Search results for: natural flow paths
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10418

Search results for: natural flow paths

3428 Sense of Place in Historic City

Authors: Hiba Alkhalaf

Abstract:

Historic cities and places of cultural significance is continuously under the pressure of economic development and social change that threaten its natural and cultural environment. The challenge here is to find a balance between preserving the cultural character while ensuring the socio-economic gains and continuity of its uniqueness. That is by sustaining the use, character, meaning and social interaction associated with the place, in other words the sense of place. The main argument here is what we attempt to conserve is the cultural physical and non-physical dimensions of the historic city. It is based on the proposition that what give the historic city its character is its strong sense of place- whether it is historic or current. When properly identified, its various dimensions (use, meaning and form) would help determine what to sustain and what not by making the development meaningfully related to the uniqueness of the historic place. Accordingly, those socio-economic features within the context of a changing historic environment needed to be clarified. This paper, thus, explores the various perspectives of the role of sense of place within the historic city and its connection to cultural heritage. It also reviews urban conservation practice as it is currently understood in the context of historic city development. It concludes that sense of place lies in complex interrelated relationships between various users of the place and the physical, economic, cultural, political, and environmental contexts in which they interact. This calls for the need to sustain the sense of place as part of the overall urban development and conservation strategies.

Keywords: cultural heritage, historic urban areas, urban development, sense of place

Procedia PDF Downloads 519
3427 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 260
3426 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations

Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu

Abstract:

In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.

Keywords: parametric, nonstationary, Kernel, Kriging

Procedia PDF Downloads 253
3425 Neck Thinning Dynamics of Janus Droplets under Multiphase Interface Coupling in Cross Junction Microchannels

Authors: Jiahe Ru, Yan Pang, Zhaomiao Liu

Abstract:

Necking processes of the Janus droplet generation in the cross-junction microchannels are experimentally and theoretically investigated. The two dispersed phases that are simultaneously shear by continuous phases are liquid paraffin wax and 100cs silicone oil, in which 80% glycerin aqueous solution is used as continuous phases. According to the variation of minimum neck width and thinning rate, the necking process is divided into two stages, including the two-dimensional extrusion and the three-dimensional extrusion. In the two-dimensional extrusion stage, the evolutions of the tip extension length for the two discrete phases begin with the same trend, and then the length of liquid paraffin is larger than silicone oil. The upper and lower neck interface profiles in Janus necking process are asymmetrical when the tip extension velocity of paraffin oil is greater than that of silicone oil. In the three-dimensional extrusion stage, the neck of the liquid paraffin lags behind that of the silicone oil because of the higher surface tension, and finally, the necking fracture position gradually synchronizes. When the Janus droplets pinch off, the interfacial tension becomes positive to drive the neck thinning. The interface coupling of the three phases can cause asymmetric necking of the neck interface, which affects the necking time and, ultimately, the droplet volume. This paper mainly investigates the thinning dynamics of the liquid-liquid interface in confined microchannels. The revealed results could help to enhance the physical understanding of the droplet generation phenomenon.

Keywords: neck interface, interface coupling, janus droplets, multiphase flow

Procedia PDF Downloads 126
3424 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates

Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh

Abstract:

The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.

Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling

Procedia PDF Downloads 411
3423 Olive Leaf Extract as Natural Corrosion Inhibitor for Pure Copper in 0.5 M NaCl Solution: A Study by Voltammetry around OCP

Authors: Chahla Rahal, Philippe Refait

Abstract:

Oleuropein-rich extract from olive leaf and acid hydrolysates, rich in hydroxytyrosol and elenolic acid was prepared under different experimental conditions. These phenolic compounds may be used as a corrosion inhibitor. The inhibitive action of these extracts and its major constituents on the corrosion of copper in 0.5 M NaCl solution has been evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. The product of extraction was analyzed with high performance liquid chromatography (HPLC), whose analysis shows that olive leaf extract are greatly rich in phenolic compounds, mainly Oleuropeine (OLE), Hydroxytyrosol (HT) and elenolic acid (EA). After the acid hydrolysis and high temperature of extraction, an increase in hydroxytyrosol concentration was detected, coupled with relatively low oleuropeine content and high concentration of elenolic acid. The potentiodynamic measurements have shown that this extract acts as a mixed-type corrosion inhibitor, and good inhibition efficiency is observed with the increase in HT and EA concentration. These results suggest that the inhibitive effect of olive leaf extract might be due to the adsorption of the various phenolic compounds onto the copper surface.

