Search results for: black hole
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1165

Search results for: black hole

475 A Global Fuel Combustion Data Product and Its Application

Authors: Shu Tao, Rong Wang, Huizhong Shen, Ye Huang

Abstract:

High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory.

Keywords: fuel, emission, BC, PAHs, atmospheric transport, exposure

Procedia PDF Downloads 304
474 Through-Bolt Moment Connection in HSS Column

Authors: Bardia Khafaf, Mehrdad Ghaffari, Amir Hussein Samakar

Abstract:

It is currently desirable to use Hollow Square Sections (HSS) in moment resistant structures in construction of building because they offer fewer restrictions for designing and more useful space while adhering to build design codes. This paper present a through bolt connection in HSS column. This connection meets building code standards that require the moment resistant connections to deflect and absorb energy resulting from gravity and seismic loads. Connection through bolts is installed and pretension to provide the connection strength needed to make a beam–column moment rigid zone. A rigid joint is typically used to resist lateral forces by holding columns and beams fixed in relation to one another. With bolted moment frames using HSS columns, a through–bolt connection could be used to secure the beam and end plate to the column. However, when multiple columns and beams are used to span a length of building, the use of through-bolts would necessities aligning multiple beams simultaneously to the columns. In the case of a linear span, the assembly process requires the holes of a first beam end plate to be aligned with through bolt holes in a column and aligning the holes of a second, opposing beam plate with the column through bolt, then inserting the through bolts in each hole for tightening with nuts and washers. In moment resistant building, a problem arises when assembling beams to columns where multiple beams and columns are required. Through bolt, moment connections are among the economical, practical and not difficult rigid steel connection for HSS column building. In this paper, the results of numerous analytical studies performed for moment structures with HSS columns with through bolt based on AISC standard codes are shown.

Keywords: through bolt, moment resistant connection, HSS columns section, construction engineering

Procedia PDF Downloads 428
473 Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast

Authors: Sher Muhammad, Mirza Muhammad Waqar

Abstract:

It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.79 to 24.85 degree in latitude and 66.91 to 66.97 degree in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image preprocessing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end-member extraction. Well-distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF), and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (white mangroves) and Avicennia Germinans (black mangroves) have been observed throughout the study area.

Keywords: mangrove, hyperspectral, hyperion, SAM, SFF, SID

Procedia PDF Downloads 340
472 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 461
471 Soybean Based Farming System Assessment in Pasuruan East Java Indonesia

Authors: Mohammad Saeri, Noor Rizkiyah, Kambang Vetrani Asie, Titin Apung Atikah

Abstract:

The study aims to assess efficient specific-location soybean farming technology assembly by assisting the farmers in applying the suggested technology. Superimposed trial was conducted to know NPK fertilizer effect toward soybean growth and yield and soybean improved variety test for the dissemination of improved variety. The assessment was conducted at the farmers group of Sumber Rejeki, Kepulungan Village, Gempol Sub-district, Pasuruan Regency as the soybean central at Pasuruan area. The number of farmers involved in the study was 38 people with 25 ha soybean area. This study was held from July to October 2012.  The recommended technology package agreed at the socialization time and used in this research were: using Argomulyo variety seeds of 40 kg/ha, planting by drilling, planting by distance of 40x10 cm, deciding the seeds amount of 2-3 seeds per hole, and giving fertilization based on recommendation of East Java AIAT of 50 kg Urea, 100 kg SP-36 and 50 kg KCl.  Farmers around the research location were used as control group. Assessment on soybean farming system was considered effective because it could increase the production up to 38%. The farming analysis showed that the result collaborator farmers gained were positively higher than non-collaborator farmers with RC ratio of 2.03 and 1.54, respectively. Argomulyo variety has the prospect to be developed due to the high yield of about 2 tons/ha and the larger seeds. The NPK fertilization test at the soybean plants showed that the fertilization had minor effect on the yield.

