Search results for: efficiency coefficient
1469 Experimental Research on Neck Thinning Dynamics of Droplets in Cross Junction Microchannels
Authors: Yilin Ma, Zhaomiao Liu, Xiang Wang, Yan Pang
Abstract:
Microscale droplets play an increasingly important role in various applications, including medical diagnostics, material synthesis, chemical engineering, and cell research due to features of high surface-to-volume ratio and tiny scale, which can significantly improve reaction rates, enhance heat transfer efficiency, enable high-throughput parallel studies as well as reduce reagent usage. As a mature technique to manipulate small amounts of liquids, droplet microfluidics could achieve the precise control of droplet parameters such as size, uniformity, structure, and thus has been widely adopted in the engineering and scientific research of multiple fields. Necking processes of the droplet in the cross junction microchannels are experimentally and theoretically investigated and dynamic mechanisms of the neck thinning in two different regimes are revealed. According to evolutions of the minimum neck width and the thinning rate, the necking process is further divided into different stages and the main driving force during each stage is confirmed. Effects of the flow rates and the cross-sectional aspect ratio on the necking process as well as the neck profile at different stages are provided in detail. The distinct features of the two regimes in the squeezing stage are well captured by the theoretical estimations of the effective flow rate and the variations of the actual flow rates in different channels are reasonably reflected by the channel width ratio. In the collapsing stage, the quantitative relation between the minimum neck width and the remaining time is constructed to identify the physical mechanism.Keywords: cross junction, neck thinning, force analysis, inertial mechanism
Procedia PDF Downloads 1101468 Field-observed Thermal Fractures during Reinjection and Its Numerical Simulation
Authors: Wen Luo, Phil J. Vardon, Anne-Catherine Dieudonne
Abstract:
One key process that partly controls the success of geothermal projects is fluid reinjection, which benefits in dealing with waste water, maintaining reservoir pressure, and supplying heat-exchange media, etc. Thus, sustaining the injectivity is of great importance for the efficiency and sustainability of geothermal production. However, the injectivity is sensitive to the reinjection process. Field experiences have illustrated that the injectivity can be damaged or improved. In this paper, the focus is on how the injectivity is improved. Since the injection pressure is far below the formation fracture pressure, hydraulic fracturing cannot be the mechanism contributing to the increase in injectivity. Instead, thermal stimulation has been identified as the main contributor to improving the injectivity. For low-enthalpy geothermal reservoirs, which are not fracture-controlled, thermal fracturing, instead of thermal shearing, is expected to be the mechanism for increasing injectivity. In this paper, field data from the sedimentary low-enthalpy geothermal reservoirs in the Netherlands were analysed to show the occurrence of thermal fracturing due to the cooling shock during reinjection. Injection data were collected and compared to show the effects of the thermal fractures on injectivity. Then, a thermo-hydro-mechanical (THM) model for the near field formation was developed and solved by finite element method to simulate the observed thermal fractures. It was then compared with the HM model, decomposed from the THM model, to illustrate the thermal effects on thermal fracturing. Finally, the effects of operational parameters, i.e. injection temperature and pressure, on the changes in injectivity were studied on the basis of the THM model. The field data analysis and simulation results illustrate that the thermal fracturing occurred during reinjection and contributed to the increase in injectivity. The injection temperature was identified as a key parameter that contributes to thermal fracturing.Keywords: injectivity, reinjection, thermal fracturing, thermo-hydro-mechanical model
Procedia PDF Downloads 2171467 Investigating Sustainable Construction and Demolition Waste Management Practices in South Africa
Authors: Ademilade J. Aboginije, Clinton O. Aigbavboa
Abstract:
South Africa is among the emerging economy, which has a policy and suitable environment that dynamically stimulates waste management practices of diverting waste away from landfill through prevention, reuse, recycling, and recovery known as the 4R-approaches. The focus of this paper is to investigate the existing structures and processes that are environmentally responsible, then determine the resource-efficiency of the waste management practices in the South Africa construction industry. This paper indicates the results of an investigation carried out by using a systematic review of several related literatures to assess the sustainability of waste management scenarios with secondary material recovery to pinpoint all influential criteria and consequently, highlights a step by step approach to adequately analyze the process by using the indicators that can clearly and fully value the waste management practices in South Africa. Furthermore, a life cycle Analytical tool is used to support the development of a framework which can be applied in measuring the sustainability of existing waste management practices in South Africa. Finding shows that sustainable C&D waste management practices stance a great prospect far more noticeable in terms of job creation and opportunities, saving cost and conserving natural resources when incorporated, especially in the process of recycling and reusing of C&D waste materials in several construction projects in South Africa. However, there are problems such as; inadequacy of waste to energy plants, low compliances to policies and sustainable principles, lack of enough technical capacities confronting the effectiveness of the current waste management practices. Thus, with the increase in the pursuit of sustainable development in most developing countries, this paper determines how sustainability can be measured and used in top-level decision-making policy within construction and demolition waste management for a sustainable built environment.Keywords: construction industry, green-star rating, life-cycle analysis, sustainability, zero-waste hierarchy
Procedia PDF Downloads 1281466 Fluorescence Resonance Energy Transfer in a Supramolecular Assembly of Luminescent Silver Nanoclusters and Cucurbit[8]uril Based Host-Guest System
Authors: Srikrishna Pramanik, Sree Chithra, Saurabh Rai, Sameeksha Agrawal, Debanggana Shil, Saptarshi Mukherjee
Abstract:
The understanding of interactions between organic chromophores and biologically useful luminescent noble metal nanoclusters (NCs) leading to an energy transfer process that has applications in light-harvesting materials is still in its nascent stage. This work describes a photoluminescent supramolecular assembly, made in two stages, employing an energy transfer process between silver (Ag) NCs as the donor and a host-guest system as the acceptor that can find potential applications in diverse fields. Initially, we explored the host-guest chemistry between a cationic guest, Ethidium Bromide and the anionic host Cucurbit[8]uril using spectroscopic and calorimetric techniques to decipher their interaction mechanism in modulating photophysical properties of the chromophore. Next, we synthesized a series of blue-emitting AgNCs using different templates such as protein, peptides, and cyclodextrin. The as-prepared AgNCs were characterized by various spectroscopic techniques. We have established that these AgNCs can be employed as donors in the FRET process with the above acceptor for FRET-based emission color tuning. Our in-depth studies revealed that surface ligands play a key role in modulating FRET efficiency. Overall, by employing a non-covalent strategy, we have tried to develop FRET pairs using blue-emitting NCs and a host-guest complex, which could find potential applications in constructing advanced white light-emitting, anti-counterfeiting materials, and developing biosensors.Keywords: absorption spectroscopy, cavities, energy transfer, fluorescence, fluorescence resonance energy transfer
Procedia PDF Downloads 471465 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties
Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda
Abstract:
This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties
Procedia PDF Downloads 661464 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir
Authors: Ming-Hong Chen
Abstract:
In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility
Procedia PDF Downloads 661463 Performance of an Automotive Engine Running on Gasoline-Condensate Blends
Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis
Abstract:
Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends
Procedia PDF Downloads 2511462 The Causes of Governance Inefficiency in the Financial Institutions: An Interdisciplinary Approach to the Theory of Corporate Governance
Authors: Emilia Klepczarek
Abstract:
The Basel Committee on Banking Supervision and the OECD found problems with the mechanisms of corporate governance as one of the major causes of destabilization of the financial system and the subprime crisis in the years 2007-2010. In response to these allegations, there were formulated a number of recommendations aimed at improving the quality of supervisory standards in financial institutions. They relate mainly to risk management, remuneration policy, the competence of managers and board members and transparency issues. Nevertheless, a review of the empirical research conducted by the author does not allow for an unambiguous confirmation of the positive impact of the postulated standards on the stability of banking entities. There is, therefore, a presumption of