Search results for: heat vulnerability index
6371 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow
Authors: Marzieh Khezerloo, Lyazid Djenidi
Abstract:
Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction
Procedia PDF Downloads 1186370 Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence
Authors: Nikhil S. Mane, Mukund L. Harugade, Narayan V. Hargude, Vishal P. Patil
Abstract:
The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases.Keywords: magnetohydrodynamics, heat transfer enhancement, VCRS, air conditioning, refrigeration
Procedia PDF Downloads 2136369 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: conjugate heat transfer, mixed convection, nano fluid, wall waviness
Procedia PDF Downloads 2566368 Defect-Based Urgency Index for Bridge Maintenance Ranking and Prioritization
Authors: Saleh Abu Dabous, Khaled Hamad, Rami Al-Ruzouq
Abstract:
Bridge condition assessment and rating provide essential information needed for bridge management. This paper reviews bridge inspection and condition rating practices and introduces a defect-based urgency index. The index is estimated at the element-level based on the extent and severity of the different defects typical to the bridge element. The urgency index approach has the following advantages: (1) It facilitates judgment submission, i.e. instead of rating the bridge element with a specific linguistic overall expression (which can be subjective and used differently by different people), the approach is based on assessing the defects; (2) It captures multiple defects that can be present within a deteriorated element; and (3) It reflects how critical the element is through quantifying critical defects and their severity. The approach can be further developed and validated. It is expected to be useful for practical purposes as an early-warning system for critical bridge elements.Keywords: condition rating, deterioration, inspection, maintenance
Procedia PDF Downloads 4536367 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: computational fluid dynamics, natural convection, nanofluid and thermal conductivity
Procedia PDF Downloads 4296366 Numerical Investigation of Heat Transfer Characteristics of Different Rib Shapes in a Gas Turbine Blade
Authors: Naik Nithesh, Andre Rozek
Abstract:
The heat transfer and friction loss performances of a single rib-roughened rectangular cooling channel having four novel rib shapes were evaluated through numerical investigation using Ansys CFX. The investigation was conducted on a rectangular channel of aspect ratio (AR) = 4:1 with rib height to hydraulic diameter ratio (e/Dh) of 0.1 and rib pitch to height ratio (e/P) of 10 at Re = 30,000. The computations were performed by solving the RANS equation using k-ε turbulence model. Fluid flow simulation results of stationery case for different configuration are presented in terms of thermal performance parameter, Nusselt number and friction factor. These parameters indicate that a particular configuration of novel shaped ribs provides better heat transfer characteristics over the conventional 45° ribs. The numerical investigation undertaken in this study indicates an increase in overall efficiency of gas turbine due to increased thermal performance parameter, heat transfer co-efficient and less pumping pressure.Keywords: gas turbine, rib shapes, nusselt number, thermal performance parameter
Procedia PDF Downloads 5216365 Multiplying Vulnerability of Child Health Outcome and Food Diversity in India
Authors: Mukesh Ravi Raushan
Abstract:
Despite consideration of obesity as a deadly public health issue contributing 2.6 million deaths worldwide every year developing country like India is facing malnutrition and it is more common than in Sub-Saharan Africa. About one in every three malnourished children in the world lives in India. The paper assess the nutritional health among children using data from total number of 43737 infant and young children aged 0-59 months (µ = 29.54; SD = 17.21) of the selected households by National Family Health Survey, 2005-06. The wasting was measured by a Z-score of standardized weight-for-height according to the WHO child growth standards. The impact of education with place of residence was found to be significantly associated with the complementary food diversity score (CFDS) in India. The education of mother was positively associated with the CFDS but the degree of performance was lower in rural India than their counterpart from urban. The result of binary logistic regression on wasting with WHO seven types of recommended food for children in India suggest that child who consumed the milk product food (OR: 0.87, p<0.0001) were less likely to be malnourished than their counterparts who did not consume, whereas, in case of other food items as the child who consumed food product of seed (OR: 0.75, p<0.0001) were less likely to be malnourished than those who did not. The nutritional status among children were negatively associated with the protein containing complementary food given the child as those child who received pulse in last 24 hour were less likely to be wasted (OR: 0.87, p<0.00001) as compared to the reference categories. The frequency to feed the indexed child increases by 10 per cent the expected change in child health outcome in terms of wasting decreases by 2 per cent in India when place of residence, education, religion, and birth order were controlled. The index gets improved as the risk for malnutrition among children in India decreases.Keywords: CFDS, food diversity index, India, logistic regression