Keywords: farming system, soybean, variety, location specific

Procedia PDF Downloads 148
470 "Epitaph" Charles Mingus’ Foresight of Jazz

Authors: Christel Elisabeth Bonin

Abstract:

The score of the 2 ½ hour ‘magnum opus’ named ‘Epitaph’ was reconstructed 10 years after Charles Mingus’ death in 1979. Most of the movements were probably composed in the late 1950s. As the finale was missing, Gunther Schuller, the conductor of the world premiere in 1989, decided to improvise one with the orchestra, using Mingus as a guide. The aim of this paper is to analyze ‘Main Score Part I ‘ and ‘Main Score Part II’ and to look into the score of Mingus’ reconstructed compositions under particular observation of the new finale, ‘Main Score Reprise’. There, Mingus left instructions for a return to the opening section of ‘Epitaph’. By examining ‘Epitaph’ in the historical context of Jazz between 1955 to 1967 and the 1980s and comparing the finale of ‘Epitaph’, created - or better said: improvised - by the musicians of the 1989 world premiere with the opening section, at first it will be interesting to discover at which point Gunther Schuller followed Mingus creative process and brought it to life in 1989. Finally, it will be speculated if Charles Mingus composition still represents a foresight of Jazz nearly 30 years after its creation.

Keywords: epitaph, Charles Mingus, Gunter Schuller, jazz reception, bebop, hardbop, Duke Ellington, black, brown and beige, African-American music, free-jazz

Procedia PDF Downloads 293
469 How the Writer Tells the Story Should Be the Primary Concern rather than Who Can Write about Whom: The Limits of Cultural Appropriation Vis-à-Vis The Ethics of Narrative Empathy

Authors: Alexandra Cheira

Abstract:

Cultural appropriation has been theorised as a form of colonialism in which members of a dominant culture reduce cultural elements that are deeply meaningful to a minority culture to the category of the “exotic other” since they do not experience the oppression and discriminations faced by members of the minority culture. Yet, in the particular case of literature, writers such as Lionel Shriver and Bernardine Evaristo have argued that authors from a cultural majority have a right to write in the voice of someone from a cultural minority, hence attacking the idea that this is a form of cultural appropriation. By definition, Shriver and Evaristo claim, writers are supposed to write beyond their own culture, gender, class, and/ or race. In this light, this paper discusses the limits of cultural appropriation vis-à-vis the ethics of narrative empathy by addressing the mixed critical reception of Kathryn Stockett’s The Help (2009) and Jeanine Cummins’s American Dirt (2020). In fact, both novels were acclaimed as global eye-openers regarding the struggles of respectively South American migrants and African American maids. At the same time, both novelists have been accused of cultural appropriation by telling a story that is not theirs to tell, given the fact that they are white women telling these stories in what critics have argued is really an American voice telling a story to American readers.These claims will be investigated within the framework of Edward Said’s foundational examination of Orientalism in the field of postcolonial studies as a Western style for authoritatively restructuring the Orient. This means that Orientalist stereotypes regarding Eastern cultures have implicitly validated colonial and imperial pursuits, in the specific context of literary representations of African American and Mexican cultures by white writers. At the same time, the conflicted reception of American Dirt and The Help will be examined within the critical framework of narrative empathy as theorised by Suzanne Keen. Hence, there will be a particular focus on the way a reader’s heated perception that the author’s perspective is purely dishonest can result from a friction between an author’s intention and a reader’s experience of narrative empathy, while a shared sense of empathy between authors and readers can be a rousing momentum to move beyond literary response to social action.Finally, in order to assess that “the key question should not be who can write about whom, but how the writer tells the story”, the recent controversy surrounding Dutch author Marieke Lucas Rijneveld’s decision to resign the translation of American poet Amanda Gorman’s work into Dutch will be duly investigated. In fact, Rijneveld stepped out after journalist and activist Janice Deul criticised Dutch publisher Meulenhoff for choosing a translator who was not also Black, despite the fact that 22-year-old Gorman had selected the 29-year-old Rijneveld herself, as a fellow young writer who had likewise come to fame early on in life. In this light, the critical argument that the controversial reception of The Help reveals as much about US race relations in the early twenty-first century as about the complex literary transactions between individual readers and the novel itself will also be discussed in the extended context of American Dirt and white author Marieke Rijneveld’s withdrawal from the projected translation of Black poet Amanda Gorman.

