Search results for: cellulose fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1051

Search results for: cellulose fibers

361 Performance of an Anaerobic Osmotic Membrane Bioreactor Hybrid System for Wastewater Treatment and Phosphorus Recovery

Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

The submerged anaerobic osmotic membrane bioreactor (AnOMBR) integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR used cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5 L bioreactor at 30-35 ℃. Active layer was orientated to feed stream for minimizing membrane fouling and scaling. Additionally, a peristaltic pump was used to circulate magnesium sulphate (MgSO₄) solution applied as draw solution (DS). Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneously control the salt accumulation in the bioreactor. During experiment progress, the average water flux was around 1.6 LMH. The AnOMBR process showed greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial of ammonia was removed. On the other hand, the average methane production of 0.22 L/g sCOD was obtained. Subsequently, the overall performance demonstrates that a novel submerged AnOMBR system is potential for simultaneous wastewater treatment and resource recovery from wastewater. Therefore, the new concept of this system can be used to replace for the conventional AnMBR in the future.

Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor

Procedia PDF Downloads 222
360 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers

Authors: Beata Pospiech

Abstract:

Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.

Keywords: copper, iron, ionic liquids, solvent extraction

Procedia PDF Downloads 268
359 Effect of the Ratio, Weight, Treatment of Loofah Fiber on the Mechanical Properties of the Composite: Loofah Fiber Resin

Authors: F. Siahmed, A. Lounis, L. Faghi

Abstract:

The aim of this work is to study mechanical properties of composites based on fiber natural. This material has attracted attention of the scientific community for its mechanical properties, its moderate cost and its specification as regards the protection of environment. In this study the loofah part of the family of the natural fiber has been used for these significant mechanical properties. The fiber has porous structure, which facilitates the impregnation of the resin through these pores. The matrix used in this study is the type of unsaturated polyester. This resin was chosen for its resistance to long term.The work involves: -The chemical treatment of the fibers of loofah by NaOH solution (5%) -The realization of the composite resin / fiber loofah; The preparation of samples for testing -The tensile tests and bending -The observation of facies rupture by scanning electron microscopy The results obtained allow us to observe that the values of Young's modulus and tensile strength in tension is high and open up real prospects. The improvement in mechanical properties has been obtained for the two-layer composite fiber with 7.5% (by weight).

Keywords: loofah fiber, mechanical properties, composite, loofah fiber resin

Procedia PDF Downloads 438
358 Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric

Authors: P. Altay, G. Kartal, B. Kizilkaya, S. Kahraman, N. C. Gursoy

Abstract:

Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color.

Keywords: biopolishing, fuzz fiber, weakened fiber, biofinished cotton fabric

Procedia PDF Downloads 371
357 Exploring the Effect of Cellulose Based Coating Incorporated with CaCl2 and MgSO4 on Shelf Life Extension of Kinnow (Citrus reticulata blanco) Cultivar

Authors: Muhammad Atif Randhawa, Muhammad Nadeem

Abstract:

Kinnow (Citrus reticulate Blanco) is nutritious and perishable fruit with high juice content, and also rich source of vitamin-C. In Pakistan, kinnow export is limited due to inadequate post-harvest handling and lack of satisfactory storage practices. Considering these issues, the present study was designed to evaluate the effect of hydroxypropyl methylcellulose (HPMC) coating in combination with CaCl2 and MgSO4 on shelf life extension of kinnow. Fruits were treated with different levels of CaCl2 and MgSO4 followed by HPMC coating (3 and 5%) and stored at 10°C with 80% relative humidity for 6 weeks. Fruits were analyzed for various physico-chemical parameters on weekly basis. During this study lower fruit firmness (0.24Nm-2), loss in weight (0.64%) and ethylene production (0.039 µL•kg-1•hr-1) was observed in fruits treated with 1% CaCl2 + 1% MgSO4 + 5% HPMC (T6) during storage of 42 days. Minimum chilling injury indexes 0.22% and 0.61% were recorded in treatments T4 and T6, respectively. T6 showed higher values of titerable acidity (0.29%) and ascorbic acid contents (39.82mg/100g). Minimum TSS (9.62°Brix) was found in fruits of T6. Overall T6 showed significantly better results for various parameters, as compared to all other treated and control fruits.

