintenance, knowledge management, maintenance projects, systematic review, TSOs

Procedia PDF Downloads 123
3034 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 485
3033 Intelligent Adaptive Learning in a Changing Environment

Authors: G. Valentis, Q. Berthelot

Abstract:

Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth.

Keywords: reinforcement learning, neural network, autonomous systems, adaptive learning, changing environment

Procedia PDF Downloads 426
3032 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 83
3031 Gender Difference and Conflict Management Strategy Preference among Managers in Public Organizations in South-Western Nigeria

Authors: D. I. Akintayo, C. O. Aje

Abstract:

This study investigated the moderating influence of gender difference and conflict resolution strategy preference on managers` efficiency in managing industrial conflict in work organizations in South-Western Nigeria. This was for the purpose of ascertaining the relevance of gender difference and conflict resolution strategy preference to managerial efficiency towards ensuring sustainable industrial peace and harmonious labour-management relations at workplaces in Nigeria. Descriptive ex-post-facto research design was adopted for the study. A total of 185 respondents were selected for the study using purposive stratified sampling technique. A set of questionnaire titled ‘Rahim Organizational Conflict Inventory’ (ROCI) and Managerial Conflict Efficiency Scale (MCES) were adopted for the study. The three generated hypotheses were tested using Pearson Product Moment Correlation and t-test statistical methods. The findings of the study revealed that: A significant relationship exists between gender difference and conflict management preference of the managers(r = 0.644; P < 0.05). I t was also found that there was no significant difference between male and female managers’ conflict management strategy preference (t (181) = 11.08; P > 0.05).The finding reveals that there is no significant difference between female and male managers’ conflict management efficiency on the basis of conflict management preference of the managers (t (181) = 10.23; P > 0.05). Based on the findings of the study, it is recommended that collective bargaining strategy should be encouraged as conflict resolution strategy in order to guarantee effective management of industrial conflict and harmonious labour-management relations. Also, both male and female managers should be empowered to be appointed to managerial positions and should avoid the use of coercion, competition, aggressiveness and pro-task in the course of managing industrial conflict. Rather, persuasion, compromising, relational, lobbying and participatory approaches should be employed during collective bargaining process in order to foster effective management of conflict at workplaces.

Keywords: conflict management, gender difference, managerial studies, public organization and managers, strategy preference

Procedia PDF Downloads 465
3030 Accident analysis in Small and Medium Enterprises (SMEs) in India

Authors: Pranab Kumar Goswami, Elena Gurung

Abstract:

Small and medium enterprises (SME) are considered as the driving force for the economic growth of a developing country like India. Most of the SMEs are located in residential/non-industrial areas to avoid legal obligations of occupational safety and health (OSH) provisions. This study was conducted in Delhiwith a view to analyze the accidents that occurredduringthe year 2019 & 2020. The objective of the study was to find out the accident prone SMEs in Delhi and major causes of such accidents. Methods: Survey and comprehensive data analysis methods, followed by applying simple statistical techniques, were used for this study. The accident reports for the study period collected from the labour department and police stations were analyzed for the study. The injured workers were interviewed to ascertain safety compliances, training and awareness programs, etc. The study was completed in March2021. Results: It was found that most of the accidents took place in SMEs located in residential/non- industrial areas in Delhi. The accident-prone machines were found to be power presses (42%) and injection moulding machines (37%). Predominantly unsafe machinery or unsafe working conditions and lack of training of worker were observed to be the major causes of accidents in such industries. Conclusions: It was concluded from the study that unsafe machinery/equipment and lack of proper training to the workers were two main reasons for increase in accidents.It was also concluded that the industries located in industrial areas were better placed in terms of workplace compliances. The managements who were running their operations from residential/non-industrial areaswere found to be less aware on health and safety issues. Lack of enforcement by government agencies in such areas has escalated this problem. Adequate training to workers, managing safe & healthy workplace, and sustained enforcement can reduce accidents in such industries.