Procedia PDF Downloads 2636364 Temperature Coefficients of the Refractive Index for Ge Film
Authors: Lingmao Xu, Hui Zhou
Abstract:
Ge film is widely used in infrared optical systems. Because of the special requirements of space application, it is usually used in low temperature. The refractive index of Ge film is always changed with the temperature which has a great effect on the manufacture of high precision infrared optical film. Specimens of Ge single film were deposited at ZnSe substrates by EB-PVD method. During temperature range 80K ~ 300K, the transmittance of Ge single film within 2 ~ 15 μm were measured every 20K by PerkinElmer FTIR cryogenic testing system. By the full spectrum inversion method fitting, the relationship between refractive index and wavelength within 2 ~ 12μm at different temperatures was received. It can be seen the relationship consistent with the formula Cauchy, which can be fitted. Then the relationship between refractive index of the Ge film and temperature/wavelength was obtained by fitting method based on formula Cauchy. Finally, the designed value obtained by the formula and the measured spectrum were compared to verify the accuracy of the formula.Keywords: infrared optical film, low temperature, thermal refractive coefficient, Ge film
Procedia PDF Downloads 2996363 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets
Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar
Abstract:
Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).Keywords: coupled effect, heat transfer, sink, solid rocket motors, source
Procedia PDF Downloads 2246362 Flame Retardancy of Organophosphorus Compound on Cellulose - an Eco Friendly Concern
Authors: M. A. Hannan, N. Matthias Neisius
Abstract:
Organophosphorus compound diethyloxymethyl-9-oxa-10-phosphaphenanthrene-10-oxide (DOPAC) was applied on cotton cellulose to impart eco-friendly flame retardant property to it. Here acetal linkage was introduced rather than conventionally used ester linkage to rescue from the undurability problem of flame retardant compound. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used to form acetal linkage between the base material and flame retardant compound. Inspiring limiting oxygen index (LOI) value of 22.4 was found after exclusive washing treatment. A good outcome of total heat of combustion (THC) 6.05 KJ/g was found possible during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. Low temperature dehydration with sufficient amount of char residue (14.89%) was experienced in case of treated sample. In addition, the temperature of peak heat release rate (TPHRR) 343.061°C supported the expected low temperature pyrolysis in condensed phase mechanism. With the consequence of pyrolysis effects, thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples.Keywords: acetal linkage, char residue, cotton cellulose, flame retardant, loi, low temperature pyrolysis, organophosphorus, THC, THRR
Procedia PDF Downloads 3046361 Physical Planning Strategies for Disaster Mitigation and Preparedness in Coastal Region of Andhra Pradesh, India
Authors: Thimma Reddy Pothireddy, Ramesh Srikonda
Abstract:
India is prone to natural disasters such as Floods, droughts, cyclones, earthquakes and landslides frequently due to its geographical considerations. It has become a persistent phenomenon as observed in last ten decades. The recent survey indicates that about 60% of the landmass is prone to earthquakes of various intensities with reference to Richard scale, over 40 million hectares is prone to floods; about 8% of the total area is prone to cyclones and 68% of the area is vulnerable to drought. Climate change is likely to be perceived through the experience of extreme weather events. There is growing societal concern about climate change, given the potential impacts of associated natural hazards such as cyclones, flooding, earthquakes, landslides etc. The recent natural calamities such as Cyclone Hudhud had crossed the land at Northern cost of AP, Vishakapatanam on 12 Oct’2014 with a wind speed ranging between 175 – 200 kmph and the records show that the tidal waves were reached to the height of 14mts and above; and it alarms us to have critical focus on planning issues so as to find appropriate solutions. The existing condition is effective is in terms of institutional set up along with responsive management mechanism of disaster mitigation but considerations at settlement planning level to allow mitigation operations are not adequate. This paper deals to understand the response to climate change will possibly happen through adaptation to climate hazards and essential to work out an appropriate mechanism and disaster receptive settlement planning for responding to natural (and climate-related) calamities particularly to cyclones and floods. The statistics indicate that 40 million hectares flood prone (5% of area), and 1853 kmts of cyclone prone coastal length in India so it is essential and crucial to have appropriate physical planning considerations to improve preparedness and to operate mitigation measures effectively to minimize the loss and damage. Vijayawada capital region which is susceptible to cyclonic and floods has been studied with respect to trajectory analysis to work out risk vulnerability and to integrated disaster mitigation physical planning considerations.Keywords: meta analysis, vulnerability index, physical planning, trajectories