Keywords: cultural appropriation, cultural stereotypes, narrative empathy, race relations

Procedia PDF Downloads 43
468 Digital Activism and the Individual: A Utilitarian Perspective

Authors: Tania Mitra

Abstract:

Digital Activism or Cyber Activism uses digital media as a means to disseminate information and mobilize masses towards a specific goal. When digital activism was first born in the early 1990s, it was primarily used by groups of organized political activists. However, with the advent of social media, online activism has filtered down to the individual- one who does not necessarily belong to or identify with an agenda, group, or political party. A large part of digital activism today stems from the individual’s notion of what is right and wrong. This gives rise to a discourse around descriptive ethics and the implications of the independent digital activist. Although digital activism has paved the way for and bolstered support for causes like the MeToo Movement and Black Lives Matter, the lack of a unified, organized body has led to counterintuitive progressions and suspicions regarding the movements. The paper introduces the ideas of 'clout' culture, click baits, and clicktivism (the phenomenon where activism is reduced to a blind following of the online trends), to discuss the impacts of exclusive digital activism. By using Jeremy Bentham's utilitarian approach to ethics, that places emphasis on the best possible outcome for a society, the paper will show how individual online activism reaching for a larger, more common end can sometimes lead to an undermining of that end, not only in the online space but also how it manifests in the real world.

Keywords: digital activism, ethics, independent digital activist, utilitarianism

Procedia PDF Downloads 103
467 An In-Situ Integrated Micromachining System for Intricate Micro-Parts Machining

Authors: Shun-Tong Chen, Wei-Ping Huang, Hong-Ye Yang, Ming-Chieh Yeh, Chih-Wei Du

Abstract:

This study presents a novel versatile high-precision integrated micromachining system that combines contact and non-contact micromachining techniques to machine intricate micro-parts precisely. Two broad methods of micro fabrication-1) volume additive (micro co-deposition), and 2) volume subtractive (nanometric flycutting, ultrafine w-EDM (wire Electrical Discharge Machining), and micro honing) - are integrated in the developed micromachining system, and their effectiveness is verified. A multidirectional headstock that supports various machining orientations is designed to evaluate the feasibility of multifunctional micromachining. An exchangeable working-tank that allows for various machining mechanisms is also incorporated into the system. Hence, the micro tool and workpiece need not be unloaded or repositioned until all the planned tasks have been completed. By using the designed servo rotary mechanism, a nanometric flycutting approach with a concentric rotary accuracy of 5-nm is constructed and utilized with the system to machine a diffraction-grating element with a nano-metric scale V-groove array. To improve the wear resistance of the micro tool, the micro co-deposition function is used to provide a micro-abrasive coating by an electrochemical method. The construction of ultrafine w-EDM facilitates the fabrication of micro slots with a width of less than 20-µm on a hardened tool. The hardened tool can thus be employed as a micro honing-tool to hone a micro hole with an internal diameter of 200 µm on SKD-11 molded steel. Experimental results prove that intricate micro-parts can be in-situ manufactured with high-precision by the developed integrated micromachining system.

Keywords: integrated micromachining system, in-situ micromachining, nanometric flycutting, ultrafine w-EDM, micro honing

Procedia PDF Downloads 384
466 Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction

Authors: Monique Joyce L. Disamburum, Nicole C. Faustino, Ashley Angela A. Fazon, Jessie F. Rubonal

Abstract:

Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys.

Keywords: sphagnum moss, Jeepney filter, smoke density, Jeepney emission

Procedia PDF Downloads 22
465 Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation

Authors: Laila Mahtout, Kerami Ahmed, Rabhi Souhila

Abstract:

The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%.

