Search results for: blind signal separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3118

Search results for: blind signal separation

2428 The Selection of the Nearest Anchor Using Received Signal Strength Indication (RSSI)

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

The localization information is crucial for the operation of WSN. There are principally two types of localization algorithms. The Range-based localization algorithm has strict requirements on hardware; thus, it is expensive to be implemented in practice. The Range-free localization algorithm reduces the hardware cost. However, it can only achieve high accuracy in ideal scenarios. In this paper, we locate unknown nodes by incorporating the advantages of these two types of methods. The proposed algorithm makes the unknown nodes select the nearest anchor using the Received Signal Strength Indicator (RSSI) and choose two other anchors which are the most accurate to achieve the estimated location. Our algorithm improves the localization accuracy compared with previous algorithms, which has been demonstrated by the simulating results.

Keywords: WSN, localization, DV-Hop, RSSI

Procedia PDF Downloads 360
2427 Single Layer Carbon Nanotubes Array as an Efficient Membrane for Desalination: A Molecular Dynamics Study

Authors: Elisa Y. M. Ang, Teng Yong Ng, Jingjie Yeo, Rongming Lin, Zishun Liu, K. R. Geethalakshmi

Abstract:

By stacking carbon nanotubes (CNT) one on top of another, single layer CNT arrays can perform water-salt separation with ultra-high permeability and selectivity. Such outer-wall CNT slit membrane is named as the transverse flow CNT membrane. By adjusting the slit size between neighboring CNTs, the membrane can be configured to sieve out different solutes, right down to the separation of monovalent salt ions from water. Molecular dynamics (MD) simulation results show that the permeability of transverse flow CNT membrane is more than two times that of conventional axial-flow CNT membranes, and orders of magnitude higher than current reverse osmosis membrane. In addition, by carrying out MD simulations with different CNT size, it was observed that the variance in desalination performance with CNT size is small. This insensitivity of the transverse flow CNT membrane’s performance to CNT size is a distinct advantage over axial flow CNT membrane designs. Not only does the membrane operate well under constant pressure desalination operation, but MD simulations further indicate that oscillatory operation can further enhance the membrane’s desalination performance, making it suitable for operation such as electrodialysis reversal. While there are still challenges that need to be overcome, particularly on the physical fabrication of such membrane, it is hope that this versatile membrane design can bring the idea of using low dimensional structures for desalination closer to reality.

Keywords: carbon nanotubes, membrane desalination, transverse flow carbon nanotube membrane, molecular dynamics

Procedia PDF Downloads 196
2426 Modalmetric Fiber Sensor and Its Applications

Authors: M. Zyczkowski, P. Markowski, M. Karol

Abstract:

The team from IOE MUT is developing fiber optic sensors for the security systems for 15 years. The conclusions of the work indicate that these sensors are complicated. Moreover, these sensors are expensive to produce and require sophisticated signal processing methods.We present the results of the investigations of three different applications of the modalmetric sensor: • Protection of museum collections and heritage buildings, • Protection of fiber optic transmission lines, • Protection of objects of critical infrastructure. Each of the presented applications involves different requirements for the system. The results indicate that it is possible to developed a fiber optic sensor based on a single fiber. Modification of optoelectronic parts with a change of the length of the sensor and the method of reflections of propagating light at the end of the sensor allows to adjust the system to the specific application.

Keywords: modalmetric fiber optic sensor, security sensor, optoelectronic parts, signal processing

Procedia PDF Downloads 619
2425 Independence of the Judiciary in South Africa: An Assessment After Twenty Years of Democracy

Authors: Serges Djoyou Kamga, Gerard Emmanuel Kamdem Kamga

Abstract:

Any serious constitutionalism entails a system of government characterised by the separation of powers between the executive, the legislature, and the judiciary. The latter is generally in charge of upholding the rule of law and the respect for human rights which are vital for the functioning of any democracy. Therefore, for the judiciary to play its role as a watchdog, it should be independent from other branches of government. The aim of this paper is to examine the independence of the judiciary in South Africa after 20 of democracy. Defining judicial independence as the courts’ ability ‘to decide cases on the basis of established law and the merits of the case, without interference from other political or governmental agents’, the paper examines the extent to which the South African judiciary is independent after twenty years of democracy. As part of assessing the independence of the judiciary, the paper begins by looking at the situation during apartheid, then proceeds with an examination of the post-apartheid legal order. It also examines the institutional independence of the judiciary by looking into its day to day activities which revolve around its self-governance, or administrative and financial independence. In addition, the paper assesses the judges’ individual independence by examining whether judicial appointment, security of tenure, judges’ remuneration and disciplinary actions and the removal of judges from office do not contain loopholes that can hinder judicial independence. Ultimately, the chapter argues that although the South African model of judicial independence is yet to be perfect, it is a good practice that can be emulated by other African countries.

Keywords: judical independence, South Africa, democracy, separation of powers

Procedia PDF Downloads 415
2424 Braille Code Matrix

Authors: Mohammed E. A. Brixi Nigassa, Nassima Labdelli, Ahmed Slami, Arnaud Pothier, Sofiane Soulimane

Abstract:

According to the world health organization (WHO), there are almost 285 million people with visual disability, 39 million of these people are blind. Nevertheless, there is a code for these people that make their life easier and allow them to access information more easily; this code is the Braille code. There are several commercial devices allowing braille reading, unfortunately, most of these devices are not ergonomic and too expensive. Moreover, we know that 90 % of blind people in the world live in low-incomes countries. Our contribution aim is to concept an original microactuator for Braille reading, as well as being ergonomic, inexpensive and lowest possible energy consumption. Nowadays, the piezoelectric device gives the better actuation for low actuation voltage. In this study, we focus on piezoelectric (PZT) material which can bring together all these conditions. Here, we propose to use one matrix composed by six actuators to form the 63 basic combinations of the Braille code that contain letters, numbers, and special characters in compliance with the standards of the braille code. In this work, we use a finite element model with Comsol Multiphysics software for designing and modeling this type of miniature actuator in order to integrate it into a test device. To define the geometry and the design of our actuator, we used physiological limits of perception of human being. Our results demonstrate in our study that piezoelectric actuator could bring a large deflection out-of-plain. Also, we show that microactuators can exhibit non uniform compression. This deformation depends on thin film thickness and the design of membrane arm. The actuator composed of four arms gives the higher deflexion and it always gives a domed deformation at the center of the deviceas in case of the Braille system. The maximal deflection can be estimated around ten micron per Volt (~ 10µm/V). We noticed that the deflection according to the voltage is a linear function, and this deflection not depends only on the voltage the voltage, but also depends on the thickness of the film used and the design of the anchoring arm. Then, we were able to simulate the behavior of the entire matrix and thus display different characters in Braille code. We used these simulations results to achieve our demonstrator. This demonstrator is composed of a layer of PDMS on which we put our piezoelectric material, and then added another layer of PDMS to isolate our actuator. In this contribution, we compare our results to optimize the final demonstrator.

Keywords: Braille code, comsol software, microactuators, piezoelectric

Procedia PDF Downloads 355
2423 Gas Sensor Based On a One-Dimensional Nano-Grating Au/ Co/ Au/ TiO2 Magneto-Plasmonic Structure

Authors: S. M. Hamidi, M. Afsharnia

Abstract:

Gas sensors based on magneto-plasmonic (MP) structures have attracted much attention due to the high signal to noise ratio in these type of sensors. In these sensors, both the plasmonic and the MO properties of the resulting MP structure become interrelated because the surface Plasmon resonance (SPR) of the metallic medium. This interconnection can be modified the sensor responses and enhanced the signal to noise ratio. So far the sensor features of multilayered structures made of noble and ferromagnetic metals as Au/Co/Au MP multilayer with TiO2 sensor layer have been extensively studied, but their SPR assisted sensor response need to the krestchmann configuration. Here, we present a systematic study on the new MP structure based on one-dimensional nano-grating Au/ Co/ Au/ TiO2 multilayer to utilize as an inexpensive and easy to use gas sensor.