Keywords: Olive leaf extract, Oleuropein, hydroxytyrosol, elenolic acid , Copper, Corrosion, HPLC/DAD, Polarisation, EIS

Procedia PDF Downloads 255
3422 An Environmentally Friendly Approach towards the Conservation of Vernacular Architecture

Authors: Maria Philokyprou, Aimilios Michael

Abstract:

Contemporary theories of sustainability, concerning the natural and built environment, have recently introduced an environmental attitude towards the architectural design that, in turn, affects the practice of conservation and reuse of the existing building stock. This paper presents an environmentally friendly approach towards the conservation of vernacular architecture and it is based on the results of a research program which involved the investigation of sustainable design elements of traditional buildings in Cyprus. The research in question showed that Cypriot vernacular architecture gave more emphasis on cooling rather than heating strategies. Another notable finding of the investigation was the great importance given to courtyards as they enhance considerably, and in various ways, the microclimatic conditions of the immediate environment with favorable results throughout the year. Moreover, it was shown that the reduction in temperature fluctuation observed in the closed and semi-open spaces, compared to the respective temperature fluctuation of the external environment - due to the thermal inertia of the building envelope - helps towards the achievement of more comfortable living conditions within traditional dwellings. This paper concludes with a proposal of a sustainable approach towards the conservation of the existing environment and the introduction of new environmental criteria for the conservation of traditional buildings, beyond the aesthetic, morphological and structural ones that are generally applied.

Keywords: bioclimatic, conservation, environmental, traditional dwellings, vernacular architecture

Procedia PDF Downloads 522
3421 The Protective Effect of Grape Seed Oil with Use of Ciprofloxacin Induced Germ Cell Toxicity in Male Albino Mice

Authors: Galawezh Obaid Othman

Abstract:

The present investigation was undertaken to evaluate the germ cell toxicity induced by ciprofloxacin antibiotic and the Protective effect of grape seed oil, Ciproflaxin uses include treatment of genitor-urinary and some reproductive tract bacterial infections. One of the most attractive approaches to disease prevention involves the use of natural antioxidants to protect tissue against toxic injury, the possible protective effect of grape seed oil, against ciprofloxacin induced reproductive toxicity on mouse .the animals were randomly divided into four groups consisting of five mice. Group (1) was orally given distilled water (solvent of the used drugs) and kept as a control. Group (2) was administered 6ml/kg. b.w of grape seed oil orally 15 days .Group (3) was administered 206mg/kg. b.w of ciprofloxacin orally for 15 days.. Last group was treated orally with Grape seed oil (6mg/kg b.w. /day) prior to an orally administered ciprofloxacin (CPX) at a dose of 206 mg⁄kg. b.w. by three hours for fifteen days. Ciproflaxin have ability to induce various types of sperm abnormalities such as (Sperm without head, sperm without tail, defective head spearm,swollen head sperm ), The results explored that Grape seed oil possesses statistically significant (p<0.05) protective potential against Ciproflaxin by decreasing sperm abnormalities frequency in mouse.

Keywords: antimutagen, ciprofloxacin, grape seed oil, germ cell

Procedia PDF Downloads 438
3420 Microfluidic Manipulation for Biomedical and Biohealth Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 58
3419 Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material

Authors: Irena Vuković-Kwiatkowska, Halina Kaczmarek

Abstract:

Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic

Keywords: interpenetrating polymer network, packaging films, photocrosslinking, polyacrylates dipentaerythritol pentaacrylate DPEPA, poly (lactic acid), polymer biodegradation

Procedia PDF Downloads 477
3418 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform

Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic

Abstract:

The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.

Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms

Procedia PDF Downloads 225
3417 Tourism and Urban Planning for Intermediate Cities: An Empirical Approach toward Cultural Heritage Conservation in Damavand, Iran

Authors: M. Elham Ghabouli

Abstract:

Intermediate cities which also called medium size cities have an important role in the process of globalization. It is argued that, in some cases this type of cities may be depopulated or in otherwise may be transformed as the periphery of metropolitans so that the personal identity of the city and its local cultural heritage could suffer from its neighbor metropolitan. Over the last decades, the role of tourism in development process and the cultural heritage is increased. The effect of tourism in socio-economic growth makes motivation for study on tourism development in regional and urban planning process. Tourism potentially has a specific role in promoting sustainable development especially by its economic and socio-cultural effects. The positive role of tourism in local development and in cultural heritage should be empowered by urban and regional planning. Damavand is an intermediate city located in Tehran province, Iran. Considering its local specific characteristic like social structure, antiquities and natural monuments made a suitable case study for studying on urban tourism planning method. Focusing on recognition of historical and cultural heritage of Damavand, this paper tried to peruse cultural-historical heritage protecting issue through “base plan methodology” which is introduced as a first step of urban planning for intermediate cities.

Keywords: urban planning, tourism, cultural heritage, intermediate cities

Procedia PDF Downloads 531
3416 The Effects of Root Zone Supply of Aluminium on Vegetative Growth of 15 Groundnut Cultivars Grown in Solution Culture

Authors: Mosima M. Mabitsela

Abstract:

Groundnut is preferably grown on light textured soils. Most of these light textured soils tend to be highly weathered and characterized by high soil acidity and low nutrient status. One major soil factor associated with infertility of acidic soils that can negatively depress groundnut yield is aluminium (Al) toxicity. In plants Al toxicity damages root cells, leading to inhibition of root growth as a result of the suppression of cell division, cell elongation and cell expansion in the apical meristem cells of the root. The end result is that roots become stunted and brittle, root hair development is poor, and the root apices become swollen. This study was conducted to determine the effects of aluminium (Al) toxicity on a range of groundnut varieties. Fifteen cultivars were tested in incremental aluminum (Al) supply in an ebb and flow solution culture laid out in a randomized complete block design. There were six aluminium (Al) treatments viz. 0 µM, 1 µM, 5.7 µM, 14.14 µM, 53.18 µM, and 200 µM. At 1 µM there was no inhibitory effect on the growth of groundnut. The inhibition of groundnut growth was noticeable from 5.7 µM to 200 µM, where the severe effect of aluminium (Al) stress was observed at 200 µM. The cultivars varied in their response to aluminium (Al) supply in solution culture. Groundnuts are one of the most important food crops in the world, and its supply is on a decline due to the light-textured soils that they thrive under as these soils are acidic and can easily solubilize aluminium (Al) to its toxic form. Consequently, there is a need to develop groundnut cultivars with high tolerance to soil acidity.

Keywords: aluminium toxicity, cultivars, reduction, root growth

Procedia PDF Downloads 150
3415 Comparative Analysis of Three Types of Recycled Aggregates and its Use in Masonry Mortar Fabrication

Authors: Mariano Gonzalez Cortina, Pablo Saiz Martinez, Francisco Fernandez Martinez, Antonio Rodriguez Sanchez

Abstract:

Construction sector incessant activity of the last years preceding the crisis has originated a high waste generation and an increased use of raw materials. The main aim of this research is to compare three types of recycled aggregates and the feasibility to incorporate them into masonry mortar fabrication. The tests were developed using two types of binders: CEM II/B-L 32.5 N and CEM IV/B (V) 32.5 N. 50%, 75% and 100% of natural sand were replaced with three types of recycled aggregates. Cement-to-aggregate by dry weight proportions were 1:3 and 1:4. Physical and chemical characterization of recycled aggregates showed continues particle size distribution curve, lower density and higher absorption, which was the reason to use additive to obtain required mortar consistency. Main crystalline phases determined in the X-Ray diffraction test were calcite, quartz, and gypsum. Performed tests show that cement-based mortars fabricated with CEM IV/B (V) 32. 5 N can incorporate recycled aggregates coming from ceramic, concrete and mixed recycling processes, using 1:3 and 1:4 cement-to-aggregate proportions, complying with the limits established by the Spanish standards. It was concluded that recycled mortar coming from concrete recycling process is the one which presents better characteristics.