Keywords: acid dye, ultraviolet rays, degradation, photocatalyse

Procedia PDF Downloads 171
464 Tutankhamen’s Shrines (Naoses): Scientific Identification of Wood Species and Technology

Authors: Medhat Abdallah, Ahmed Abdrabou

Abstract:

Tutankhamen tomb was discovered on November 1922 by Howard carter, the grave was relatively intact and crammed full of the most beautiful burial items and furniture, the black shrine-shaped boxes on sleds studied here founded in treasury chamber. This study aims to identify the wood species used in making those shrines, illustrate technology of manufacture. Optical Microscope (OM), 3D software and Imaging Processes including; Visible light, Raking light and Visible-induced infrared luminescence were effective in illustrating wooden joints and techniques of manufacture. The results revealed that cedar of Lebanon Cedrus libani and sycamore fig Ficus sycomorus had been used for making the shrines’ boards and sleds while tamarisk Tamarix sp., Turkey Oak Quercus cerris L., and Sidder (nabk) Zizyphus spina christi used for making dowels. The wooden joint of mortise and tenon was used to connect the body of the shrine to the sled, while wooden pegs used to connect roof and cornice to the shrine body.

Keywords: Tutankhamen, wood species, optical microscope, Cedrus libani, Ficus sycomorus

Procedia PDF Downloads 187
463 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 128
462 Application of a Universal Distortion Correction Method in Stereo-Based Digital Image Correlation Measurement

Authors: Hu Zhenxing, Gao Jianxin

Abstract:

Stereo-based digital image correlation (also referred to as three-dimensional (3D) digital image correlation (DIC)) is a technique for both 3D shape and surface deformation measurement of a component, which has found increasing applications in academia and industries. The accuracy of the reconstructed coordinate depends on many factors such as configuration of the setup, stereo-matching, distortion, etc. Most of these factors have been investigated in literature. For instance, the configuration of a binocular vision system determines the systematic errors. The stereo-matching errors depend on the speckle quality and the matching algorithm, which can only be controlled in a limited range. And the distortion is non-linear particularly in a complex imaging acquisition system. Thus, the distortion correction should be carefully considered. Moreover, the distortion function is difficult to formulate in a complex imaging acquisition system using conventional models in such cases where microscopes and other complex lenses are involved. The errors of the distortion correction will propagate to the reconstructed 3D coordinates. To address the problem, an accurate mapping method based on 2D B-spline functions is proposed in this study. The mapping functions are used to convert the distorted coordinates into an ideal plane without distortions. This approach is suitable for any image acquisition distortion models. It is used as a prior process to convert the distorted coordinate to an ideal position, which enables the camera to conform to the pin-hole model. A procedure of this approach is presented for stereo-based DIC. Using 3D speckle image generation, numerical simulations were carried out to compare the accuracy of both the conventional method and the proposed approach.

Keywords: distortion, stereo-based digital image correlation, b-spline, 3D, 2D

Procedia PDF Downloads 476
461 Water and Sanitation Challenges: A Case of King Sabatha Dalindyebo Municipality

Authors: Masibulele Fiko, Sanjay Balkara, Beauty Makiwane, Samson Asoba

Abstract:

Several municipalities in the Eastern Cape Province of South Africa suffer from severe infrastructure dilapidation and a backlog in repairs and replacement. This scourge is most critical in black dominated areas, such as the rural communities and townships. Several critical service delivery activities have been impaired consequent to the deteriorating facilities and a lot of human endeavors impacted adversely. As such, this study investigated the water and sanitation challenges in King Sabatha Dalindyebo municipality, Eastern Cape Province of South Africa. Questionnaires were distributed to the communities and interviews were conducted with the communities’ leaders. The Participants mentioned that their main sources of water supply were a dam, streams, springs and wells; and the distances to the water sources were thought to be too long and women were often attacked and sometimes raped. South African local authorities are facing problems of insufficient funds to meet their daily operations. The municipality should provide street taps. The alternative way for government to supply financial aid to local authorities is to introduce the private sector in the service rendering process.

