Search results for: impedance matching
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 947

Search results for: impedance matching

257 Cognitive Rehabilitation in Schizophrenia: A Review of the Indian Scenario

Authors: Garima Joshi, Pratap Sharan, V. Sreenivas, Nand Kumar, Kameshwar Prasad, Ashima N. Wadhawan

Abstract:

Schizophrenia is a debilitating disorder and is marked by cognitive impairment, which deleteriously impacts the social and professional functioning along with the quality of life of the patients and the caregivers. Often the cognitive symptoms are in their prodromal state and worsen as the illness progresses; they have proven to have a good predictive value for the prognosis of the illness. It has been shown that intensive cognitive rehabilitation (CR) leads to improvements in the healthy as well as cognitively-impaired subjects. As the majority of population in India falls in the lower to middle socio-economic status and have low education levels, using the existing packages, a majority of which are developed in the West, for cognitive rehabilitation becomes difficult. The use of technology is also restricted due to the high costs involved and the limited availability and familiarity with computers and other devices, which pose as an impedance for continued therapy. Cognitive rehabilitation in India uses a plethora of retraining methods for the patients with schizophrenia targeting the functions of attention, information processing, executive functions, learning and memory, and comprehension along with Social Cognition. Psychologists often have to follow an integrative therapy approach involving social skills training, family therapy and psychoeducation in order to maintain the gains from the cognitive rehabilitation in the long run. This paper reviews the methodologies and cognitive retaining programs used in India. It attempts to elucidate the evolution and development of methodologies used, from traditional paper-pencil based retraining to more sophisticated neuroscience-informed techniques in cognitive rehabilitation of deficits in schizophrenia as home-based or supervised and guided programs for cognitive rehabilitation.

Keywords: schizophrenia, cognitive rehabilitation, neuropsychological interventions, integrated approached to rehabilitation

Procedia PDF Downloads 363
256 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
255 Observation of the Flow Behavior for a Rising Droplet in a Mini-Slot

Authors: H. Soltani, J. Hadfield, M. Redmond, D. S. Nobes

Abstract:

The passage of oil droplets through a vertical mini-slot were investigated in this study. Oil-in-water emulsion can undergo coalescence of finer oil droplets forming droplets of a size that need to be considered individually. This occurs in a number of industrial processes and has important consequences at a scale where both body and surfaces forces are relevant. In the study, two droplet diameters of smaller than the slot width and a relatively larger diameter where the oil droplet can interact directly with the slot wall were generated. To monitor fluid motion, a particle shadow velocimetry (PSV) imaging technique was used to study fluid flow motion inside and around a single oil droplet rising in a net co-flow. The droplet was a transparent canola oil and the surrounding working fluid was glycerol, adjusted to allow a matching of refractive index between the two fluids. Particles seeded in both fluids were observed with the PSV system allowing the capture of the velocity field both within the droplet and in the surrounds. The effect of droplet size on the droplet internal circulation was observed. Part of the study was related the potential generation of flow structures, such as von Karman vortex shedding already observed in rising droplets in infinite reservoirs and their interaction with the mini-channel. Results show that two counter-rotating vortices exist inside the droplets as they pass through slot. The vorticity map analysis shows that the droplet of relatively larger size has a stronger internal circulation.

Keywords: rising droplet, rectangular orifice, particle shadow velocimetry, match refractive index

Procedia PDF Downloads 171
254 Adhesion of Biofilm to Surfaces Employed in Pipelines for Transporting Crude Oil

Authors: Hadjer Didouh, Izzaddine Sameut Bouhaik, Mohammed Hadj Meliani

Abstract:

This research delves into the intricate dynamics of biofilm adhesion on surfaces, particularly focusing on the widely employed X52 surface in oil and gas industry pipelines. Biofilms, characterized by microorganisms within a self-produced matrix, pose significant challenges due to their detrimental impact on surfaces. Our study integrates advanced molecular techniques and cutting-edge microscopy, such as scanning electron microscopy (SEM), to identify microbial communities and visually assess biofilm adhesion. Simultaneously, we concentrate on the X52 surface, utilizing impedance spectroscopy and potentiodynamic polarization to gather electrochemical responses under various conditions. In conjunction with the broader investigation, we propose a novel approach to mitigate biofilm-induced corrosion challenges. This involves environmentally friendly inhibitors derived from plants, offering a sustainable alternative to conventional chemical treatments. Our inquiry screens and selects inhibitors based on their efficacy in hindering biofilm formation and reducing corrosion rates on the X52 surface. This study contributes valuable insights into the interplay between electrochemical processes and biofilm attachment on the X52 surface. Furthermore, the outcomes of this research have broader implications for the oil and gas industry, where biofilm-related corrosion is a persistent concern. The exploration of eco-friendly inhibitors not only holds promise for corrosion control but also aligns with environmental considerations and sustainability goals. The comprehensive nature of this research aims to enhance our understanding of biofilm dynamics, provide effective strategies for corrosion mitigation, and contribute to sustainable practices in pipeline management within the oil and gas sector.

Keywords: bio-corrosion, biofilm, attachment, X52, metal/bacteria interface

Procedia PDF Downloads 47
253 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 293
252 Fabrication of 2D Nanostructured Hybrid Material-Based Devices for High-Performance Supercapacitor Energy Storage

Authors: Sunil Kumar, Vinay Kumar, Mamta Bulla, Rita Dahiya

Abstract:

Supercapacitors have emerged as a leading energy storage technology, gaining popularity in applications like digital telecommunications, memory backup, and hybrid electric vehicles. Their appeal lies in a long cycle life, high power density, and rapid recharge capabilities. These exceptional traits attract researchers aiming to develop advanced, cost-effective, and high-energy-density electrode materials for next-generation energy storage solutions. Two-dimensional (2D) nanostructures are highly attractive for fabricating nanodevices due to their high surface-to-volume ratio and good compatibility with device design. In the current study, a composite was synthesized by combining MoS2 with reduced graphene oxide (rGO) under optimal conditions and characterized using various techniques, including XRD, FTIR, SEM and XPS. The electrochemical properties of the composite material were assessed through cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy. The supercapacitor device demonstrated a specific capacitance of 153 F g-1 at a current density of 1 Ag-1, achieving an excellent energy density of 30.5 Wh kg-1 and a power density of 600 W kg-1. Additionally, it maintained excellent cyclic stability over 5000 cycles, establishing it as a promising candidate for efficient and durable energy storage solutions. These findings highlight the dynamic relationship between electrode materials and offer valuable insights for the development and enhancement of high-performance symmetric devices.

Keywords: 2D material, energy density, galvanostatic charge-discharge, hydrothermal reactor, specific capacitance

Procedia PDF Downloads 14
251 Inhouse Inhibitor for Mitigating Corrosion in the Algerian Oil and Gas Industry

Authors: Hadjer Didouh, Mohamed Hadj Meliani, Izzeddine Sameut Bouhaik

Abstract:

As global demand for natural gas intensifies, Algeria is increasing its production to meet this rising need, placing significant strain on the nation's extensive pipeline infrastructure. Sonatrach, Algeria's national oil and gas company, faces persistent challenges from metal corrosion, particularly microbiologically influenced corrosion (MIC), leading to substantial economic losses. This study investigates the corrosion-inhibiting properties of Calotropis procera extracts, known as karanka, as a sustainable alternative to conventional inhibitors, which often pose environmental risks. The Calotropis procera extracts were evaluated for their efficacy on carbon steel API 5L X52 through electrochemical techniques, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), under simulated operational conditions at varying concentrations, particularly at 10%, and elevated temperatures up to 60°C. The results demonstrated remarkable inhibition efficiency, achieving 96.73% at 60°C, attributed to the formation of a stable protective film on the metal surface that suppressed anodic and cathodic corrosion reactions. Scanning electron microscopy (SEM) confirmed the stability and adherence of these protective films, while EIS analysis indicated a significant increase in charge transfer resistance, highlighting the extract's effectiveness in enhancing corrosion resistance. The abundant availability of Calotropis procera in Algeria and its low-cost extraction processes present a promising opportunity for sustainable biocorrosion management strategies in the oil and gas industry, reinforcing the potential of plant-based extracts as viable alternatives to synthetic inhibitors for environmentally friendly corrosion control.