the existence of hidden variables determining the effectiveness of the governance mechanisms. According to the author, this involves concepts arising from behavioral economics and economic anthropology, which allow for an explanation of the effectiveness of corporate governance institutions on the basis of the socio-cultural profile of its members. The proposed corporate governance culture theory indicates that the attributes of the members of the organization and organizational culture can determine the different effectiveness level of the governance processes in similar formal corporate governance structures. The aim of the presentation is, firstly, to draw attention to the vast discrepancies existing within the results of research on the effectiveness of the standards of corporate governance in the banking sector. Secondly, the author proposes an explanation of these differences on the basis of governance theory breaking with common paradigms. The corporate governance culture theory is focused on the identity of the individual and the scope of autonomy offered within his or her institution. The coexistence of these two conditions - the adequate behavioral profile and enough freedom to decide - is a prerequisite for the efficient functioning of the institutions of corporate governance, which can contribute to rehabilitating and strengthening the stability of the financial sector.Keywords: autonomy, corporate governance, efficiency, governance culture
Procedia PDF Downloads 2431461 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites
Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar
Abstract:
In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method
Procedia PDF Downloads 4691460 Nickel Oxide-Nitrogen-Doped Carbon (Ni/NiOx/NC) Derived from Pyrolysis of 2-Aminoterephthalic Acid for Electrocatalytic Oxidation of Ammonia
Authors: Yu-Jen Shih, Juan-Zhang Lou
Abstract:
Nitrogenous compounds, such as NH4+/NH3 and NO3-, have become important contaminants in water resources. Excessive concentration of NH3 leads to eutrophication, which poses a threat to aquatic organisms in the environment. Electrochemical oxidation emerged as a promising water treatment technology, offering advantages such as simplicity, small-scale operation, and minimal reliance on additional chemicals. In this study, a nickel-based metal-organic framework (Ni-MOF) was synthesized using 2-amino terephthalic acid (BDC-NH2) and nickel nitrate. The Ni-MOF was further carbonized as derived nickel oxide and nitrogen-carbon composite, Ni/NiOx/NC. The nickel oxide within the 2D porous carbon texture served as active sites for ammonia oxidation. Results of characterization showed that the Ni-MOF was a hexagonal and flaky nanoparticle. With increasing carbonization temperature, the nickel ions in the organic framework re-crystallized as NiO clusters on the surfaces of the 2D carbon. The electrochemical surface area of Ni/NiOx/NC significantly increased as to improve the efficiency of ammonia oxidation. The phase transition of Ni(OH)2⇌NiOOH at around +0.8 V was the primary mediator of electron transfer. Batch electrolysis was conducted under constant current and constant potential modes. The electrolysis parameters included pyrolysis temperatures, pH, current density, initial feed concentration, and electrode potential. The constant current batch experiments indicated that via carbonization at 800 °C, Ni/NiOx/NC(800) was able to decrease the ammonium nitrogen of 50 mg-N/L to below 1 ppm within 4 hours at a current density of 3 mA/cm2 and pH 11 with negligible oxygenated nitrogen formation. The constant potential experiments confirmed that N2 nitrogen selectivity was enhanced up to 90% at +0.8 V.Keywords: electrochemical oxidation, nickel oxyhydroxide, metal-organic framework, ammonium, nitrate
Procedia PDF Downloads 661459 Hands-off Parking: Deep Learning Gesture-based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Joshue Perez, Javier Araluce
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, the following paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for indepth gesture classification. This tandem of MediaPipe's extraction prowess and MPL's analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System (ROS), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.Keywords: gesture detection, mediapipe, multiperceptron layer, robot operating system
Procedia PDF Downloads 1001458 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading
Authors: Ayush Satija, Ritu Raj
Abstract:
Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete
Procedia PDF Downloads 401457 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods
Authors: Kizito Ugochukwu Nwajeri
Abstract:
This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods
Procedia PDF Downloads 441456 Dewatering of Brewery Sludge through the Use of Biopolymers
Authors: Audrey Smith, M. Saifur Rahaman
Abstract:
The waste crisis has become a global issue, forcing many industries to reconsider their disposal methods and environmental practices. Sludge is a form of waste created in many fields, which include water and wastewater, pulp and paper, as well as from breweries. The composition of this sludge differs between sources and can, therefore, have varying disposal methods or future applications. When looking at the brewery industry, it produces a significant amount of sludge with a high water content. In order to avoid landfilling, this waste can further be processed into a valuable material. Specifically, the sludge must undergo dewatering, a process which typically involves the addition of coagulants like aluminum sulfate or ferric chloride. These chemicals, however, limit the potential uses of the sludge since it will contain traces of metals. In this case, the desired outcome of the brewery sludge would be to produce animal feed; however, these conventional coagulants would add a toxic component to the sludge. The use of biopolymers like chitosan, which act as a coagulant, can be used to dewater brewery sludge while allowing it to be safe for animal consumption. Chitosan is also a by-product created by the shellfish processing industry and therefore reduces the environmental imprint since it involves using the waste from one industry to treat the waste from another. In order to prove the effectiveness of this biopolymer, experiments using jar-tests will be utilised to determine the optimal dosages and conditions, while variances of contaminants like ammonium will also be observed. The efficiency of chitosan can also be compared to other polysaccharides to determine which is best suited for this waste. Overall a significant separation has been achieved between the solid and liquid content of the waste during the coagulation-flocculation process when applying chitosan. This biopolymer can, therefore, be used to dewater brewery sludge such that it can be repurposed as animal feed. The use of biopolymers can also be applied to treat sludge from other industries, which can reduce the amount of waste produced and allow for more diverse options for reuse.Keywords: animal feed, biopolymer, brewery sludge, chitosan
Procedia PDF Downloads 1601455 Microwave Freeze Drying of Fruit Foams for the Production of Healthy Snacks
Authors: Sabine Ambros, Mine Oezcelik, Evelyn Dachmann, Ulrich Kulozik
Abstract:
Nutritional quality and taste of dried fruit products is still often unsatisfactory and does not meet anymore the current consumer trends. Dried foams from fruit puree could be an attractive alternative. Due to their open-porous structure, a new sensory perception with a sudden and very intense aroma release could be generated. To make such high quality fruit snacks affordable for the consumer, a gentle but at the same time fast drying process has to be applied. Therefore, microwave-assisted freeze drying of raspberry foams was investigated in this work and compared with the conventional freeze drying technique in terms of nutritional parameters such as antioxidative capacity, anthocyanin content and vitamin C and the physical parameters colour and wettability. The following process settings were applied: 0.01 kPa chamber pressure and a maximum temperature of 30 °C for both freeze and microwave freeze drying. The influence of microwave power levels on the dried foams was investigated between 1 and 5 W/g. Intermediate microwave power settings led to the highest nutritional values, a colour appearance comparable to the undried foam and a proper wettability. A proper process stability could also be guaranteed for these power levels. By the volumetric energy input of the microwaves drying time could be reduced from 24 h in conventional freeze drying to about 6 h. The short drying times further resulted in an equally high maintenance of the above mentioned parameters in both drying techniques. Hence, microwave assisted freeze drying could lead to a process acceleration in comparison to freeze drying and be therefore an interesting alternative drying technique which on industrial scale enables higher efficiency and higher product throughput.Keywords: foam drying, freeze drying, fruit puree, microwave freeze drying, raspberry
Procedia PDF Downloads 3411454 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 1671453 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design
Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley
Abstract:
This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach
Procedia PDF Downloads 6551452 Optimizing University Administration in a Globalized World: Leveraging AI and ICT for Enhanced Governance and Sustainability in Higher Education
Authors: Ikechukwu Ogeze Ukeje, Chinyere Ori Elom, Chukwudum Collins Umoke
Abstract:
This study explores the challenges in the integration of Artificial Intelligence (AI) and Information and Communication Technology (ICT) practices in enhancing governance and sustainable solution modeling in higher education, focusing on Alex Ekwueme Federal University Ndufu-Alike (AE-FUNAI), Nigeria. In the context of a developing country like Nigeria, leveraging AI and ICT tools presents a unique opportunity to improve teaching, learning, administrative processes, and governance. The research aims to evaluate how AI and ICT technologies can contribute to sustainable educational practices, enhance decision-making processes, and improve engagement among key stakeholders: students, lecturers, and administrative staff. Students are involved to provide insights into their interactions with AI and ICT tools, particularly in learning and participation in governance. Lecturers’ perspectives will offer a view into how these technologies influence teaching, research, and curriculum development. Administrative staff will provide a crucial understanding of how AI and ICT tools can streamline operations, support data-driven governance, and enhance institutional efficiency. This study will use a mixed-method approach to collect both qualitative and quantitative data. The finding of this study is geared towards shaping the future of education in Nigeria and beyond by developing an Inclusive AI-governance Integration Framework (I-AIGiF) for enhanced performance in the system. Examining the roles of these stakeholder groups, this research could guide the development of policies for more effective AI and ICT integration, leading to sustainable educational innovation and governance.Keywords: university administration, AI, higher education governance, education sustainability, ICT challenges
Procedia PDF Downloads 201451 Negative Perceptions of Ageing Predicts Greater Dysfunctional Sleep Related Cognition Among Adults Aged 60+
Authors: Serena Salvi
Abstract:
Ageistic stereotypes and practices have become a normal and therefore pervasive phenomenon in various aspects of everyday life. Over the past years, renewed awareness towards self-directed age stereotyping in older adults has given rise to a line of research focused on the potential role of attitudes towards ageing on seniors’ health and functioning. This set of studies has showed how a negative internalisation of ageistic stereotypes would discourage older adults in seeking medical advice, in addition to be associated to negative subjective health evaluation. An important dimension of mental health that is often affected in older adults is represented by sleep quality. Self-reported sleep quality among older adults has shown to be often unreliable when compared to their objective sleep measures. Investigations focused on self-reported sleep quality among older adults have suggested how this portion of the population would tend to accept disrupted sleep if believed to be up to standard for their age. On the other hand, unrealistic expectations, and dysfunctional beliefs towards sleep in ageing, might prompt older adults to report sleep disruption even in the absence of objective disrupted sleep. Objective of this study is to examine an association between personal attitudes towards ageing in adults aged 60+ and dysfunctional sleep related cognition. More in detail, this study aims to investigate a potential association between personal attitudes towards ageing, sleep locus of control and dysfunctional beliefs towards sleep among this portion of the population. Data in this study were statistically analysed in SPSS software. Participants were recruited through the online participants recruitment system Prolific. Inclusion of attention check questions throughout the questionnaire and consistency of responses were looked at. Prior to the commencement of this study, Ethical Approval was granted (ref. 39396). Descriptive statistics were used to determine the frequency, mean, and SDs of the variables. Pearson coefficient was used for interval variables, independent T-test for comparing means between two independent groups, analysis of variance (ANOVA) test for comparing the means in several independent groups, and hierarchical linear regression models for predicting criterion variables based on predictor variables. In this study self-perceptions of ageing were assessed using APQ-B’s subscales, while dysfunctional sleep related cognition was operationalised using the SLOC and the DBAS16 scales. Of the final subscales taken in consideration in the brief version of the APQ questionnaire, Emotional Representations (ER), Control Positive (PC) and Control and Consequences Negative (NC) have shown to be of particularly relevance for the remits of this study. Regression analysis show how an increase in the APQ-B subscale Emotional Representations (ER) predicts an increase in dysfunctional beliefs and attitudes towards sleep in this sample, after controlling for subjective sleep quality, level of depression and chronological age. A second regression analysis showed that APQ-B subscales Control Positive (PC) and Control and Consequences Negative (NC) were significant predictors in the change of variance of SLOC, after controlling for subjective sleep quality, level of depression and dysfunctional beliefs about sleep.Keywords: sleep-related cognition, perceptions of aging, older adults, sleep quality