Keywords: SME, accident prevention, cause of accident, unorganised

Procedia PDF Downloads 104
3029 Study for Utilization of Industrial Solid Waste, Generated by the Discharge of Casting Sand Agglomeration with Clay, Blast Furnace Slag and Sugar Cane Bagasse Ash in Concrete Composition

Authors: Mario Sergio de Andrade Zago, Javier Mazariegos Pablos, Eduvaldo Paulo Sichieri

Abstract:

This research project accomplished a study on the technical feasibility of recycling industrial solid waste generated by the discharge of casting sand agglomeration with clay, blast furnace slag and sugar cane bagasse ash. For this, the plan proposed a methodology that initially establishes a process of solid waste encapsulation, by using solidification/stabilization technique on Portland cement matrices, in which the residuals act as small and large aggregates on the composition of concrete, and later it presents the possibility of using this concrete in the manufacture of concrete pieces (concrete blocks) for paving. The results obtained in this research achieved the objective set with great success, regarding the manufacturing of concrete pieces (blocks) for paving urban roads, whenever there is special vehicle traffic or demands capable of producing accentuated abrasion effects (surpassing the 50 MPa required by the regulation), which probes the technical practicability of using waste from sand casting agglomeration with clay and blast furnace slag used in this study, unlocking usage possibilities for construction.

Keywords: industrial solid waste, solidification/stabilization, Portland cement, reuse, bagasse ash in the sugar cane, concrete

Procedia PDF Downloads 307
3028 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning

Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan

Abstract:

The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.

Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass

Procedia PDF Downloads 120
3027 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 464
3026 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda

Abstract:

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Keywords: bioethanol, biofuels, banana waste, hydrolysis

Procedia PDF Downloads 433
3025 Development of Model for Effective Sub- District Municipality Wastewater Management

Authors: Vitool Suksankavanich

Abstract:

This preliminary research aimed to explore the development of wastewater management of Bang Pu Sub- District Municipality, Samutprakan Province, in order to establish appropriate model for effective wastewater management that fit to the context of the area. The research posed three questions: [i] to what extent the promotion of social responsibility awareness built among the local community resulted in effectiveness of the local wastewater management; [ii] did the waste disposal management of Bang Pu Industrial Estate contribute to the overall environmental quality of Bang Pu Sub- District Municipality; and [iii] did the relationship between the community and the industrial factories have any effect on the wastewater management. The in- depth interview revealed main obstacles occurred in the process of wastewater management in the area. The fieldwork also contributed to a product of an appropriate model of effective wastewater management.

Keywords: legitimacy theory, stakeholder theory, social responsibility, wastewater management

Procedia PDF Downloads 420
3024 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling

Procedia PDF Downloads 138
3023 Industrial Process Mining Based on Data Pattern Modeling and Nonlinear Analysis

Authors: Hyun-Woo Cho

Abstract:

Unexpected events may occur with serious impacts on industrial process. This work utilizes a data representation technique to model and to analyze process data pattern for the purpose of diagnosis. In this work, the use of triangular representation of process data is evaluated using simulation process. Furthermore, the effect of using different pre-treatment techniques based on such as linear or nonlinear reduced spaces was compared. This work extracted the fault pattern in the reduced space, not in the original data space. The results have shown that the non-linear technique based diagnosis method produced more reliable results and outperforms linear method.

Keywords: process monitoring, data analysis, pattern modeling, fault, nonlinear techniques

Procedia PDF Downloads 392
3022 Urban Vegetative Planning for Ambient Ozone Pollution: An Eco-Management Approach

Authors: M. Anji Reddy, R. Uma Devi

Abstract:

Environmental planning for urban development is very much needed to reduce air pollution through the enhancement of vegetative cover in the cities like Hyderabad. This can be mainly based on the selection of appropriate native plant species as bioindicators to assess the impact of ambient Ozone. In the present study, tolerant species are suggested aimed to reduce the magnitude of ambient ozone concentrations which not only increase eco-friendly vegetation but also moderate air pollution. Hyderabad city is divided into 5 zones based on Land Use/Land Cover category further each zone divided into residential, traffic, industrial, and peri-urban areas. Highest ambient ozone levels are recorded in Industrial areas followed by traffic areas in the entire study area ( > 180 µg/m3). Biomonitoring of selected sixteen local urban plant species with the help of Air Pollution Tolerance Index (APTI) showed its susceptibility to air pollution. Statistical regression models in between the tolerant plant species and ambient ozone levels suggested five plant species namely Azardirachta indica A. Juss which have a high tolerant response to ambient ozone followed by Delonix regia Hook. along with Millingtonia hortensis L.f., Alestonia Scholaries L., and Samania saman Jacq. in the industrial and traffic areas of the study area to mitigate ambient Ozone pollution and also to improve urban greenery.