Keywords: corrosion inhibition, calotropis procera, microbiologically influenced corrosion, eco-friendly inhibitor

Procedia PDF Downloads 25
250 The Difference of Learning Outcomes in Reading Comprehension between Text and Film as The Media in Indonesian Language for Foreign Speaker in Intermediate Level

Authors: Siti Ayu Ningsih

Abstract:

This study aims to find the differences outcomes in learning reading comprehension with text and film as media on Indonesian Language for foreign speaker (BIPA) learning at intermediate level. By using quantitative and qualitative research methods, the respondent of this study is a single respondent from D'Royal Morocco Integrative Islamic School in grade nine from secondary level. Quantitative method used to calculate the learning outcomes that have been given the appropriate action cycle, whereas qualitative method used to translate the findings derived from quantitative methods to be described. The technique used in this study is the observation techniques and testing work. Based on the research, it is known that the use of the text media is more effective than the film for intermediate level of Indonesian Language for foreign speaker learner. This is because, when using film the learner does not have enough time to take note the difficult vocabulary and don't have enough time to look for the meaning of the vocabulary from the dictionary. While the use of media texts shows the better effectiveness because it does not require additional time to take note the difficult words. For the words that are difficult or strange, the learner can immediately find its meaning from the dictionary. The presence of the text is also very helpful for Indonesian Language for foreign speaker learner to find the answers according to the questions more easily. By matching the vocabulary of the question into the text references.

Keywords: Indonesian language for foreign speaker, learning outcome, media, reading comprehension

Procedia PDF Downloads 197
249 Collaboration of UNFPA and USAID to Mobilize Domestic Government Resources for Contraceptive Procurement in Madagascar

Authors: Josiane Yaguibou, Ngoy Kishimba, Issiaka v. Coulibaly, Sabrina Pestilli, Falinirina Razanalison, Hantanirina Andremanisa

Abstract:

Background: In recent years, Madagascar has faced a significant reduction in donors’ financial resources for the purchase of contraceptive products to meet the family planning needs of the population. In order to ensure the sustainability of the family planning program in the current context, UNFPA Madagascar engaged in a series of initiatives with the ultimate scope of identifying sustainable financing mechanisms for the program. Program intervention: UNFPA Madagascar established a strict collaboration with USAID to engage in a series of joint advocacy and resource mobilization activities with the government. The following initiatives were conducted: (i) Organization of a high-level Round Table to engage the government; (ii) Support to the government in renewing the FP2030 Commitments; (iii) Signature of the Country Compact 2022-2024; (iv) Allocation of government funds in 2022 and 2023 of over 829,222 USD; (v) Obtaining a Matching Fund of 1.5 million USD from UNFPA to encourage the government to allocate resources for the purchase of contraceptive products. Program Implications: The collaboration and the joint advocacy made it possible to (i) have budgetary allocations from the government to purchase products in 2022 and 2023 with a significant reduction in financing gaps; (ii) to convince the government to seek additional financing from partners such as the World Bank which granted more than 8 million USD for the purchase of products; (iii) reduce stock shortages from more than 30% to 15%.

Keywords: UNFPA, USAID, collaboration, contraceptives

Procedia PDF Downloads 68
248 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: plug-in hybrid power system, fuel economy, performance, continuously variable transmission

Procedia PDF Downloads 288
247 The Role of Attachment and Dyadic Coping in Shaping Relational Intimacy

Authors: Anna Wendolowska, Dorota Czyzowska

Abstract:

An intimate relationship is a significant factor that influences romantic partners’ well-being. In the face of stress, avoidant partners often employ a defense-against-intimacy strategy, leading to reduced relationship satisfaction, intimacy, interdependence, and longevity. Dyadic coping can buffer the negative effects of stress on relational satisfaction. Emotional competence mediates the relationship between insecure attachment and intimacy. In the current study, the link between attachment, different forms of dyadic coping, and various aspects of relationship satisfaction was examined. Both partners completed the attachment style questionnaire, the well matching couple questionnaire, and the dyadic coping inventory. The data was analyzed using the actor–partner interdependence model. The results highlighted a negative association between insecure-avoidant attachment style and intimacy. The actor effects of avoidant attachment on relational intimacy for women and for men were significant, whilst the partner effects for both spouses were not significant. The emotion-focused common dyadic coping moderated the relationship between avoidance of attachment and the partner's sense of intimacy. After controlling for the emotion-focused common dyadic coping, the actor effect of attachment on intimacy for men was slightly weaker, and the actor effect for women turned out to be insignificant. The emotion-focused common dyadic coping weakened the negative association between insecure attachment and relational intimacy. The impact of adult attachment and dyadic coping significantly contributes to subjective relational well-being.