Procedia PDF Downloads 1031450 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring
Authors: Daniel Fundi Murithi
Abstract:
Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring
Procedia PDF Downloads 1631449 Prebiotics and Essential Oils-Enriched Diet Can Increase the Efficiency of Vaccine against Furunculosis in Rainbow Trout (Oncorhynchus Mykiss)
Authors: Niki Hayatgheib, SéGolèNe Calvez, Catherine Fournel, Lionel Pineau, Herve Pouliquen, Emmanuelle Moreau
Abstract:
Furunculosis caused by infection with Aeromonas salmonicida subsp. salmonicida has been a known disease found principally in salmonid aquaculture. Vaccination has been partly successful in preventing this disease, but outbreaks still occur. The application of functional feed additive found to be a promising yield to improve fish health against diseases. In this study, we tested the efficacy of prebiotics and plant essential oils-enriched diet on immune response and disease resistance in vaccinated and non-vaccinated rainbow trout (Oncorhynchus mykiss) against furunculosis. A total of 600 fish were fed with the basal diet or supplement. On 4th week of feeding, fish were vaccinated with an autovaccine. Following 8 weeks, fish were challenged with Aeromonas salmonicida subsp. salmonicida and mortalities were recorded for 3 weeks. Lysozyme activity and antibody titer in serum were measured in different groups. The results of this study showed that lysozyme and circulatory antibody titer in plasma elevated significantly in vaccinated fish fed with additive. The best growth rate and relative percentage survival (62%) were in fish fed with a supplement, while 15% in control fish. Overall, prebiotics and essential oils association can be considered as a potential component for enhancing vaccine efficacy against furunculosis by increasing the growth performance, immune responses and disease resistance in rainbow trout.Keywords: aeromonas salmonicida subsp. salmonicida, aquaculture, disease resistance, fish, immune response, prebiotics-essential oils feed additive, rainbow trout, vaccination
Procedia PDF Downloads 1201448 An Exploration of Renewal Utilization of Under-bridge Space Based on Spatial Potential Evaluation - Taking Chongqing Municipality as an Example
Authors: Xuelian Qin
Abstract:
Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.Keywords: high density urban area, potential evaluation, space under bridge, updated using
Procedia PDF Downloads 951447 Compensation Strategies and Their Effects on Employees' Motivation and Organizational Citizenship Behaviour in Some Manufacturing Companies in Lagos, Nigeria
Authors: Ade Oyedijo
Abstract:
This paper reports the findings of a study on the strategic and organizational antecedents and effects of two opposing pay patterns used by some manufacturing companies in Lagos Nigeria with particular reference to the behavioural correlates of the pay strategies considered. The assumed relationship between pay strategies and some organizational correlates such as business and corporate strategies and firm size was considered problematic in view of their likely implications for employee motivation and citizenship behaviour and firm performance. The survey research method was used for the study. Structured, close ended questions were used to collect primary data from the respondents. A multipart Likert scale was used to measure the pay orientations of the respondent firms and the job and organizational involvement of the respondent employees. Utilizing hierarchical linear regression method and "t-test" to analyze the data obtained from 48 manufacturing companies of various sizes and strategies, it was found that the dominant pattern of employee compensation in the sampled manufacturing companies. The study also revealed that the choice of a pay strategy was strongly influenced by organizational size as well as the type of business and corporate level strategies adopted by afirm. Firms pursuing a strategy of related and unrelated diversification are more likely to adopt the algorithmic compensation system than single product firms because of their relatively larger size and scope. However; firms that pursue a competitive advantage through a business level strategy of cost efficiency are more likely to use the experiential, variable pay strategy. The study found that an algorithmic compensation strategy is as effective as experiential compensation strategy in the promotion of organizational citizenship behaviour and motivation of employees.Keywords: compensation, corporate strategy, business strategy, motivation, citizenship behaviour, algorithmic, experiential, organizational commitment, work environment
Procedia PDF Downloads 3911446 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment
Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed
Abstract:
Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge
Procedia PDF Downloads 891445 Comparing Radiographic Detection of Simulated Syndesmosis Instability Using Standard 2D Fluoroscopy Versus 3D Cone-Beam Computed Tomography
Authors: Diane Ghanem, Arjun Gupta, Rohan Vijayan, Ali Uneri, Babar Shafiq
Abstract:
Introduction: Ankle sprains and fractures often result in syndesmosis injuries. Unstable syndesmotic injuries result from relative motion between the distal ends of the tibia and fibula, anatomic juncture which should otherwise be rigid, and warrant operative management. Clinical and radiological evaluations of intraoperative syndesmosis stability remain a challenging task as traditional 2D fluoroscopy is limited to a uniplanar translational displacement. The purpose of this pilot cadaveric study is to compare the 2D fluoroscopy and 3D cone beam computed tomography (CBCT) stress-induced syndesmosis displacements. Methods: Three fresh-frozen lower legs underwent 2D fluoroscopy and 3D CIOS CBCT to measure syndesmosis position before dissection. Syndesmotic injury was simulated by resecting the (1) anterior inferior tibiofibular ligament (AITFL), the (2) posterior inferior tibiofibular ligament (PITFL) and the inferior transverse ligament (ITL) simultaneously, followed by the (3) interosseous membrane (IOM). Manual external rotation and Cotton stress test were performed after each of the three resections and 2D and 3D images were acquired. Relevant 2D and 3D parameters included the tibiofibular overlap (TFO), tibiofibular clear space (TCS), relative rotation of the fibula, and anterior-posterior (AP) and medial-lateral (ML) translations of the fibula relative to the tibia. Parameters were measured by two independent observers. Inter-rater reliability was assessed by intraclass correlation coefficient (ICC) to determine measurement precision. Results: Significant mismatches were found in the trends between the 2D and 3D measurements when assessing for TFO, TCS and AP translation across the different resection states. Using 3D CBCT, TFO was inversely proportional to the number of resected ligaments while TCS was directly proportional to the latter across all cadavers and ‘resection + stress’ states. Using 2D fluoroscopy, this trend was not respected under the Cotton stress test. 3D AP translation did not show a reliable trend whereas 2D AP translation of the fibula was positive under the Cotton stress test and negative under the external rotation. 3D relative rotation of the fibula, assessed using the Tang et al. ratio method and Beisemann et al. angular method, suggested slight overall internal rotation with complete resection of the ligaments, with a change < 2mm - threshold which corresponds to the commonly used buffer to account for physiologic laxity as per clinical judgment of the surgeon. Excellent agreement (>0.90) was found between the two independent observers for each of the parameters in both 2D and 3D (overall ICC 0.9968, 95% CI 0.995 - 0.999). Conclusions: The 3D CIOS CBCT appears to reliably depict the trend in TFO and TCS. This might be due to the additional detection of relevant rotational malpositions of the fibula in comparison to the standard 2D fluoroscopy which is limited to a single plane translation. A better understanding of 3D imaging may help surgeons identify the precise measurements planes needed to achieve better syndesmosis repair.Keywords: 2D fluoroscopy, 3D computed tomography, image processing, syndesmosis injury
Procedia PDF Downloads 701444 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes
Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu
Abstract:
Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment
Procedia PDF Downloads 1941443 Environmental Education and Sustainable Development: the Contribution of Eco-Schools Program
Authors: Sara Rute Monteiro Silva Sousa
Abstract:
Since the second half of the 20th century, environmental problems began to generate deep concern around the world. The harmful effects of human's irresponsible actions are increasingly evident, profoundly affecting biodiversity and even human health. Given the seriousness of this human footprint, governments, organizations, and civil society must all be more proactive and adopt more effective measures to solve environmental problems and promote sustainable development. This can be achieved through different tools, namely through a more efficient education that enables current and future generations to meet their needs in an integrated approach to the economic, social, and environmental dimensions of sustainable development. In this context, schools play a key role, being responsible for educating today's students and tomorrow's leaders, decision makers, intellectuals, managers, politicians, employers, and parents. Aware of this crucial role of education and schools, the Foundation for Environmental Education created the Eco-Schools program in 1992, ensuring that schools develop a whole-school approach to environmental and sus-tainable