Keywords: construction and demolition waste, masonry mortar, mechanical properties, recycled aggregate, waste treatment

Procedia PDF Downloads 421
3414 Evaluation and Compression of Different Language Transformer Models for Semantic Textual Similarity Binary Task Using Minority Language Resources

Authors: Ma. Gracia Corazon Cayanan, Kai Yuen Cheong, Li Sha

Abstract:

Training a language model for a minority language has been a challenging task. The lack of available corpora to train and fine-tune state-of-the-art language models is still a challenge in the area of Natural Language Processing (NLP). Moreover, the need for high computational resources and bulk data limit the attainment of this task. In this paper, we presented the following contributions: (1) we introduce and used a translation pair set of Tagalog and English (TL-EN) in pre-training a language model to a minority language resource; (2) we fine-tuned and evaluated top-ranking and pre-trained semantic textual similarity binary task (STSB) models, to both TL-EN and STS dataset pairs. (3) then, we reduced the size of the model to offset the need for high computational resources. Based on our results, the models that were pre-trained to translation pairs and STS pairs can perform well for STSB task. Also, having it reduced to a smaller dimension has no negative effect on the performance but rather has a notable increase on the similarity scores. Moreover, models that were pre-trained to a similar dataset have a tremendous effect on the model’s performance scores.

Keywords: semantic matching, semantic textual similarity binary task, low resource minority language, fine-tuning, dimension reduction, transformer models

Procedia PDF Downloads 209
3413 Ranking the Factors That Influence the Construction Project Success: The Jordanian Perspective

Authors: Ghanim A. Bekr

Abstract:

Project success is what must be done for the project to be acceptable to the client, stakeholders and end-users who will be affected by the project. The study of project success and the critical success factors (CSFs) are the means adopted to improve the effectiveness of project. This research is conducted to make an attempt to identify which variables influence the success of project implementation. This study has selected, through an extensive literature review and interviews, (83) factors categorized in (7) groups that the questionnaire respondents were asked to score. The responses from 66 professionals with an average of 15 years of experience in different types of construction projects in Jordan were collected and analyzed using SPSS and most important factors for success for various success criteria are presented depending on the relative importance index to rank the categories. The research revealed the significant groups of factors are: Client related factors, Contractor’s related factors, Project Manager (PM) related factors, and Project management related factors. In addition the top ten sub factors are: Assertion of the client towards short time of the project, availability of skilled labor, Assertion of the client towards high level of the quality, capability of the client in taking risk, previous experience of the PM in similar projects, previous experience of the contractor in similar projects, decision making by the client/ the client’s representative at the right time, assertion of client towards low cost of project, experience in project management in previous projects, and flow of the information among parties. The results would be helpful to construction project professionals in taking proactive measures for successful completion of construction projects in Jordan.

Keywords: construction projects, critical success factors, Jordan, project success

Procedia PDF Downloads 160
3412 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 311
3411 Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites

Authors: Laura Dembovska, Ina Pundiene, Diana Bajare

Abstract:

Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa.

Keywords: alkali activation, alkali activated materials, elevated temperature application, heat resistance

Procedia PDF Downloads 177
3410 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures

Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi

Abstract:

Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).

Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation

Procedia PDF Downloads 254
3409 Environment-Specific Political Risk Discourse, Environmental Reputation, and Stock Price Crash Risk

Authors: Sohanur Rahman, Elisabeth Sinnewe, Larelle (Ellie) Chapple, Sarah Osborne

Abstract:

Greater political attention to global climate change exposes firms to a higher level of political uncertainty, which can lead to adverse capital market consequences. However, a higher level of discourse on environment-specific political risk (EPR) between management and investors can mitigate information asymmetry, followed by less stock price crash risk. This study examines whether EPR discourse in discourse in the earnings conference calls (ECC) reduces firm-level stock price crash risk in the US market. This research also explores if adverse disclosures via media channels further moderates the association between EPR on crash risk. Employing a dataset of 28,933 firm-year observations from 2002 to 2020, the empirical analysis reveals that EPR discourse in ECC reduces future stock price crash risk. However, adverse disclosures via media channels can offset the favourable effect of EPR discourse on crash risk. The results are robust to the potential endogeneity concern in a quasi-natural experiment setting.