Keywords: firmness, kinnow coating, physicochemical, storage

Procedia PDF Downloads 425
356 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties

Authors: Vara Prasad Vemu

Abstract:

The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.

Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS

Procedia PDF Downloads 188
355 A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge

Authors: Esmaeil Biazar

Abstract:

A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model.

Keywords: sciatic regeneration, Schwann cell, artificial conduit, nanofibrous PHBV, histological assessments

Procedia PDF Downloads 316
354 Economic Viability of Using Guar Gum as a Viscofier in Water Based Drilling Fluids

Authors: Devesh Motwani, Amey Kashyap

Abstract:

Interest in cost effective drilling has increased substantially in the past years. Economics associated with drilling fluids is needed to be considered seriously for lesser cost per foot in planning and drilling of a wellbore and the various environmental concerns imposed by international communities related with the constituents of the drilling fluid. Viscofier such as Guar Gum is a high molecular weight polysaccharide from Guar plants, is used to increase viscosity in water-based and brine-based drilling fluids thus enabling more efficient cleaning of the bore. Other applications of this Viscofier are to reduce fluid loss by giving a better colloidal solution, decrease fluid friction and so minimising power requirements and used in hydraulic fracturing to increase the recovery of oil and gas. Guar gum is also used as a surfactant, synthetic polymer and defoamer. This paper presents experimental results to verifying the properties of guar gum as a viscofier and filtrate retainer as well as observing the impact of different quantities of guar gum and Carboxymethyl cellulose (CMC) in a standard sample of water based bentonite mud solution. This is in attempt to make a drilling fluid which contains half of the quantity of drilling mud used and yet is equally viscous to the standardised mud sample. Thus we can see that mud economics will be greatly affected by this approach. However guar gum is thermally stable till 60-65°C thus limited to be used in drilling shallow wells and for a wider thermal range, suitable chrome free additives are required.

Keywords: economics, guargum, viscofier, CMC, thermal stability

Procedia PDF Downloads 458
353 Nutritional Benefits of Soy: An Implication for Health Education

Authors: Mbadugha Esther Ifeoma

Abstract:

Soybeans, like other legumes are rich in nutrients. However, the nutrient profile of soybeans differs in some important ways from most other legumes. Among other nutrients, soy is high in protein, carbohydrates, and fibers, is rich in vitamins, minerals and unsaturated fatty acids and is low in saturated fatty acids. Because of its high nutritional value, it has been rated to be equivalent to meats, eggs and milk. Soy has many health benefits including prevention of coronary heart disease, prevention of cancer growth, improvement of cognitive function, promotion of bone health, prevention of obesity, prevention of type II diabetes and promotion of growth of normal floras in the colon. Soybean consumption is also associated with some side effects which include allergy, flatulence and abdominal discomfort. Nurses/health care providers should therefore, educate clients on the precautionary measures to be taken in preparing soy food products in order to reduce to the barest minimum the side effects, while encouraging them to include soy as part of their daily meals for optimal health and vitality.

Keywords: health benefit, health education, nutritional benefit, soybeans

Procedia PDF Downloads 480
352 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures

Authors: Saad Ahmed, Sanjeev Khannaa

Abstract:

Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.

Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number

Procedia PDF Downloads 138
351 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 245
350 Microfluidization for Processing of Carbonized Chicken Feather Fiber (CCFF) Modified Epoxy Suspensions and the Thermal Properties of the Resulting Composites

Authors: A. Tuna, Y. Okumuş, A. T. Seyhan, H. Çelebi

Abstract:

In this study, microfluidization was considered a promising approach to breaking up of carbonized chicken feather fibers (CCFFs) flocs to synthesizing epoxy suspensions containing (1 wt. %) CCFFs. For comparison, CCFF was also treated using sonication. The energy consumed to break up CCFFs in the ethanol was the same for both processes. CCFFs were found to be dispersed in ethanol in a significantly shorter time with the high shear processor. The CCFFs treated by both sonication and microfluidization were dispersed in epoxy by sonication. SEM examination revealed that CCFFs were broken up into smaller pieces using the high shear processor while being not agglomerated. Further, DSC, TMA, and DMA were systematically used to measure thermal properties of the resulting composites. A significant improvement was observed in the composites including CCFFs treated with microfluidization.