Keywords: adult attachment, dyadic coping, relational intimacy, relationship satisfaction

Procedia PDF Downloads 161
246 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 167
245 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 185
244 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes

Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv

Abstract:

As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.

Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment

Procedia PDF Downloads 209
243 A Single Stage Cleft Rhinoplasty Technique for Primary Unilateral Cleft Lip and Palate 'The Gujrat Technique'

Authors: Diaa Othman, Muhammad Adil Khan, Muhammad Riaz

Abstract:

Without an early intervention to correct the unilateral complete cleft lip and palate deformity, nasal architecture can progress to an exaggerated cleft nose deformity. We present the results of a modified unilateral cleft rhinoplasty procedure ‘the Gujrat technique’ to correct this deformity. Ninety pediatric and adult patients with non-syndromic unilateral cleft lip underwent primary and secondary composite cleft rhinoplasty using the Gujrat technique as a single stage operation over a 10-year period. The technique involved an open rhinoplasty with Tennison lip repair, and employed a combination of three autologous cartilage grafts, seven cartilage-molding sutures and a prolene mesh graft for alar base support. Post-operative evaluation of nasal symmetry was undertaken using the validated computer program ‘SymNose’. Functional outcome and patient satisfaction were assessed using the NOSE scale and ROE (rhinoplasty outcome evaluation) questionnaires. The single group study design used the non-parametric matching pairs Wilcoxon Sign test (p < 0.001), and showed overall good to excellent functional and aesthetic outcomes, including nasal projection and tip definition, and higher scores of the digital SymNose grading system. Objective assessment of the Gujrat cleft rhinoplasty technique demonstrates its aesthetic appeal and functional versatility. Overall it is a simple and reproducible technique, with no significant complications.

Keywords: cleft lip and palate, congenital rhinoplasty, nasal deformity, secondary rhinoplasty

Procedia PDF Downloads 203
242 A Robust Spatial Feature Extraction Method for Facial Expression Recognition

Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda

Abstract:

This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.

Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure

Procedia PDF Downloads 425
241 Effect of Ausubel's Advance Organizer Model to Enhancing Meta-Cognition of Students at Secondary Level

Authors: Qaisara Parveen, M. Imran Yousuf

Abstract:

The purpose of this study was to find the effectiveness of the use of advance organizer model for enhancing meta-cognition of students in the subject of science. It was hypothesized that the students of experimental group taught through advance organizer model would show the better cognition than the students of control group taught through traditional teaching. The population of the study consisted of all secondary school students studying in government high school located in Rawalpindi. The sample of the study consisted of 50 students of 9th class of humanities group. The sample was selected on the basis of their pretest scores through matching, and the groups were randomly assigned for the treatment. The experimental group was taught through advance organizer model while the control group was taught through traditional teaching. The self-developed achievement test was used for the purpose of pretest and posttest. After collecting the pre-test score and post-test score, the data was analyzed and interpreted by use of descriptive statistics as mean and standard deviation and inferential statistics t-test. The findings indicate that students taught using advance organizers had a higher level of meta-cognition as compared to control group. Further, meta cognition level of boys was found higher than that of girls students. This study also revealed the fact that though the students at different meta-cognition level approached learning situations in a different manner, Advance organizer model is far superior to Traditional method of teaching.

Keywords: descriptive, experimental, humanities, meta-cognition, statistics, science

Procedia PDF Downloads 315
240 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System

Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu

Abstract:

The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.

Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter

Procedia PDF Downloads 252
239 Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine

Authors: H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno-Mariani, S. Mollov, N. Voyer

Abstract:

This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM.