Keywords: earnings conference calls, environment, environment-specific political risk discourse, environmental disclosures, information asymmetry, reputation risk, stock price crash risk

Procedia PDF Downloads 139
3408 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong

Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong

Abstract:

Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.

Keywords: climate change, robust decision support, scenarios, water resources management

Procedia PDF Downloads 168
3407 Petrophysical Interpretation of Unconventional Shale Reservoir Naokelekan in Ajeel Oil-Gas Field

Authors: Abeer Tariq, Mohammed S. Aljawad, Khaldoun S. Alfarisi

Abstract:

This paper aimed to estimate the petrophysical properties (porosity, permeability, and fluid saturation) of the Ajeel well (Aj-1) Shale reservoir. Petrophysical properties of the Naokelekan Formation at Ajeel field are determined from the interpretation of open hole log data of one well which penetrated the source rock reservoir. However, depending on these properties, it is possible to divide the Formation which has a thickness of approximately 28-34 m, into three lithological units: A is the upper unit (thickness about 9 to 13 m) consisting of dolomitized limestones; B is a middle unit (thickness about 13 to 20 m) which is composed of dolomitic limestone, and C is a lower unit (>22 m thick) which consists of shale-rich and dolomitic limestones. The results showed that the average formation water resistivity for the formation (Rw = 0.024), the average resistivity of the mud filtration (Rmf = 0.46), and the Archie parameters were determined by the picket plot method, where (m) value equal to 1.86, (n) value equal to 2 and (a) value equal to 1. Also, this reservoir proved to be economical for future developments to increase the production rate of the field by dealing with challenging reservoirs. In addition, Porosity values and water saturation Sw were calculated along with the depth of the composition using Interactive Petrophysics (IP) V4.5 software. The interpretation of the computer process (CPI) showed that the better porous zone holds the highest amount of hydrocarbons in the second and third zone. From the flow zone indicator FZI method, there are two rock types in the studied reservoir.

Keywords: petrophysical properties, porosity, permeability, ajeel field, Naokelekan formation, Jurassic sequences, carbonate reservoir, source rock

Procedia PDF Downloads 90
3406 Mass Media Products Consumption Patterns in Rural South-South, Nigeria Communities

Authors: Inemesit Akpan Umoren, Aniekan James Akpan

Abstract:

Media practitioners and information managers have often erroneously operated on the premise that media messages are received as disseminated to the extent that audiences of whatever background assimilate the content uniformly. This does not subsist since media audiences are often segmented in terms of educational level, social category, place of residence, gender, among others. While those who are highly educated, live in urban areas and are of highest standing are more likely to have direct access to the media, those in the rural areas and of low education and standing, may not have direct or easy access. These, therefore, informed the study to establish the consumption patterns of mass media products by residents of rural communities in south-south, Nigeria. The study, which was anchored on the multi-step flow and social categories theories, adopted a survey research design and a sample of 383 using Mayer’s 1979 guide drawn from nine rural communities in the south-south, Nigeria states of Akwa Ibom, Rivers and Edo. Findings among others showed that while a negligible percentage is highly exposed to media messages of all types, a greater member depend on opinion leaders, social groups, drinking joints, among other such for filtered content. It was concluded that since rural or community media organizations are very vital in ensuring media content get to all audience without necessarily being passing through intermediaries. Among the recommendations was that information managers and media organizations should always have in mind the ruralites while packaging their contents even in the mainstream media.