Procedia PDF Downloads 2506360 Urban Heat Island Effects on Human Health in Birmingham and Its Mitigation
Authors: N. A. Parvin, E. B. Ferranti, L. A. Chapman, C. A. Pfrang
Abstract:
This study intends to investigate the effects of the Urban Heat Island on public health in Birmingham. Birmingham is located at the center of the West Midlands and its weather is Highly variable due to geographical factors. Residential developments, road networks and infrastructure often replace open spaces and vegetation. This transformation causes the temperature of urban areas to increase and creates an "island" of higher temperatures in the urban landscape. Extreme heat in the urban area is influencing public health in the UK as well as in the world. Birmingham is a densely built-up area with skyscrapers and congested buildings in the city center, which is a barrier to air circulation. We will investigate the city regarding heat and cold-related human mortality and other impacts. We are using primary and secondary datasets to examine the effect of population shift and land-use change on the UHI in Birmingham. We will also use freely available weather data from the Birmingham Urban Observatory and will incorporate satellite data to determine urban spatial expansion and its effect on the UHI. We have produced a temperature map based on summer datasets of 2020, which has covered 25 weather stations in Birmingham to show the differences between diurnal and nocturnal summer and annual temperature trends. Some impacts of the UHI may be beneficial, such as the lengthening of the plant growing season, but most of them are highly negative. We are looking for various effects of urban heat which is impacting human health and investigating mitigation options.Keywords: urban heat, public health, climate change
Procedia PDF Downloads 976359 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling
Authors: Ivan Tolj
Abstract:
Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management
Procedia PDF Downloads 2796358 The Result of Suggestion for Low Energy Diet (1,000-1,200 kcal) in Obese Women to the Effect on Body Weight, Waist Circumference, and BMI
Authors: S. Kumchoo
Abstract:
The result of suggestion for low energy diet (1,000-1,200 kcal) in obese women to the effect on body weight, waist circumference and body mass index (BMI) in this experiment. Quisi experimental research was used for this study and it is a One-group pretest-posttest designs measurement method. The aim of this study was body weight, waist circumference and body mass index (BMI) reduction by using low energy diet (1,000-1,200 kcal) in obese women, the result found that in 15 of obese women that contained their body mass index (BMI) ≥ 30, after they obtained low energy diet (1,000-1,200 kcal) within 2 weeks. The data were collected before and after of testing the results showed that the average of body weight decrease 3.4 kilogram, waist circumference value decrease 6.1 centimeter and the body mass index (BMI) decrease 1.3 kg.m2 from their previous body weight, waist circumference and body mass index (BMI) before experiment started. After this study, the volunteers got healthy and they can choose or select some food for themselves. For this study, the research can be improved for data development for forward study in the future.Keywords: body weight, waist circumference, low energy diet, BMI
Procedia PDF Downloads 3906357 Nutritional Potentials of Two Nigerian Green Leafy Vegetables
Authors: Philippa C. Ojimelukwe, Felix C. Okpalanma, Emmanuel A. Mazi
Abstract:
The carotenoid content, vitamins (ascorbic acid, riboflavin, thiamin, niacin and vitamin K) and mineral contents (K, Ca, Mg, Zn and Fe) of raw, cooked (moist heat treatment) and stored Gnetum africanum and Pterocarpus mildbraedii leaves were investigated in the present research. Raw G. africanum contained higher total carotenoids (246.93µg/g edible portion) than P. mildbraedii (83.53µg/g edible portion) However, moist heat treatment significantly improved the total carotenoid content of P. mildbraedii. The carotenoid profiles of P. mildbraedii and G. africanum showed improved contents of beta cryptoxanthin , 9-cis, 11-cis and 13 cis beta carotenes due to moist heat treatment. Lutein contents of the two green leafy vegetables were quite high in raw, heat treated and stored samples. The two green leafy vegetables were good sources of vitamin K (118-120 µg). Moist heat treatment significantly (p < 0.05) increased the mineral contents of P.mildbraedii and G. africanum. The vitamin contents were reduced. Storage at ambient temperature (30oC) in the dark led to good retention of the minerals but not the vitamins.Keywords: Gnetum africanum, Pterocarpus mildbraedii, carotenoid profile, vitamins, minerals