Keywords: carbonized chicken feather fiber (CCFF), modulated differential scanning calorimetry (MDSC), modulated thermomechanical analysis (MTMA), thermal properties

Procedia PDF Downloads 308
349 Elastic Stress Analysis of Composite Cantilever Beam Loaded Uniformly

Authors: Merve Tunay Çetin, Ali Kurşun, Erhan Çetin, Halil Aykul

Abstract:

In this investigation an elastic stress analysis is carried out a woven steel fiber reinforced thermoplastic cantilever beam loaded uniformly at the upper surface. The composite beam material consists of low density polyethylene as a thermoplastic (LDFE, f.2.12) and woven steel fibers. Granules of the polyethylene is put into the moulds and they are heated up to 160°C by using electrical resistance. Subsequently, the material is held for 5min under 2.5 MPa at this temperature. The temperature is decreased to 30°C under 15 MPa pressure in 3 min. Closed form solution is found satisfying both the governing differential equation and boundary conditions. We investigated orientation angle effect on stress distribution of composite cantilever beams. The results show that orientation angle play an important role in determining the responses of a woven steel fiber reinforced thermoplastic cantilever beams and an optimal design of these structures.

Keywords: cantilever beam, elastic stress analysis, orientation angle, thermoplastic

Procedia PDF Downloads 494
348 Experimental Assessment of Micromechanical Models for Mechanical Properties of Recycled Short Fiber Composites

Authors: Mohammad S. Rouhi, Magdalena Juntikka

Abstract:

Processing of polymer fiber composites has a remarkable influence on their mechanical performance. These mechanical properties are even more influenced when using recycled reinforcement. Therefore, we place particular attention on the evaluation of micromechanical models to estimate the mechanical properties and compare them against the experimental results of the manufactured composites. For the manufacturing process, an epoxy matrix and carbon fiber production cut-offs as reinforcing material are incorporated using a vacuum infusion process. In addition, continuous textile reinforcement in combination with the epoxy matrix is used as reference material to evaluate the kick-down in mechanical performance of the recycled composite. The experimental results show less degradation of the composite stiffness compared to the strength properties. Observations from the modeling also show the same trend as the error between the theoretical and experimental results is lower for stiffness comparisons than the strength calculations. Yet still, good mechanical performance for specific applications can be expected from these materials.

Keywords: composite recycling, carbon fibers, mechanical properties, micromechanics

Procedia PDF Downloads 153
347 Insect Inducible Methanol Production in Plants for Insect Resistance

Authors: Gourav Jain, Sameer Dixit, Surjeet Kumar Arya, Praveen C. Verma

Abstract:

Plant cell wall plays a major role in defence mechanism against biotic and abiotic stress as it constitutes the physical barrier between the microenvironment and internal component of the cell. It is a complex structure composed of mostly carbohydrates among which cellulose and hemicelluloses are most abundant that is embedded in a matrix of pectins and proteins. Multiple enzymes have been reported which plays a vital role in cell wall modification, Pectin Methylesterase (PME) is one of them which catalyses the demethylesterification of homogalacturonans component of pectin which releases acidic pectin and methanol. As emitted methanol is toxic to the insect pest, we use PME gene for the better methanol production. In the current study we showed overexpression of PME gene isolated from Withania somnifera under the insect inducible promoter causes enhancement of methanol production at the time of insect feeds to plants, and that provides better insect resistance property. We found that the 85-90% mortality causes by transgenic tobacco in both chewing (Spodoptera litura larvae and Helicoverpa armigera) and sap-sucking (Aphid, mealybug, and whitefly) pest. The methanol content and emission level were also enhanced by 10-15 folds at different inducible time point interval (15min, 30min, 45min, 60min) which would be analysed by Purpald/Alcohol Oxidase method.