Keywords: communities, sanitation, managers, municipality

Procedia PDF Downloads 98
460 Logistics Information Systems in the Distribution of Flour in Nigeria

Authors: Cornelius Femi Popoola

Abstract:

This study investigated logistics information systems in the distribution of flour in Nigeria. A case study design was used and 50 staff of Honeywell Flour Mill was sampled for the study. Data generated through a questionnaire were analysed using correlation and regression analysis. The findings of the study revealed that logistic information systems such as e-commerce, interactive telephone systems and electronic data interchange positively correlated with the distribution of flour in Honeywell Flour Mill. Finding also deduced that e-commerce, interactive telephone systems and electronic data interchange jointly and positively contribute to the distribution of flour in Honeywell Flour Mill in Nigeria (R = .935; Adj. R2 = .642; F (3,47) = 14.739; p < .05). The study therefore recommended that Honeywell Flour Mill should upgrade their logistic information systems to computer-to-computer communication of business transactions and documents, as well adopt new technology such as, tracking-and-tracing systems (barcode scanning for packages and palettes), tracking vehicles with Global Positioning System (GPS), measuring vehicle performance with ‘black boxes’ (containing logistic data), and Automatic Equipment Identification (AEI) into their systems.

Keywords: e-commerce, electronic data interchange, flour distribution, information system, interactive telephone systems

Procedia PDF Downloads 522
459 Simplified 3R2C Building Thermal Network Model: A Case Study

Authors: S. M. Mahbobur Rahman

Abstract:

Whole building energy simulation models are widely used for predicting future energy consumption, performance diagnosis and optimum control.  Black box building energy modeling approach has been heavily studied in the past decade. The thermal response of a building can also be modeled using a network of interconnected resistors (R) and capacitors (C) at each node called R-C network. In this study, a model building, Case 600, as described in the “Standard Method of Test for the Evaluation of Building Energy Analysis Computer Program”, ASHRAE standard 140, is studied along with a 3R2C thermal network model and the ASHRAE clear sky solar radiation model. Although building an energy model involves two important parts of building component i.e., the envelope and internal mass, the effect of building internal mass is not considered in this study. All the characteristic parameters of the building envelope are evaluated as on Case 600. Finally, monthly building energy consumption from the thermal network model is compared with a simple-box energy model within reasonable accuracy. From the results, 0.6-9.4% variation of monthly energy consumption is observed because of the south-facing windows.

Keywords: ASHRAE case study, clear sky solar radiation model, energy modeling, thermal network model

Procedia PDF Downloads 120
458 Enhanced Decolourization and Biodegradation of Textile Azo and Xanthene Dyes by Using Bacterial Isolates

Authors: Gimhani Madhushika Hewayalage, Thilini Ariyadasa, Sanja Gunawardena

Abstract:

In Sri Lanka, the largest contribution for the industrial export earnings is governed by textile and apparel industry. However, this industry generates huge quantities of effluent consists of unfixed dyes which enhance the effluent colour and toxicity thereby leading towards environmental pollution. Therefore, the effluent should properly be treated prior to the release into the environment. The biological technique has now captured much attention as an environmental-friendly and cost-competitive effluent decolourization method due to the drawbacks of physical and chemical treatment techniques. The present study has focused on identifying dye decolourizing potential of several bacterial isolates obtained from the effluent of the local textile industry. Yellow EXF, Red EXF, Blue EXF, Nova Black WNN and Nylosan-Rhodamine-EB dyes have been selected for the study to represent different chromophore groups such as Azo and Xanthene. The rates of decolorization of each dye have been investigated by employing distinct bacterial isolates. Bacterial isolate which exhibited effective dye decolorizing potential was identified as Proteus mirabilis using 16S rRNA gene sequencing analysis. The high decolorizing rates of identified bacterial strain indicate its potential applicability in the treatment of dye-containing wastewaters.

Keywords: azo, bacterial, biological, decolourization, xanthene

Procedia PDF Downloads 232
457 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study

Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet

Abstract:

These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.

Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment

Procedia PDF Downloads 40
456 Filler Elastomers Abrasion at Steady State: Optimal Use Conditions

Authors: Djeridi Rachid, Ould Ouali Mohand

Abstract:

The search of a mechanism for the elastomer abrasive wear study is an open issue. The practice difficulties are complex due to the complexity of deformation mechanism, to the complex mechanism of the material tearing and to the marked interactions between the tribological parameters. In this work, we present an experimental technique to study the elastomers abrasive wear. The interaction 'elastomer/indenter' implicate dependant ant temporary of different tribological parameters. Consequently, the phenomenon that governs this interaction is not easy to explain. An optimal elastomers compounding and an adequate utilization conditions of these materials that define its resistance at the abrasion is discussed. The results are confronted to theoretical models: the weight loss variation in function of blade angle or in function of cycle number is in agreement with rupture models and with the mechanism of fissures propagation during the material tearing in abrasive wear of filler elastomers. The weight loss in function of the sliding velocity shows the existence of a critical velocity that corresponds to the maximal wear. The adding of silica or black carbon influences in a different manner on wear abrasive behavior of filler elastomers.

Keywords: abrasion wear, filler elastomer, tribology, hyperelastic

Procedia PDF Downloads 284
455 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite

Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak

Abstract:

Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite

Procedia PDF Downloads 150
454 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 150
453 Pulse Method for Investigation of Zr-C Phase Diagram at High Carbon Content Domain under High Temperatures

Authors: Arseniy M. Kondratyev, Sergey V. Onufriev, Alexander I. Savvatimskiy

Abstract:

The microsecond electrical pulse heating technique which provides uniform energy input into an investigated specimen is considered. In the present study we investigated ZrC+C carbide specimens in a form of a thin layer (about 5 microns thick) that were produced using a method of magnetron sputtering on insulating substrates. Specimens contained (at. %): Zr–17.88; C–67.69; N–8.13; O–5.98. Current through the specimen, voltage drop across it and radiation at the wavelength of 856 nm were recorded in the experiments. It enabled us to calculate the input energy, specific heat (from 2300 to 4500 K) and resistivity (referred to the initial dimensions of a specimen). To obtain the true temperature a black body specimen was used. Temperature of the beginning and completion of a phase transition (solid–liquid) was measured.Temperature of the onset of melting was 3150 K at the input energy 2.65 kJ/g; temperature of the completion of melting was 3450 K at the input energy 5.2 kJ/g. The specific heat of the solid phase of investigated carbide calculated using our data on temperature and imparted energy, is close to 0.75 J/gК for temperature range 2100–2800 K. Our results are considered together with the equilibrium Zr-C phase diagram.

Keywords: pulse heating, zirconium carbide, high temperatures, melting

Procedia PDF Downloads 297
452 Designing of Nano-materials for Waste Heat Conversion into Electrical Energy Thermoelectric generator

Authors: Wiqar Hussain Shah

Abstract:

The electrical and thermal properties of the doped Tellurium Telluride (Tl10Te6) chalcogenide nano-particles are mainly characterized by a competition between metallic (hole doped concentration) and semi-conducting state. We have studied the effects of Sn doping on the electrical and thermoelectric properties of Tl10-xSnxTe6 (1.00 ≤x≤ 2.00), nano-particles, prepared by solid state reactions in sealed silica tubes and ball milling method. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. Additionally crystal structure data were used to model the data and support the findings. The particles size was calculated from the XRD data by Scherrer’s formula. The EDS was used for an elemental analysis of the sample and declares the percentage of elements present in the system. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. The electrical conductivity was investigated by four probe resistivity techniques revealed that the electrical conductivity decreases with increasing temperature, and also simultaneously with increasing Sn concentration. While for Seebeck coefficient the trend is opposite which is increases with increasing temperature. These increasing behavior of Seebeck coefficient leads to high power factor which are increases with increasing temperature and Sn concentration except For Tl8Sn2Te6 because of lowest electrical conductivity but its power factor increases well with increasing temperature.