education. This research aims to increase knowledge and information about the efficiency of the Eco-Schools program as a promoter of more sustainable schools and communities. This research study analyses a specific case of a Portuguese higher education institution in the area of management, accounting, and administration. A description, reflection, and discussion are made on some of the main measures implemented in the last academic year of 2021/22 within the scope of the Eco-Schools program, concluding that, despite some implementation difficulties, the program was successfully developed, involving the participation of students, teachers, staff, and outside school community members, being awarded with the Green Flag as a recognition of its key contribution to a more sustainable society.Keywords: sustainable development, environmental education, eco-schools program, higher education institutions, portugal
Procedia PDF Downloads 2371442 A Comparison Between Different Discretization Techniques for the Doyle-Fuller-Newman Li+ Battery Model
Authors: Davide Gotti, Milan Prodanovic, Sergio Pinilla, David Muñoz-Torrero
Abstract:
Since its proposal, the Doyle-Fuller-Newman (DFN) lithium-ion battery model has gained popularity in the electrochemical field. In fact, this model provides the user with theoretical support for designing the lithium-ion battery parameters, such as the material particle or the diffusion coefficient adjustment direction. However, the model is mathematically complex as it is composed of several partial differential equations (PDEs) such as Fick’s law of diffusion, the MacInnes and Ohm’s equations, among other phenomena. Thus, to efficiently use the model in a time-domain simulation environment, the selection of the discretization technique is of a pivotal importance. There are several numerical methods available in the literature that can be used to carry out this task. In this study, a comparison between the explicit Euler, Crank-Nicolson, and Chebyshev discretization methods is proposed. These three methods are compared in terms of accuracy, stability, and computational times. Firstly, the explicit Euler discretization technique is analyzed. This method is straightforward to implement and is computationally fast. In this work, the accuracy of the method and its stability properties are shown for the electrolyte diffusion partial differential equation. Subsequently, the Crank-Nicolson method is considered. It represents a combination of the implicit and explicit Euler methods that has the advantage of being of the second order in time and is intrinsically stable, thus overcoming the disadvantages of the simpler Euler explicit method. As shown in the full paper, the Crank-Nicolson method provides accurate results when applied to the DFN model. Its stability does not depend on the integration time step, thus it is feasible for both short- and long-term tests. This last remark is particularly important as this discretization technique would allow the user to implement parameter estimation and optimization techniques such as system or genetic parameter identification methods using this model. Finally, the Chebyshev discretization technique is implemented in the DFN model. This discretization method features swift convergence properties and, as other spectral methods used to solve differential equations, achieves the same accuracy with a smaller number of discretization nodes. However, as shown in the literature, these methods are not suitable for handling sharp gradients, which are common during the first instants of the charge and discharge phases of the battery. The numerical results obtained and presented in this study aim to provide the guidelines on how to select the adequate discretization technique for the DFN model according to the type of application to be performed, highlighting the pros and cons of the three methods. Specifically, the non-eligibility of the simple Euler method for longterm tests will be presented. Afterwards, the Crank-Nicolson and the Chebyshev discretization methods will be compared in terms of accuracy and computational times under a wide range of battery operating scenarios. These include both long-term simulations for aging tests, and short- and mid-term battery charge/discharge cycles, typically relevant in battery applications like grid primary frequency and inertia control and electrical vehicle breaking and acceleration.Keywords: Doyle-Fuller-Newman battery model, partial differential equations, discretization, numerical methods
Procedia PDF Downloads 231441 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach
Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius
Abstract:
The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics
Procedia PDF Downloads 1471440 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone
Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao
Abstract:
A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser
Procedia PDF Downloads 260