Keywords: methanol, Pectin methylesterase, inducible promoters, Purpald/Alcohol oxidase

Procedia PDF Downloads 234
346 Development of High Fiber Biscuit with Bamboo Shoot Powder

Authors: Beatrix Inah C. Mercado

Abstract:

Bamboo shoots are the immature and edible culms from bamboos which contains high amount of dietary fibers. However, in spite of these functional properties of bamboo shoots it is still underutilized. Objectives: To develop bamboo shoot powder and incorporate it to biscuits as a source of dietary fiber and antioxidant. Materials and Methods: Bamboo shoot powder (BSP) was freeze-drying and grind and was incorporated to biscuits in 20% concentration. BSP and biscuits with BSP were analyzed for its proximate composition, dietary fiber, phytonutrients and antioxidant capacity. Results: BSP has 13.1 % moisture, 18.8% protein and 8% ash, 2.4g/100g total fat and 57.7% carbohydrate. BSP and biscuits with 20% BSP were good sources of dietary fiber containing 27.8g/100g and 7.1 g/100g, respectively. BSP is high in phytonutrient contents in terms of total polyphenols (1052mg gallic/100 g) and flavonoids (4046mg catechin/100g). Biscuits with BSP contained higher source of phytonutrients and antioxidant capacity as compared to biscuits without BSP. Sensory evaluation revealed that biscuits with BSP were more acceptable than biscuits without BSP. Conclusion: Bamboo shoots may be used as a potential functional ingredient in food products for broader application.

Keywords: bamboo shoots, phytonutrients, fiber, biscuit

Procedia PDF Downloads 451
345 Characterization of the Physical Properties of Sheep Wool Fiber in Amhara National Regional State

Authors: Erkihun Zelalem

Abstract:

Ethiopian’s sheep population, estimated to be 25.5 million heads, is found widely distributed across the diverse agro-ecological zones of the country. In the past, there were many projects that done to improve production of meat, milk and productivity of sheep breed. However, no significance research has been done so far on production of wool fiber in Ethiopia which could be taken as a potential fiber next to cotton. The measurement of the sheep wool fiber physical properties is critically important, technical, commercial and certification point of view. A total of 24 sheep from different breeds (Menz, Tikur, Farta and Washera) were used in this study. Samples of fiber were analyzed using standard measurements for wool fiber length (WFL), mean fiber diameter (MFD), coefficient of variation of wool fiber diameter (FDCV), breaking strength, elongation, crimp, cleanness and moisture content. Based on the result all parameters shows that there is a great potential of getting of wool fiber from the skin of sheep and according to the standards of its property and grading system based on wool fiber fineness is medium to course. These types of fibers can be making carpets, blankets, rugs, coverings and other products.

Keywords: Fiber, Fineness, Carpet, Fleece, Raw Wool

Procedia PDF Downloads 155
344 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 519
343 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 80
342 Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application

Authors: Shilpa Kulkarni, Sujata Patrikar

Abstract:

A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications.

Keywords: single mode fiber directional coupler, modeling and simulation of fiber directional coupler sensor, biomolecular sensing, medical sensor device

Procedia PDF Downloads 257
341 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 384
340 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 206
339 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 158
338 Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D'Ivoire

Authors: G. Dan Chépo, L. Ban-Koffi, N. Kouassi Kouakou, M. Dje Kouakou, J. Nemlin, A. Sahore Drogba, L. Kouame Patrice

Abstract:

Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam.

Keywords: Gnagnan, maturity stage, chemical composition, chromatography thin layer, phytochemical sorting

Procedia PDF Downloads 487
337 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fiber-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. The sisal fiber has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18, and 24% by weight of sisal fibres were assessed. Sisal fiber reinforced cement composite slabs with long sisal fibers were manufactured using a cast hand layup technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.