Keywords: finite element method (FEM), machine performance, modular wound rotor synchronous machine, non-overlapping concentrated winding

Procedia PDF Downloads 290
238 Q-Map: Clinical Concept Mining from Clinical Documents

Authors: Sheikh Shams Azam, Manoj Raju, Venkatesh Pagidimarri, Vamsi Kasivajjala

Abstract:

Over the past decade, there has been a steep rise in the data-driven analysis in major areas of medicine, such as clinical decision support system, survival analysis, patient similarity analysis, image analytics etc. Most of the data in the field are well-structured and available in numerical or categorical formats which can be used for experiments directly. But on the opposite end of the spectrum, there exists a wide expanse of data that is intractable for direct analysis owing to its unstructured nature which can be found in the form of discharge summaries, clinical notes, procedural notes which are in human written narrative format and neither have any relational model nor any standard grammatical structure. An important step in the utilization of these texts for such studies is to transform and process the data to retrieve structured information from the haystack of irrelevant data using information retrieval and data mining techniques. To address this problem, the authors present Q-Map in this paper, which is a simple yet robust system that can sift through massive datasets with unregulated formats to retrieve structured information aggressively and efficiently. It is backed by an effective mining technique which is based on a string matching algorithm that is indexed on curated knowledge sources, that is both fast and configurable. The authors also briefly examine its comparative performance with MetaMap, one of the most reputed tools for medical concepts retrieval and present the advantages the former displays over the latter.

Keywords: information retrieval, unified medical language system, syntax based analysis, natural language processing, medical informatics

Procedia PDF Downloads 133
237 The Factors That Influence the Self-Sufficiency and the Self-Efficacy Levels among Oncology Patients

Authors: Esra Danaci, Tugba Kavalali Erdogan, Sevil Masat, Selin Keskin Kiziltepe, Tugba Cinarli, Zeliha Koc

Abstract:

This study was conducted in a descriptive and cross-sectional manner to determine that factors that influence the self-efficacy and self-sufficiency levels among oncology patients. The research was conducted between January 24, 2017 and September 24, 2017 in the oncology and hematology departments of a university hospital in Turkey with 179 voluntary inpatients. The data were collected through the Self-Sufficiency/Self-Efficacy Scale and a 29-question survey, which was prepared in order to determine the sociodemographic and clinical properties of the patients. The Self-Sufficiency/Self-Efficacy Scale is a Likert-type scale with 23 articles. The scale scores range between 23 and 115. A high final score indicates a good self-sufficiency/self-efficacy perception for the individual. The data were analyzed using percentage analysis, one-way ANOVA, Mann Whitney U-test, Kruskal Wallis test and Tukey test. The demographic data of the subjects were as follows: 57.5% were male and 42.5% were female, 82.7% were married, 46.4% were primary school graduate, 36.3% were housewives, 19% were employed, 93.3% had social security, 52.5% had matching expenses and incomes, 49.2% lived in the center of the city. The mean age was 57.1±14.6. It was determined that 22.3% of the patients had lung cancer, 19.6% had leukemia, and 43.6% had a good overall condition. The mean self-sufficiency/self-efficacy score was 83,00 (41-115). It was determined that the patients' self-sufficiency/self-efficacy scores were influenced by some of their socio-demographic and clinical properties. This study has found that the patients had high self-sufficiency/self-efficacy scores. It is recommended that the nursing care plans should be developed to improve their self-sufficiency/self-efficacy levels in the light of the patients' sociodemographic and clinical properties.

Keywords: oncology, patient, self-efficacy, self-sufficiency

Procedia PDF Downloads 170
236 Patient Care Needs Assessment: An Evidence-Based Process to Inform Quality Care and Decision Making

Authors: Wynne De Jong, Robert Miller, Ross Riggs

Abstract:

Beyond the number of nurses providing care for patients, having nurses with the right skills, experience and education is essential to ensure the best possible outcomes for patients. Research studies continue to link nurse staffing and skill mix with nurse-sensitive patient outcomes; numerous studies clearly show that superior patient outcomes are associated with higher levels of regulated staff. Due to the limited number of tools and processes available to assist nurse leaders with staffing models of care, nurse leaders are constantly faced with the ongoing challenge to ensure their staffing models of care best suit their patient population. In 2009, several hospitals in Ontario, Canada participated in a research study to develop and evaluate an RN/RPN utilization toolkit. The purpose of this study was to develop and evaluate a toolkit for Registered Nurses/Registered Practical Nurses Staff mix decision-making based on the College of Nurses of Ontario, Canada practice standards for the utilization of RNs and RPNs. This paper will highlight how an organization has further developed the Patient Care Needs Assessment (PCNA) questionnaire, a major component of the toolkit. Moreover, it will demonstrate how it has utilized the information from PCNA to clearly identify patient and family care needs, thus providing evidence-based results to assist leaders with matching the best staffing skill mix to their patients.