Keywords: Sn doping in Tellurium Telluride nano-materials, electron holes competition, Seebeck co-efficient, effects of Sn doping on Electrical conductivity, effects on Power factor

Procedia PDF Downloads 24
451 Forensic Applications of Quantum Dots

Authors: Samaneh Nabavi, Hadi Shirzad, Somayeh Khanjani, Shirin Jalili

Abstract:

Quantum dots (QDs) are semiconductor nanocrystals that exhibit intrinsic optical and electrical properties that are size dependent due to the quantum confinement effect. Quantum confinement is brought about by the fact that in bulk semiconductor material the electronic structure consists of continuous bands, and that as the size of the semiconductor material decreases its radius becomes less than the Bohr exciton radius (the distance between the electron and electron-hole) and discrete energy levels result. As a result QDs have a broad absorption range and a narrow emission which correlates to the band gap energy (E), and hence QD size. QDs can thus be tuned to give the desired wavelength of fluorescence emission.Due to their unique properties, QDs have attracted considerable attention in different scientific areas. Also, they have been considered for forensic applications in recent years. The ability of QDs to fluoresce up to 20 times brighter than available fluorescent dyes makes them an attractive nanomaterial for enhancing the visualization of latent fingermarks, or poorly developed fingermarks. Furthermore, the potential applications of QDs in the detection of nitroaromatic explosives, such as TNT, based on directive fluorescence quenching of QDs, electron transfer quenching process or fluorescence resonance energy transfer have been paid to attention. DNA analysis is associated tightly with forensic applications in molecular diagnostics. The amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. Accordingly, highly sensitive detection of human genomic DNA is an essential issue for forensic study. QDs have also a variety of advantages as an emission probe in forensic DNA quantification.

Keywords: forensic science, quantum dots, DNA typing, explosive sensor, fingermark analysis

Procedia PDF Downloads 822
450 Comparative Study of Ozone Based AOP's for Mineralization of Reactive Black 5

Authors: Sandip Sharma, Jayesh Ruparelia

Abstract:

The present work focuses on the comparative study of ozone based advanced oxidation processes (AOPs): O3, O3/UV and O3/UV/Persulfate for mineralization of synthetic wastewater containing Reactive Black5 (RB5) dye. The effect of various parameters: pH, ozone flow rate, initial concentration of dye and intensity of UV light was analyzed to access performance efficiency of AOPs. The performance of all the three AOPs was evaluated on the basis of decolorization, % TOC removal and ozone consumption. The highest mineralization rate of 86.83% was achieved for O3/UV/Persulfate followed by 71.53% and 66.82 % for O3/UV and O3 respectively. This is attributed to the fact that Persulfate ions (S2O82-) upon activation produce sulfate radical (SO4-●) which is very strong oxidant capable of degrading a wide variety of recalcitrant organic compounds, moreover to enhance the performance of Persulfate it is activated using UV irradiation. On increasing the intensity of UV irradiation from 11W to 66W, TOC removal efficiency is increased by 59.04%. Ozone based AOPs gives better mineralization on basic conditions, at pH 12 it gives 68.81%, 60.01% and 40.32% TOC removal for O3/UV/Persulfate, O3/UV and O3 process respectively. The result also reveals that decolorization of 98.95%, 95.17% and 94.71% was achieved by O3/UV/Persulfate, O3/UV and O3 process respectively. In addition to above, ozone consumption was also considerably decreased by 17% in case of O3/UV/Persulfate, as efficiency of process is enhanced by means of activation of persulfate through UV irradiation. Thus study reveals that mineralization follows: O3/UV/Persulfate> O3/UV> O3.