Keywords: Magneto-plasmonic structures, Gas sensor, nano-garting

Procedia PDF Downloads 447
2422 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The multi-scale product is based on making the product of the speech wavelet transform coefficients at three successive dyadic scales. We have evaluated our method on the Keele database. Experimental results show the effectiveness of our method presenting a good performance. It shows that the two simple features can find word boundaries, and extracted the segments of the clean speech.

Keywords: multiscale product, spectral centroid, speech segmentation, zero crossings rate

Procedia PDF Downloads 500
2421 Automated Recognition of Still’s Murmur in Children

Authors: Sukryool Kang, James McConnaughey, Robin Doroshow, Raj Shekhar

Abstract:

Still’s murmur, a vibratory heart murmur, is the most common normal innocent murmur of childhood. Many children with this murmur are unnecessarily referred for cardiology consultation and testing, which exacts a high cost financially and emotionally on the patients and their parents. Pediatricians to date are not successful at distinguishing Still’s murmur from murmurs of true heart disease. In this paper, we present a new algorithmic approach to distinguish Still’s murmur from pathological murmurs in children. We propose two distinct features, spectral width and signal power, which describe the sharpness of the spectrum and the signal intensity of the murmur, respectively. Seventy pediatric heart sound recordings of 41 Still’s and 29 pathological murmurs were used to develop and evaluate our algorithm that achieved a true positive rate of 97% and false positive rate of 0%. This approach would meet clinical standards in recognizing Still’s murmur.

Keywords: AR modeling, auscultation, heart murmurs, Still's murmur

Procedia PDF Downloads 368
2420 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score

Authors: Jianfeng Hu

Abstract:

Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.

Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes

Procedia PDF Downloads 285
2419 The Structural Analysis of Out-of-Sequence Thrust: Insights from Chaura Thrust of Higher Himalaya in Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

This paper focuses on the structural analysis of Chaura Thrust in Himachal Pradesh, India. It investigates mylonitised zones under microscopic observation, characterizes the box fold and its signature in the regional geology of Himachal Himalaya, and documents the Higher Himalayan Out-of-Sequence Thrust (OOST) in the region. The study aims to provide field evidence and documentation for Chaura Thrust (CT), which was previously considered a blind thrust. The research methodology involves geological field observation, microscopic studies, and strain analysis of oriented samples collected along the Jhakri-Chaura transect. The study presents findings such as the activation ages of MCT and STDS, the identification of mylonitised zones and various types of crenulated schistosity, and the manifestation of box folds and OOST. The presence of meso- and micro-scale box folds around Chaura suggests structural upliftment, while kink folds and shear sense indicators were identified. The research highlights the importance of microscopic studies and contributes to the understanding of the structural analysis of CT and its implications in the regional geology of the Himachal Himalaya. Mylonitised zones with S-C fabric were observed under the microscope, along with dynamic and bulging recrystallization and sub-grain formation. Various types of crenulated schistosity were documented, including a rare case of crenulation cleavage and sigmoid Muscovite occurring together. The conclusions emphasize the non-blind nature of Chaura Thrust, the characterization of box folds, the activation timing of different thrusts, and the significance of microscopic observations. Jhakri/Chaura/Sarahan thrusts are the zone of tectonic imbrication that transport Higher Himalayan gneissic rock on Rampur Quartzite. The evidence of frequent earthquakes and landslides in the Jhakri region confirm the study of morphometric conclusion that there is considerable neo-tectonic activity along an active fault in the Sutlej river basin. The study also documents the presence of OOST in Himachal Pradesh and its potential impact on strain accumulation.

Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust

Procedia PDF Downloads 87
2418 Human Security and Human Trafficking Related Corruption

Authors: Ekin D. Horzum

Abstract:

The aim of the proposal is to examine the relationship between human trafficking related corruption and human security. The proposal suggests that the human trafficking related corruption is about willingness of the states to turn a blind eye to the human trafficking cases. Therefore, it is important to approach human trafficking related corruption in terms of human security and human rights violation to find an effective way to fight against human trafficking. In this context, the purpose of this proposal is to examine the human trafficking related corruption as a safe haven in which trafficking thrives for perpetrators.