Keywords: air pollution tolerance index, bio-indicators, eco-friendly vegetation, urban greenery

Procedia PDF Downloads 458
3021 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box

Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar

Abstract:

To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.

Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection

Procedia PDF Downloads 134
3020 Performance of HVOF Sprayed Ni-20CR and Cr3C2-NiCr Coatings on Fe-Based Superalloy in an Actual Industrial Environment of a Coal Fired Boiler

Authors: Tejinder Singh Sidhu

Abstract:

Hot corrosion has been recognized as a severe problem in steam-powered electricity generation plants and industrial waste incinerators as it consumes the material at an unpredictably rapid rate. Consequently, the load-carrying ability of the components reduces quickly, eventually leading to catastrophic failure. The inability to either totally prevent hot corrosion or at least detect it at an early stage has resulted in several accidents, leading to loss of life and/or destruction of infrastructures. A number of countermeasures are currently in use or under investigation to combat hot corrosion, such as using inhibitors, controlling the process parameters, designing a suitable industrial alloy, and depositing protective coatings. However, the protection system to be selected for a particular application must be practical, reliable, and economically viable. Due to the continuously rising cost of the materials as well as increased material requirements, the coating techniques have been given much more importance in recent times. Coatings can add value to products up to 10 times the cost of the coating. Among the different coating techniques, thermal spraying has grown into a well-accepted industrial technology for applying overlay coatings onto the surfaces of engineering components to allow them to function under extreme conditions of wear, erosion-corrosion, high-temperature oxidation, and hot corrosion. In this study, the hot corrosion performances of Ni-20Cr and Cr₃C₂-NiCr coatings developed by High Velocity Oxy-Fuel (HVOF) process have been studied. The coatings were developed on a Fe-based superalloy, and experiments were performed in an actual industrial environment of a coal-fired boiler. The cyclic study was carried out around the platen superheater zone where the temperature was around 1000°C. The study was conducted for 10 cycles, and one cycle was consisting of 100 hours of heating followed by 1 hour of cooling at ambient temperature. Both the coatings deposited on Fe-based superalloy imparted better hot corrosion resistance than the uncoated one. The Ni-20Cr coated superalloy performed better than the Cr₃C₂-NiCr coated in the actual working conditions of the coal fired boiler. It is found that the formation of chromium oxide at the boundaries of Ni-rich splats of the coating blocks the inward permeation of oxygen and other corrosive species to the substrate.

Keywords: hot corrosion, coating, HVOF, oxidation

Procedia PDF Downloads 89
3019 Restructuring of Embedded System Design Course: Making It Industry Compliant

Authors: Geetishree Mishra, S. Akhila

Abstract:

Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.

Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology

Procedia PDF Downloads 668
3018 Designing Interactive Applications for Social Anxiety Scenario Stories for Children with Autism

Authors: Wen Huei Chou, Yi-Ting Chen

Abstract:

Individuals with Autism Spectrum Disorder (ASD) often struggle with social interactions and communication. It is challenging for them to understand social cues such as facial expressions, body language, and tone of voice in social settings, leading to social conflicts and misunderstandings. Over time, feelings of frustration and anxiety can make them reluctant to engage in social situations and worsen their communication barriers. This study focused on children with autism who also experience social anxiety. Through focus group interviews with parents of children with autism and occupational therapists, it explores the reasons and scenarios behind the development of social anxiety in these children. Social scenario stories and interactive applications tailored for children with autism were designed and developed. In addition, working with the educational robots, coping strategies for various emotional situations were elaborated on, and children were helped to understand their emotions.

Keywords: autism spectrum disorder, social anxiety, robot, social scenario story, interactive applications

Procedia PDF Downloads 108
3017 Performance Analysis of High Temperature Heat Pump Cycle for Industrial Process

Authors: Seon Tae Kim, Robert Hegner, Goksel Ozuylasi, Panagiotis Stathopoulos, Eberhard Nicke

Abstract:

High-temperature heat pumps (HTHP) that can supply heat at temperatures above 200°C can enhance the energy efficiency of industrial processes and reduce the CO₂ emissions connected with the heat supply of these processes. In the current work, the thermodynamic performance of 3 different vapor compression cycles, which use R-718 (water) as a working medium, have been evaluated by using a commercial process simulation tool (EBSILON Professional). All considered cycles use two-stage vapor compression with intercooling between stages. The main aim of the study is to compare different intercooling strategies and study possible heat recovery scenarios within the intercooling process. This comparison has been carried out by computing the coefficient of performance (COP), the heat supply temperature level, and the respective mass flow rate of water for all cycle architectures. With increasing temperature difference between the heat source and heat sink, ∆T, the COP values decreased as expected, and the highest COP value was found for the cycle configurations where both compressors have the same pressure ratio (PR). The investigation on the HTHP capacities with optimized PR and exergy analysis has also been carried out. The internal heat exchanger cycle with the inward direction of secondary flow (IHX-in) showed a higher temperature level and exergy efficiency compared to other cycles. Moreover, the available operating range was estimated by considering mechanical limitations.