Keywords: consumption, media, media product, pattern

Procedia PDF Downloads 144
3405 Rosuvastatin Improves Endothelial Progenitor Cells in Rheumatoid Arthritis

Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan

Abstract:

Background: Endothelial Progenitor Cells (EPCs) are depleted and contribute to increased cardiovascular (CV) risk in rheumatoid arthritis (RA). Statins exert a protective effect in CAD partly by promoting EPC mobilization. This vasculoprotective effect of statin has not yet been investigated in RA. We aimed to investigate the effect of rosuvastatin on EPCs in RA. Methods: 50 RA patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=25) and placebo (n=25) as an adjunct to existing stable antirheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures included DAS28, CRP and ESR were measured at baseline and after treatment. Lipids and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) were estimated at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. At baseline, EPCs inversely correlated with DAS28 and TNF-α in both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin but did not show significant change with placebo. Rosuvastatin exerted positive effect on lipid spectrum: lowering total cholesterol, LDL, non HDL and elevation of HDL as compared with placebo. At 6 months, DAS28, ESR, CRP, TNF-α and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and DAS28, CRP, TNF-α, and IL-6 after treatment with rosuvastatin. Conclusion: First study to show that rosuvastatin improves inflammation and EPC biology in RA possibly through its anti-inflammatory and lipid lowering effect. This beneficial effect of rosuvastatin may provide a novel strategy to prevent cardiovascular events in RA.

Keywords: RA, Endothelial Progenitor Cells, rosuvastatin, cytokines

Procedia PDF Downloads 256
3404 Dynamics Characterizations of Dielectric Electro- Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: dielectric electro-active polymer, pull actuator, static, dynamic, electromechanical

Procedia PDF Downloads 249
3403 Effect of Humic Substance on Ex-Vitro Propagation of Saffron (Crocus Sativus L.)

Authors: Abdelghani Tahiri, Youssef Karra, Naima Ait Aabd, Abdelaziz Mimouni

Abstract:

Saffron (Crocus sativus L.), the most expensive spice in the world derived from the stigmas, is an autumn-flowering and sterile triploid (2n=3x=24) geophyte species that belong to the Iridaceae family. This plant species is mainly propagated vegetatively through the formation of daughter corms from the mother one. Low multiplication rates of daughter corms under natural conditions, along with fungal contamination, significantly reduce the productivity and quality of saffron corms. The development of efficient and sustainable strategies for rapid and large-scale production of selected cultivars of saffron will be desired. For this, the main objective of this work is to improve the vegetative propagation of saffron under ex-vitro conditions. Preliminary results of the influence of increasing doses of humic substances (HS) on the growth and multiplication of corms under greenhouse conditions are evaluated. The obtained data shows that the effect of HS depends on the concentration used and the mode of application. Indeed, the application through irrigation has increased the number of shoots and corms, but it has reduced other parameters. On the other hand, the temporary treatment has improved all observed parameters except for the number of shoots and corms. Results obtained in this work suggest that it is possible to improve the propagation of saffron corms under greenhouse conditions.

Keywords: saffron, Crocus sativus L., corm, humic substances

Procedia PDF Downloads 210
3402 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 126
3401 A Study on Exploring and Prioritizing Critical Risks in Construction Project Assessment

Authors: A. Swetha

Abstract:

This study aims to prioritize and explore critical risks in construction project assessment, employing the Weighted Average Index method and Principal Component Analysis (PCA). Through extensive literature review and expert interviews, project assessment risk factors were identified across Budget and Cost Management Risk, Schedule and Time Management Risk, Scope and Planning Risk, Safety and Regulatory Compliance Risk, Resource Management Risk, Communication and Stakeholder Management Risk, and Environmental and Sustainability Risk domains. A questionnaire was distributed to stakeholders involved in construction activities in Hyderabad, India, with 180 completed responses analyzed using the Weighted Average Index method to prioritize risk factors. Subsequently, PCA was used to understand relationships between these factors and uncover underlying patterns. Results highlighted dependencies on critical resources, inadequate risk assessment, cash flow constraints, and safety concerns as top priorities, while factors like currency exchange rate fluctuations and delayed information dissemination ranked lower but remained significant. These insights offer valuable guidance for stakeholders to mitigate risks effectively and enhance project outcomes. By adopting systematic risk assessment and management approaches, construction projects in Hyderabad and beyond can navigate challenges more efficiently, ensuring long-term viability and resilience.

Keywords: construction project assessment risk factor, risk prioritization, weighted average index, principal component analysis, project risk factors

Procedia PDF Downloads 37
3400 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 500
3399 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 296