Keywords: human trafficking, human security, human rights, corruption, organized crime

Procedia PDF Downloads 475
2417 The Effects of Inulin on the Stabilization and Stevioside as Sugar-Replacer of Sourcherry Juice-Milk Mixture

Authors: S. Teimouri, S. Abbasi

Abstract:

Milk-fruit juice mixture is a type of soft drinks, which can be produced by mixing milk with pieces of fruits, fruit juices, or fruit juices concentrates. The major problem of these products, mainly the acidic ones, is phase separation which occurs during formulation and storage due to the aggregation of caseins at low pH Short-chain inulin (CLR), long-chain inulin (TEX), native inulin (IQ) and Long-chain inulin (TEX) and short-chain inulin (CLR) combined in different proportions (2o:80, 50:50, and 80:20) were added (2-10 %) to sourcherry juice-milk mixture and their stabilization mechanisms were studied with using rheological and microstructural observations. Stevioside as a bio-sweetener and sugar-replacer was added at last step. Finally, sensory analyses were taken place on stabilized samples. According to the findings, TEX stabilized the mixture at concentration of 8%. MIX and IQ reduced phase separation at high concentration but had not complete effect on stabilization. CLR did not effect on stabilization. Rheological changes and inulin aggregates formation were not observed in CLR samples during the one month storage period. However TEX, MIX and IQ samples formed inulin aggregates and became more thixotropic, elastic and increased the viscosity of mixture. The rate of the inulin aggregates formation and viscosity increasing was in the following order TEX > MIX > IQ. Consequently the mixture which stabilized with inulin and sweetened with stevioside had the prebiotic properties which may suggest to diabetic patients and children.

Keywords: prebiotic, inulin, casein, stabilization, stevioside

Procedia PDF Downloads 274
2416 Multi-Path Signal Synchronization Model with Phase Length Constraints

Authors: Tzu-Jung Huang, Hsun-Jung Cho, Chien-Chia Liäm Huang

Abstract:

To improve the level of service (LoS) of urban arterial systems containing a series of signalized intersections, a proper design of offsets for all intersections associated is of great importance. The MAXBAND model has been the most common approach for this purpose. In this paper, we propose a MAXBAND model with phase constraints so that the lengths of the phases in a cycle are variable. In other words, the length of a cycle is also variable in our setting. We conduct experiments on a real-world traffic network, having several major paths, in Taiwan for numerical evaluations. Actual traffic data were collected through on-site experiments. Numerical evidences suggest that the improvements are around 32%, on average, in terms of total delay of the entire network.

Keywords: arterial progression, MAXBAND, signal control, offset

Procedia PDF Downloads 358
2415 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 370
2414 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
2413 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System

Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer

Abstract:

Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.

Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency

Procedia PDF Downloads 26
2412 A Generalized Model for Performance Analysis of Airborne Radar in Clutter Scenario

Authors: Vinod Kumar Jaysaval, Prateek Agarwal

Abstract:

Performance prediction of airborne radar is a challenging and cumbersome task in clutter scenario for different types of targets. A generalized model requires to predict the performance of Radar for air targets as well as ground moving targets. In this paper, we propose a generalized model to bring out the performance of airborne radar for different Pulsed Repetition Frequency (PRF) as well as different type of targets. The model provides a platform to bring out different subsystem parameters for different applications and performance requirements under different types of clutter terrain.

Keywords: airborne radar, blind zone, clutter, probability of detection

Procedia PDF Downloads 470
2411 Hydrometallurgical Treatment of Smelted Low-Grade WEEE

Authors: Ewa Rudnik

Abstract:

Poster shows a comparison of hydrometallurgical routes of copper recovery from low-grade e-waste. Electronic scrap was smelted to produce Cu–Zn–Ag alloy. The alloy was then treated in the following ways: (a) anodic dissolution with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. (b) leaching in ammoniacal solutions of various compositions and then copper electrowinning. Alloy was leached in chloride, carbonate, sulfate and thiosulfate baths. This resulted in the separation of the metals, wherein copper and zinc were transferred to the electrolyte, while metallic tin and silver as well as lead salts remained in the slimes. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammonia-carbonate system, where the final product was copper of high purity (99.9%) at the current efficiency of 60%. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper (I) thiosulfate complexes and precipitation of copper (I) sulfide.