Procedia PDF Downloads 4916356 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options
Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris
Abstract:
With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.Keywords: implied adjusted volatility, financial crisis, Leland option pricing models, Australian index options
Procedia PDF Downloads 3816355 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model
Authors: Muhammad Karim Ahmadzai
Abstract:
Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis
Procedia PDF Downloads 1196354 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 3946353 Performance Investigation of Thermal Insulation Materials for Walls: A Case Study in Nicosia (Turkish Republic of North Cyprus)
Authors: L. Vafaei, McDominic Eze
Abstract:
The performance of thermal energy in homes and buildings is a significant factor in terms of energy efficiency of a building. In a large sense, the performance of thermal energy is dependent on many factors of which the amount of thermal insulation is at one end a considerable factor, as likewise the essence of mass and the wall thickness and also the thermal resistance of wall material. This study is aimed at illustrating the different wall system in Turkish Republic of North Cyprus (TRNC), acknowledge the problem and suggest a solution through comparing the effect of thermal radiation two model rooms- L1 (Ytong wall) and L2 (heat insulated wall using stone wool) set up for experimentation. The model room has four face walls. The study consists of two stage, the first test is to access the effect of solar radiation for south facing wall and the second stage is to test the thermal performance of Ytong and heat insulated wall, the effects of climatic condition during winter. The heat insulated wall contains material hollow brick, stone wool, and gypsum while the Ytong wall contains cement concrete, for the outer surface and the inner surface and Ytong stone. The total heat of the wall was determined, 7T-Type thermocouple was used with a data logger system to record the data, temperature change recorded at an interval of 10 minutes. The result obtained was that Ytong wall save more energy than the heat insulated wall at night while heat insulated wall saves energy during the day when intensity is at maximum.Keywords: heat insulation, hollow bricks, south facing, Ytong bricks wall
Procedia PDF Downloads 2676352 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design
Authors: Moulay Youssef El Hafidi
Abstract:
In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange
Procedia PDF Downloads 846351 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises are considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which Heat Recovery System Generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.Keywords: solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction
Procedia PDF Downloads 2996350 The Result of Suggestion for Low Energy Diet (1,000 kcal-1,200 kcal) in Obese Women to the effect on Body Weight, Waist Circumference, and BMI
Authors: S. Kumchoo
Abstract:
The result of suggestion for low energy diet (1,000-1,200 kcal) in obese women to the effect on body weight, waist circumference and body mass index (BMI) in this experiment. Quisi experimental research was used for this study and it is a One-group pretest-posttest designs measurement method. The aim of this study was body weight, waist circumference and body mass index (BMI) reduction by using low energy diet (1,000-1,200 kcal) in obese women, the result found that in 15 of obese women that contained their body mass index (BMI) ≥ 30, after they obtained low energy diet (1,000-1,200 kcal) within 2 weeks. The data were collected before and after of testing the results showed that the average of body weight decrease 3.4 kilogram, waist circumference value decrease 6.1 centimeter and the body mass index (BMI) decrease 1.3 kg.m2 from their previous body weight, waist circumference and body mass index (BMI) before experiment started. After this study, the volunteers got healthy and they can choose or select some food for themselves. For this study, the research can be improved for data development for forward study in the future.Keywords: body weight, waist circumference, BMI, low energy diet
Procedia PDF Downloads 4576349 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat
Abstract:
A presentation of the design of the Organic Rankine Cycle (ORC) with heat regeneration and super-heating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.Keywords: organic rankine cycle, thermal efficiency, working fluids, environmental engineering
Procedia PDF Downloads 4616348 Development of an Index for Asset Class in Ex-Ante Portfolio Management
Authors: Miang Hong Ngerng, Noor Diyana Jasme, May Jin Theong
Abstract:
Volatile market environment is inevitable. Fund managers are struggling to choose the right strategy to survive and overcome uncertainties and adverse market movement. Therefore, finding certainty in the mist of uncertainty future is one of the key performance objectives for fund managers. Current available theoretical results are not practical due to strong reliance on the investment assumption made. This paper is to identify the component that can be forecasted in Ex-ante setting which is the realistic situation facing a fund manager in the actual execution of asset allocation in portfolio management. Partial lease square method was used to generate an index with 10 years accounting data from 191 companies listed in KLSE. The result shows that the index reflects the inner nature of the business and up to 30% of the stock return can be explained by the index.Keywords: active portfolio management, asset allocation ex-ante investment, asset class, partial lease square
Procedia PDF Downloads 2726347 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks
Authors: Yuchao Hua, Lingai Luo
Abstract:
Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis
Procedia PDF Downloads 956346 An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower
Authors: Hamed Djalal
Abstract:
The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower.Keywords: evaporative cooling, cooling tower, air washer, humidification, moist air, heat, and mass transfer
Procedia PDF Downloads 1036345 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke
Authors: Yadong Liu
Abstract:
The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag
Procedia PDF Downloads 1516344 Incidence of Disasters and Coping Mechanism among Farming Households in South West Nigeria
Authors: Fawehinmi Olabisi Alaba, O. R. Adeniyi
Abstract:
Farming households faces lots of disaster which contribute to endemic poverty. Anticipated increases in extreme weather events will exacerbate this. Primary data was administered to farming household using multi-stage random sampling technique. The result of the analysis shows that majority of the respondents (69.9%) are male, have mean household size, years of formal education and age of 5±1.14, 6±3.41, and 51.06±10.43 respectively. The major (48.9%) type of disaster experienced is flooding. Major coping mechanism adopted is sourcing for support from family and friends. Age, education, experience, access to extension agent, and mitigation control method contribute significantly to vulnerability to disaster. The major adaptation method (62.3%) is construction of drainage. The study revealed that the coping mechanisms employed may become less effective as increasingly fragile livelihood systems struggle to withstand disaster shocks. Thus there is need for training of the farmers on measures to adapt to mitigate the shock from disasters.Keywords: adaptation, disasters, flooding, vulnerability
Procedia PDF Downloads 2616343 Malaria Vulnerability Mapping from the Space: A Case Study of Damaturu Town-Nigeria
Authors: Isa Muhammad Zumo
Abstract:
Malaria is one of the worst illnesses that may affect humans. It is typically transmitted by the bite of a female Anopheles mosquito and is caused by parasitic protozoans from the Plasmodium parasite. Government and non-governmental organizations made numerous initiatives to combat the threat of malaria in communities. Nevertheless, the necessary attention was not paid to accurate and current information regarding the size and location of these favourable locations for mosquito development. Because mosquitoes can only reproduce in specific habitats with surface water, this study will locate and map those favourable sites that act as mosquito breeding grounds. Spatial and attribute data relating to favourable mosquito breeding places will be collected and analysed using Geographic Information Systems (GIS). The major findings will be in five classes, showing the vulnerable and risky areas for malaria cases. These risk categories are very high, high, moderate, low, and extremely low vulnerable areas. The maps produced by this study will be of great use to the health department in combating the malaria pandemic.Keywords: Malaria, vulnerability, mapping, space, Damaturu
Procedia PDF Downloads 626342 Experimental Investigation of Nucleate Pool Boiling Heat Transfer on Laser-Structured Copper Surfaces of Different Patterns
Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil
Abstract:
With reference to Energy Roadmap 2050, the minimization of greenhouse gas emissions and the enhancement of energy efficiency are the two key factors that could facilitate a radical change in the world's energy infrastructure. However, the energy demands of electronic devices skyrocketed with the advent of the digital age. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but finding the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-structured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-structured copper surfaces is superior to the bare copper surface in all aspects.Keywords: heat transfer coefficient, laser structuring, micro structured surface, pool boiling
Procedia PDF Downloads 84