Keywords: AOP, mineralization, TOC, recalcitrant organic compounds

Procedia PDF Downloads 201
449 Isolation and Characterization White Spot Syndrome Protein Envelope Protein 19 from Black Tiger Shrimp (Penaeus monodon)

Authors: Andi Aliah Hidayani, Asmi Citra Malina A. R. Tassakka, Andi Parenrengi

Abstract:

Vanname Shrimp is one of the high yielding varieties that are more resistant to virus attacks. However, now this shrimp more death due to virus attack such as white spot disease caused by white spot syndrome virus (WSSV). Various efforts have done to prevent the disease, like immunostimulatory, probiotics, and vaccine. White spot syndrome virus (WSSV) envelope protein VP19 gene is important because of its involvement in the system infection of shrimp. This study aimed to isolate and characterize an envelope protein VP19 – encoding gene of WSSV using WSSV infected Vanname Shrimp sample from some areas in South Sulawesi (Pangkep, Barru and Pinrang). The genomic of DNA were isolated from shrimp muscle using DTAB-CTAB method. Isolation of gene encoding envelope protein VP19 WSSV ws successfully performed with the results of the length of DNA fragment was 387 bp. The results of homology analysis using BLASTn homology suggested that these isolates genes from Barru, Pangkep and Pinrang have closest relationship with isolates from Mexican.

Keywords: vanname, shrimp, WSSV, viral protein 19

Procedia PDF Downloads 511
448 A Metallography Study of Secondary A226 Aluminium Alloy Used in Automotive Industries

Authors: Lenka Hurtalová, Eva Tillová, Mária Chalupová, Juraj Belan, Milan Uhríčik

Abstract:

The secondary alloy A226 is used for many automotive casting produced by mould casting and high pressure die-casting. This alloy has excellent castability, good mechanical properties and cost-effectiveness. Production of primary aluminium alloys belong to heavy source fouling of life environs. The European Union calls for the emission reduction and reduction in energy consumption, therefore, increase production of recycled (secondary) aluminium cast alloys. The contribution is deal with influence of recycling on the quality of the casting made from A226 in automotive industry. The properties of the casting made from secondary aluminium alloys were compared with the required properties of primary aluminium alloys. The effect of recycling on microstructure was observed using combination different analytical techniques (light microscopy upon black-white etching, scanning electron microscopy-SEM upon deep etching and energy dispersive X-ray analysis-EDX). These techniques were used for the identification of the various structure parameters, which was used to compare secondary alloy microstructure with primary alloy microstructure.

Keywords: A226 secondary aluminium alloy, deep etching, mechanical properties, recycling foundry aluminium alloy

Procedia PDF Downloads 516
447 Effects of Different Sowing Dates on Oil Yield of Castor (Ricinus communis L.)

Authors: Özden Öztürk, Gözde Pınar Gerem, Ayça Yenici, Burcu Haspolat

Abstract:

Castor (Ricinus communis L.) is one of the important non-edible oilseed crops having immense industrial and medicinal value. Oil yield per unit area is the ultimate target in growing oilseed plants and sowing date is one of the important factors which have a clear role in the production of active substances particularly in oilseeds. This study was conducted to evaluate the effect of sowing date on the seed and oil yield of castor in Central Anatolia in Turkey in 2011. The field experiment was set up in a completely randomized block design with three replication. Black Diamond-2 castor cultivar was used as plant material. The treatment was four sowing dates of May 10, May 25, June 10, June 25. In this research; seed yield, oil content and oil yield were investigated. Results showed that the effect of different sowing dates was significant on all of the characteristics. In general; delayed sowing dates, resulted in decreased seed yield, oil content and oil yield. The highest value of seed yield, oil content and oil yield (respectively, 2523.7 kg ha-1, 51.18% and 1292.2 kg ha-1) were obtained from the first sowing date (May 10) while the lowest seed yield, oil content and oil yield (respectively, 1550 kg ha-1, 43.67%, 677.3 kg ha-1) were recorded from the latest sowing date (June 25). Therefore, it can be concluded that early May could be recommended as an appropriate sowing date in the studied location and similar climates for achieved high oil yield of castor.

Keywords: castor bean, Ricinus communis L., sowing date, seed yield, oil content

Procedia PDF Downloads 355
446 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 200