Keywords: alloy, electrolysis, e-waste, leaching

Procedia PDF Downloads 371
2410 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 151
2409 Evaluation of Hand Grip Strength and EMG Signal on Visual Reaction

Authors: Sung-Wook Shin, Sung-Taek Chung

Abstract:

Hand grip strength has been utilized as an indicator to evaluate the motor ability of hands, responsible for performing multiple body functions. It is, however, difficult to evaluate other factors (other than hand muscular strength) utilizing the hand grip strength only. In this study, we analyzed the motor ability of hands using EMG and the hand grip strength, simultaneously in order to evaluate concentration, muscular strength reaction time, instantaneous muscular strength change, and agility in response to visual reaction. In results, the average time (and their standard deviations) of muscular strength reaction EMG signal and hand grip strength was found to be 209.6 ± 56.2 ms and 354.3 ± 54.6 ms, respectively. In addition, the onset time which represents acceleration time to reach 90% of maximum hand grip strength, was 382.9 ± 129.9 ms.

Keywords: hand grip strength, EMG, visual reaction, endurance

Procedia PDF Downloads 462
2408 Simulation of Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets

Authors: Shuang Chen, Zongqian Shi, Jiajia Sun, Mingjia Li

Abstract:

Microfluidics is a technology that small amounts of fluids are manipulated using channels with dimensions of tens to hundreds of micrometers. At present, this significant technology is required for several applications in some fields, including disease diagnostics, genetic engineering, and environmental monitoring, etc. Among these fields, manipulation of microparticles and cells in microfluidic device, especially separation, have aroused general concern. In magnetic field, the separation methods include positive and negative magnetophoresis. By comparison, negative magnetophoresis is a label-free technology. It has many advantages, e.g., easy operation, low cost, and simple design. Before the separation of particles or cells, focusing them into a single tight stream is usually a necessary upstream operation. In this work, the focusing of diamagnetic particles in ferrofluid microflows with a single set of overhead permanent magnets is investigated numerically. The geometric model of the simulation is based on the configuration of previous experiments. The straight microchannel is 24mm long and has a rectangular cross-section of 100μm in width and 50μm in depth. The spherical diamagnetic particles of 10μm in diameter are suspended into ferrofluid. The initial concentration of the ferrofluid c₀ is 0.096%, and the flow rate of the ferrofluid is 1.8mL/h. The magnetic field is induced by five identical rectangular neodymium−iron− boron permanent magnets (1/8 × 1/8 × 1/8 in.), and it is calculated by equivalent charge source (ECS) method. The flow of the ferrofluid is governed by the Navier–Stokes equations. The trajectories of particles are solved by the discrete phase model (DPM) in the ANSYS FLUENT program. The positions of diamagnetic particles are recorded by transient simulation. Compared with the results of the mentioned experiments, our simulation shows consistent results that diamagnetic particles are gradually focused in ferrofluid under magnetic field. Besides, the diamagnetic particle focusing is studied by varying the flow rate of the ferrofluid. It is in agreement with the experiment that the diamagnetic particle focusing is better with the increase of the flow rate. Furthermore, it is investigated that the diamagnetic particle focusing is affected by other factors, e.g., the width and depth of the microchannel, the concentration of the ferrofluid and the diameter of diamagnetic particles.

Keywords: diamagnetic particle, focusing, microfluidics, permanent magnet

Procedia PDF Downloads 130
2407 Feasibility Study of Iraq' Decomposition and Its Effects on the Region

Authors: Ebrahim Rahmani, Siyamak Moazeni

Abstract:

According to the Iraq's first constitutional law (approved 2005), Iraq is an independent with sovereignty and its governmental structure is parliamentary democratic republic and federal. Even in reforms in 2009, this article of law did not changed at all. But considering the existence of this emphasis and clarity which is mentioned in the law, different and sometimes contradictory interpretations and positions are expressed about federalism in the way that we can say, considering the importance of the matter, federalism is a focus point to create and expansion of the cold war among leaders of different groups of the country. Iraq's today political and security position has granted the suitable opportunity to Iraq's Kurdistan in appearing of the recent security crisis to increase its share from the central political power or to achieve to its independent dream. The federalism the weakest point of Iraq's territorial integrity in a way that if different groups do not come to a consensus about it and do not think about a mechanism which is accepted by all of them, this can effect on and Iraq's political stability and security. Iraq's Kurdistan follows the option of disintegration and separation under the shadow of political and security changes, even with existence of some Iraqi groups' hopes regarding the improvement of situation after parliament election and also considering Masoud Barezani's power will for separation from Iraq as well as regarding special international changes and disintegration of Karime from Ukraine and ISIS crises; concerns have been created among regional and international powers and interior players. In this article, a paradox due constitutional law about federalism, Iraq's central government view and its politicians to the matter and the regional effect of this action on region's geopolitics are reviewed as well.

Keywords: constitutional law, federalism, decomposition, Iraq's Kurdistan

Procedia PDF Downloads 328
2406 Cannabis for the Treatment of Drug Resistant Epilepsy in Children

Authors: Sarah E. Casey

Abstract:

Epilepsy is the most common neurological disorder in children and approximately one-third of children with epilepsy have seizures that are uncontrolled on anticonvulsants alone. Cannabidiol is shown to be an effective treatment at reducing the amount of breakthrough seizures experienced by children with drug resistant epilepsy. Improvements in quality of life and overall condition were noted during cannabidiol treatment. Adverse side effects were experienced and were generally mild to moderate in nature. Additional double-blind, controlled studies with a more diverse sample population and standardized dosing are needed to ensure the efficacy and safety of cannabidiol use in children with drug resistant epilepsy.

Keywords: cannabis, drug resistant epilepsy, children, epilepsy

Procedia PDF Downloads 223
2405 Proposed Alternative System for Existing Traffic Signal System

Authors: Alluri Swaroopa, L. V. N. Prasad

Abstract:

Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Keywords: bridges, junctions, ramps, urban traffic control

Procedia PDF Downloads 553
2404 A Double-Blind, Randomized, Controlled Trial on N-Acetylcysteine for the Prevention of Acute Kidney Injury in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

Authors: Sara Ataei, Molouk Hadjibabaie, Amirhossein Moslehi, Maryam Taghizadeh-Ghehi, Asieh Ashouri, Elham Amini, Kheirollah Gholami, Alireza Hayatshahi, Mohammad Vaezi, Ardeshir Ghavamzadeh

Abstract:

Acute kidney injury (AKI) is one of the complications of hematopoietic stem cell transplantation and is associated with increased mortality. N-acetylcysteine (NAC) is a thiol compound with antioxidant and vasodilatory properties that has been investigated for the prevention of AKI in several clinical settings. In the present study, we evaluated the effects of intravenous NAC on the prevention of AKI in allogeneic hematopoietic stem cell transplantation patients. A double-blind randomized placebo-controlled trial was conducted, and 80 patients were recruited to receive 100 mg/kg/day NAC or placebo as intermittent intravenous infusion from day -6 to day +15. AKI was determined on the basis of the Risk-Injury-Failure-Loss-Endstage renal disease and AKI Network criteria as the primary outcome. We assessed urine neutrophil gelatinase-associated lipocalin (uNGAL) on days -6, -3, +3, +9, and +15 as the secondary outcome. Moreover, transplant-related outcomes and NAC adverse reactions were evaluated during the study period. Statistical analysis was performed using appropriate parametric and non-parametric methods including Kaplan–Meier for AKI and generalized estimating equation for uNGAL. At the end of the trial, data from 72 patients were analyzed (NAC: 33 patients and placebo: 39 patients). Participants of each group were not different considering baseline characteristics. AKI was observed in 18% of NAC recipients and 15% of placebo group patients, and the occurrence pattern was not significantly different (p = 0.73). Moreover, no significant difference was observed between groups for uNGAL measures (p = 0.10). Transplant-related outcomes were similar for both groups, and all patients had successful engraftment. Three patients did not tolerate NAC because of abdominal pain, shortness of breath and rash with pruritus and were dropped from the intervention group before transplantation. However, the frequency of adverse reactions was not significantly different between groups. In conclusion, our findings could not show any clinical benefits from high-dose NAC particularly for AKI prevention in allogeneic hematopoietic stem cell transplantation patients.