Keywords: nurse staffing models of care, skill mix, nursing health human resources, patient safety

Procedia PDF Downloads 314
235 Sensitive Electrochemical Sensor for Simultaneous Detection of Endocrine Disruptors, Bisphenol A and 4- Nitrophenol Using La₂Cu₂O₅ Modified Glassy Carbon Electrode

Authors: S. B. Mayil Vealan, C. Sekar

Abstract:

Bisphenol A (BIS A) and 4 Nitrophenol (4N) are the most prevalent environmental endocrine-disrupting chemicals which mimic hormones and have a direct relationship to the development and growth of animal and human reproductive systems. Moreover, intensive exposure to the compound is related to prostate and breast cancer, infertility, obesity, and diabetes. Hence, accurate and reliable determination techniques are crucial for preventing human exposure to these harmful chemicals. Lanthanum Copper Oxide (La₂Cu₂O₅) nanoparticles were synthesized and investigated through various techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammetry and square wave voltammetry techniques are employed to evaluate the electrochemical behavior of as-synthesized samples toward the electrochemical detection of Bisphenol A and 4-Nitrophenol. Under the optimal conditions, the oxidation current increased linearly with increasing the concentration of BIS A and 4-N in the range of 0.01 to 600 μM with a detection limit of 2.44 nM and 3.8 nM. These are the lowest limits of detection and the widest linear ranges in the literature for this determination. The method was applied to the simultaneous determination of BIS A and 4-N in real samples (food packing materials and river water) with excellent recovery values ranging from 95% to 99%. Better stability, sensitivity, selectivity and reproducibility, fast response, and ease of preparation made the sensor well-suitable for the simultaneous determination of bisphenol and 4 Nitrophenol. To the best of our knowledge, this is the first report in which La₂Cu₂O₅ nano particles were used as efficient electron mediators for the fabrication of endocrine disruptor (BIS A and 4N) chemical sensors.

Keywords: endocrine disruptors, electrochemical sensor, Food contacting materials, lanthanum cuprates, nanomaterials

Procedia PDF Downloads 86
234 Testing of Complicated Bus Bar Protection Using Smart Testing Methodology

Authors: K. N. Dinesh Babu

Abstract:

In this paper, the protection of a complicated bus arrangement with a dual bus coupler and bus sectionalizer using low impedance differential protection applicable for very high voltages like 220kV and 400kV is discussed. In many power generation stations, several operational procedures are implemented to utilize the transfer bus as the main bus and to facilitate the maintenance of circuit breakers and current transformers (in each section) without shutting down the bay(s). Owing to this fact, the complications in operational philosophy have thrown challenges for the bus bar protection implementation. Many bus topologies allow any one of the main buses available in the station to be used as an auxiliary bus. In such a system, pre-defined precautions and procedures are made as guidelines, which are followed before assigning any bus as an auxiliary bus. The procedure involves shifting of links, changing rotary switches, insertion of test block, and so on, thereby causing unreliable operation. This kind of unreliable operation or inadvertent procedural lapse may result in the isolation of the bus bar from the grid due to the unpredictable operation of the bus bar protection relay, which is a commonly occurring phenomenon due to manual mistakes. With the sophisticated configuration and implementation of logic in modern intelligent electronic devices, the operator is free to select the transfer arrangement without sacrificing the protection required by a bus differential system for a reliable operation, and labor-intensive processes are completely eliminated. This paper deals with the procedure to test the security logic for such special scenarios using Megger make SMRT, bus bar protection relay to assure system stability and get rid of all the specific operational precautions/procedure.

Keywords: bus bar protection, by-pass isolator, blind spot, breaker failure, intelligent electronic device, end fault, bus unification, directional principle, zones of protection, breaker re-trip, under voltage security, smart megger relay tester

Procedia PDF Downloads 68
233 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 577
232 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 146
231 Smart Wheel Chair: A Design to Accommodate Vital Sign Monitoring

Authors: Stephanie Nihan, Jayson M. Fadrigalan, Pyay P. San, Steven M. Santos, Weihui Li

Abstract:

People of all ages who use wheelchairs are left with the inconvenience of not having an easy way to take their vital signs. Typically, patients are required to visit the hospital in order to take the vital signs. VitalGO is a wheel chair system that equipped with medical devices to take vital signs and then transmit data to a mobile application for convenient, long term health monitoring. The vital signs include oxygen saturation, heart rate, and blood pressure, breathing rate and body temperature. Oxygen saturation and heart rate are monitored through pulse oximeter. Blood pressure is taken through a radar sensor. Breathing rate is derived through thoracic impedance while body temperature is measured through an infrared thermometer. The application receives data through bluetooth and stores in a database for review in a simple graphical interface. The application will have the ability to display this data over various time intervals such as a day, week, month, 3 months, 6 months and a year. The final system for the mobile app can also provide an interface for both the user and their physician(s) to record notes or keep record of daily symptoms that a patient might be having. The user’s doctor will be granted access by the user to view the patient information for assistance with a more accurate diagnosis. Also, this wheelchair accessory conveniently includes a foldable table/desk as somewhere to place an electronic device that may be used to access the app. The foldable table will overall contribute to the wheelchair user’s increased comfort and will give them somewhere to place food, a book, or any other form of entertainment that would normally be hard to juggle on their lap.

Keywords: wheel chair, vital sign, mobile application, telemedicine

Procedia PDF Downloads 331
230 Analysis of Saudi Breast Cancer Patients’ Primary Tumors using Array Comparative Genomic Hybridization

Authors: L. M. Al-Harbi, A. M. Shokry, J. S. M. Sabir, A. Chaudhary, J. Manikandan, K. S. Saini

Abstract:

Breast cancer is the second most common cause of cancer death worldwide and is the most common malignancy among Saudi females. During breast carcinogenesis, a wide-array of cytogenetic changes involving deletions, or amplification, or translocations, of part or whole of chromosome regions have been observed. Because of the limitations of various earlier technologies, newer tools are developed to scan for changes at the genomic level. Recently, Array Comparative Genomic Hybridization (aCGH) technique has been applied for detecting segmental genomic alterations at molecular level. In this study, aCGH was performed on twenty breast cancer tumors and their matching non-tumor (normal) counterparts using the Agilent 2x400K. Several regions were identified to be either amplified or deleted in a tumor-specific manner. Most frequent alterations were amplification of chromosome 1q, chromosome 8q, 20q, and deletions at 16q were also detected. The amplification of genetic events at 1q and 8q were further validated using FISH analysis using probes targeting 1q25 and 8q (MYC gene). The copy number changes at these loci can potentially cause a significant change in the tumor behavior, as deletions in the E-Cadherin (CDH1)-tumor suppressor gene as well as amplification of the oncogenes-Aurora Kinase A. (AURKA) and MYC could make these tumors highly metastatic. This study validates the use of aCGH in Saudi breast cancer patients and sets the foundations necessary for performing larger cohort studies searching for ethnicity-specific biomarkers and gene copy number variations.

Keywords: breast cancer, molecular biology, ecology, environment

Procedia PDF Downloads 376
229 Physical Tests on Localized Fluidization in Offshore Suction Bucket Foundations

Authors: Li-Hua Luu, Alexis Doghmane, Abbas Farhat, Mohammad Sanayei, Pierre Philippe, Pablo Cuellar

Abstract:

Suction buckets are promising innovative foundations for offshore wind turbines. They generally feature the shape of an inverted bucket and rely on a suction system as a driving agent for their installation into the seabed. Water is pumped out of the buckets that are initially placed to rest on the seabed, creating a net pressure difference across the lid that generates a seepage flow, lowers the soil resistance below the foundation skirt, and drives them effectively into the seabed. The stability of the suction mechanism as well as the possibility of a piping failure (i.e., localized fluidization within the internal soil plug) during their installation are some of the key questions that remain open. The present work deals with an experimental study of localized fluidization by suction within a fixed bucket partially embedded into a submerged artificial soil made of spherical beads. The transient process, from the onset of granular motion until reaching a stationary regime for the fluidization at the embedded bucket wall, is recorded using the combined optical techniques of planar laser-induced fluorescence and refractive index matching. To conduct a systematic study of the piping threshold for the seepage flow, we vary the beads size, the suction pressure, and the initial depth for the bucket. This experimental modelling, by dealing with erosion-related phenomena from a micromechanical perspective, shall provide qualitative scenarios for the local processes at work which are missing in the offshore practice so far.

Keywords: fluidization, micromechanical approach, offshore foundations, suction bucket

Procedia PDF Downloads 182
228 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 304