Keywords: sisal fibre, fiber-reinforced concrete, mechanical behaviour, composite materials

Procedia PDF Downloads 251
336 Fluorination Renders the Wood Surface Hydrophobic without Any Loos of Physical and Mechanical Properties

Authors: Martial Pouzet, Marc Dubois, Karine Charlet, Alexis Béakou

Abstract:

The availability, the ecologic and economic characteristics of wood are advantages which explain the very wide scope of applications of this material, in several domains such as paper industry, furniture, carpentry and building. However, wood is a hygroscopic material highly sensitive to ambient humidity and temperature. The swelling and the shrinking caused by water absorption and desorption cycles lead to crack and deformation in the wood volume, making it incompatible for such applications. In this study, dynamic fluorination using F2 gas was applied to wood samples (douglas and silver fir species) to decrease their hydrophilic character. The covalent grafting of fluorine atoms onto wood surface through a conversion of C-OH group into C-F was validated by Fourier-Transform infrared spectroscopy and 19F solid state Nuclear Magnetic Resonance. It revealed that the wood, which is initially hydrophilic, acquired a hydrophobic character comparable to that of the Teflon, thanks to fluorination. A good durability of this treatment was also determined by aging tests under ambient atmosphere and under UV irradiation. Moreover, this treatment allowed obtaining hydrophobic character without major structural (morphology, density and colour) or mechanical changes. The maintaining of these properties after fluorination, which requires neither toxic solvent nor heating, appears as a remarkable advantage over other more traditional physical and chemical wood treatments.

Keywords: cellulose, spectroscopy, surface treatment, water absorption

Procedia PDF Downloads 194
335 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft

Authors: Lyudmila L. Gracheva

Abstract:

Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.

Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion

Procedia PDF Downloads 52
334 Monitoring of Sustainability of Extruded Soya Product TRADKON SPC-TEX in Order to Define Expiration Date

Authors: Radovan Čobanović, Milica Rankov Šicar

Abstract:

New attitudes about nutrition impose new styles, and therefore a neNew attitudes about nutrition impose new styles, and therefore a new kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducing clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according to: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.w kind of food. The goal of our work was to define the shelf life of new extruded soya product with minimum 65% of protein based on the analyses. According to the plan it was defined that a certain quantity of the same batch of new product (soybean flakes) which had predicted shelf life of 2 years had to be stored for 24 months in storage and analyzed at the beginning and end of sustainability plan on instrumental analyses (heavy metals, pesticides and mycotoxins) and every month on sensory analyses (odor, taste, color, consistency), microbiological analyses (Salmonella spp., Escherichia coli, Enterobacteriaceae, sulfite-reducin clostridia, Listeria monocytogenes), chemical analyses (protein, ash, fat, crude cellulose, granulation) and at the beginning on GMO analyses. All analyses were tested according: sensory analyses ISO 6658, Salmonella spp ISO 6579, Escherichia coli ISO 16649-2, Enterobacteriaceae ISO 21528-2, sulfite-reducing clostridia ISO 15213 and Listeria monocytogenes ISO 11290-2, chemical and instrumental analyses Serbian ordinance on the methods of physico-chemical analyses and GMO analyses JRC Compendium. The results obtained after the analyses which were done according to the plan during the 24 months indicate that are no changes of products concerning both sensory and chemical analyses. As far as microbiological results are concerned Salmonella spp was not detected and all other quantitative analyses showed values <10 cfu/g. The other parameters for food safety (heavy metals, pesticides and mycotoxins) were not present in analyzed samples and also all analyzed samples were negative concerning genetic testing. On the basis of monitoring the sample under defined storage conditions and analyses of quality control, GMO analyses and food safety of the sample during the shelf within two years, the results showed that all the parameters of the sample during defined period is in accordance with Serbian regulative so that indicate that predicted shelf life can be adopted.

Keywords: extruded soya product, food safety analyses, GMO analyses, shelf life

Procedia PDF Downloads 287
333 Novel CFRP Adhesive Joints and Structures for Offshore Application

Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa

Abstract:

Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.

Keywords: adhesive joints, CFRP, VARTM, resin transfer molding

Procedia PDF Downloads 429
332 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 81