Keywords: acute kidney injury, N-acetylcysteine, hematopoietic stem cell transplantation, urine neutrophil gelatinase-associated lipocalin, randomized controlled trial

Procedia PDF Downloads 433
2403 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 89
2402 Computational Fluid Dynamics Analysis of Cyclone Separator Performance Using Discrete Phase Model

Authors: Sandeep Mohan Ahuja, Gulshan Kumar Jawa

Abstract:

Cyclone separators are crucial components in various industries tasked with efficiently separating particulate matter from gas streams. Achieving optimal performance hinges on a deep understanding of flow dynamics and particle behaviour within these separators. In this investigation, Computational Fluid Dynamics (CFD) simulations are conducted utilizing the Discrete Phase Model (DPM) to dissect the intricate flow patterns, particle trajectories, and separation efficiency within cyclone separators. The study delves into the influence of pivotal parameters like inlet velocity, particle size distribution, and cyclone geometry on separation efficiency. Through numerical simulations, a comprehensive comprehension of fluid-particle interaction phenomena within cyclone separators is attained, allowing for the assessment of solid collection efficiency across diverse operational conditions and geometrical setups. The insights gleaned from this study promise to advance our understanding of the complex interplay between fluid and particle within cyclone separators, thereby enabling optimization across a wide array of industrial applications. By harnessing the power of CFD simulations and the DPM, this research endeavours to furnish valuable insights for designing, operating, and evaluating the performance of cyclone separators, ultimately fostering greater efficiency and environmental sustainability within industrial processes.

Keywords: cyclone separator, computational fluid dynamics, enhancing efficiency, discrete phase model

Procedia PDF Downloads 52
2401 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform

Authors: Liang-Ta Cheng, Ching-Yu Yang

Abstract:

Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.

Keywords: data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications

Procedia PDF Downloads 194
2400 Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid at Physiological Level Using Anodized Multiwalled Carbon Nanotube–Poldimethylsiloxane Paste Electrode

Authors: Angelo Gabriel Buenaventura, Allan Christopher Yago

Abstract:

A carbon paste electrode (CPE) composed of Multiwalled Carbon Nanotube (MWCNT) conducting particle and Polydimethylsiloxane (PDMS) binder was used for simultaneous detection of Dopamine (DA) and Uric Acid (UA) in the presence of Ascorbic Acid (AA) at physiological level. The MWCNT-PDMS CPE was initially activated via potentiodynamic cycling in a basic (NaOH) solution, which resulted in enhanced electrochemical properties. Electrochemical Impedance Spectroscopy measurements revealed a significantly lower charge transfer resistance (Rct) for the OH--activated MWCNT-PDMS CPE (Rct = 5.08kΩ) as compared to buffer (pH 7)-activated MWCNT-PDMS CPE (Rct = 25.9kΩ). Reversibility analysis of Fe(CN)63-/4- redox couple of both Buffer-Activated CPE and OH--Activated CPE showed that the OH—Activated CPE have peak current ratio (Ia/Ic) of 1.11 at 100mV/s while 2.12 for the Buffer-Activated CPE; this showed an electrochemically reversible behavior for Fe(CN)63-/4- redox couple even at relatively fast scan rate using the OH--activated CPE. Enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained using the OH--activated MWCNT-PDMS CPE in the presence of 50 μM AA via Differential Pulse Voltammetry technique. The anodic peak currents which appeared at 0.263V and 0.414 V were linearly increasing with increasing concentrations of DA and UA, respectively. The linear ranges were obtained at 25 μM – 100 μM for both DA and UA. The detection limit was determined to be 3.86 μM for DA and 5.61 μM for UA. These results indicate a practical approach in the simultaneous detection of important bio-organic molecules using a simple CPE composed of MWCNT and PDMS with base anodization as activation technique.

Keywords: anodization, ascorbic acid, carbon paste electrodes, dopamine, uric acid

Procedia PDF Downloads 284
2399 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form

Authors: S. Jain, R. Savalia, V. Saini

Abstract:

A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.

Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH

Procedia PDF Downloads 315