Keywords: high temperature heat pump, industrial process, vapor compression cycle, R-718 (water), thermodynamic analysis

Procedia PDF Downloads 154
3016 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 89
3015 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 215
3014 Optical Flow Localisation and Appearance Mapping (OFLAAM) for Long-Term Navigation

Authors: Daniel Pastor, Hyo-Sang Shin

Abstract:

This paper presents a novel method to use optical flow navigation for long-term navigation. Unlike standard SLAM approaches for augmented reality, OFLAAM is designed for Micro Air Vehicles (MAV). It uses an optical flow camera pointing downwards, an IMU and a monocular camera pointing frontwards. That configuration avoids the expensive mapping and tracking of the 3D features. It only maps these features in a vocabulary list by a localization module to tackle the loss of the navigation estimation. That module, based on the well-established algorithm DBoW2, will be also used to close the loop and allow long-term navigation in confined areas. That combination of high-speed optical flow navigation with a low rate localization algorithm allows fully autonomous navigation for MAV, at the same time it reduces the overall computational load. This framework is implemented in ROS (Robot Operating System) and tested attached to a laptop. A representative scenarios is used to analyse the performance of the system.

Keywords: vision, UAV, navigation, SLAM

Procedia PDF Downloads 610
3013 The Factors for Developing Trainers in Auto Parts Manufacturing Factories at Amata Nakon Industrial Estate in Cholburi Province

Authors: Weerakarj Dokchan

Abstract:

The purposes of this research are to find out the factors for developing trainers in the auto part manufacturing factories (AMF) in Amata Nakon Industrial Estate Cholburi. Population in this study included 148 operators to complete the questionnaires and 10 trainers to provide the information on the interview. The research statistics consisted of percentage, mean, standard deviation and step-wise multiple linear regression analysis.The analysis of the training model revealed that: The research result showed that the development factors of trainers in AMF consisted of 3 main factors and 8 sub-factors: 1) knowledge competency consisting of 4 sub-factors; arrangement of critical thinking, organizational loyalty, working experience of the trainers, analysis of behavior, and work and organization loyalty which could predict the success of the trainers at 55.60%. 2) Skill competency consisted of 4 sub-factors, arrangement of critical thinking, organizational loyalty and analysis of behavior and work and the development of emotional quotient. These 4 sub-factors could predict the success of the trainers in skill aspect 55.90%. 3) The attitude competency consisted of 4 sub-factors, arrangement of critical thinking, intention of trainee computer competency and teaching psychology. In conclusion, these 4 sub-factors could predict the success of the trainers in attitude aspect 58.50%.

Keywords: the development factors, trainers development, trainer competencies, auto part manufacturing factory (AMF), AmataNakon Industrial Estate Cholburi

Procedia PDF Downloads 307
3012 Curriculum for the Manufacturing and Engineering Course Programs in Industries

Authors: Muhammad Yasir Latif

Abstract:

Industrial Engineering and Management (IEM) is a continuous, adaptable, and dynamic branch of engineering. The purpose of this study is to use a knowledge-based course classification method to investigate four IEM educational programs in Europe. Furthermore, the relative weight of each sector was determined using the credit value of the courses. IEM-specific locations and pooled areas were the two related kinds of areas that were used. The results show that, among the four program curricula, Production Management is the specific area with the largest weight, while the specialism field of IEM has a similar weight. This method has proved to be useful for curriculum analysis. The results show that one characteristic of IEM curriculum programs is diversity in the knowledge domains related to IEM specialism. The research also highlights the importance of an organized structure for defining IEM applications, allowing benchmarking efforts, and promoting communication between academics and the IEM community.

Keywords: industrial engineering and management, knowledge areas, curriculum analysis, community

Procedia PDF Downloads 29