Search results for: cell concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8166

Search results for: cell concentration

1176 Septin 11, Cytoskeletal Protein Involved in the Regulation of Lipid Metabolism in Adipocytes

Authors: Natalia Moreno-Castellanos, Amaia Rodriguez, Gema Frühbeck

Abstract:

Introduction: In adipocytes, the cytoskeleton undergoes important expression and distribution in adipocytes rearrangements during adipogenesis and in obesity. Indeed, a role for these proteins in the regulation of adipocyte differentiation and response to insulin has been demonstrated. Recently, septins have been considered as new components of the cytoskeletal network that interact with other cytoskeletal elements (actin and tubulin) profoundly modifying their dynamics. However, these proteins have not been characterized as yet in adipose tissue. In this work, were examined the cellular, molecular and functional features of a member of this family, septin 11 (SEPT11), in adipocytes and evaluated the impact of obesity on the expression of this protein in human adipose tissue. Methods: Adipose gene and protein expression levels of SEPT11 were analysed in human samples. SEPT11 distribution was evaluated by immunocytochemistry, electronic microscopy, and subcellular fractionation techniques. GST-pull down, immunoprecipitation and a Yeast-Two Hybrid (Y2H) screening were used to identify the SEPT11 interactome. Gene silencing was employed to assess the role of SEPT11 in the regulation of insulin signaling and lipid metabolism in adipocytes. Results: SEPT11 is expressed in human adipocytes, and its levels increased in both omental and subcutaneous adipose tissue in obesity, with SEPT11 mRNA content positively correlating with parameters of insulin resistance in subcutaneous fat. In non-stimulated adipocytes, SEPT11 immunoreactivity showed a ring-like distribution at the cell surface and associated to caveolae. Biochemical analyses showed that SEPT11 interacted with the main component of caveolae, caveolin-1 (CAV1) as well as with the fatty acid-binding protein, FABP5. Notably, the three proteins redistributed and co-localized at the surface of lipid droplets upon exposure of adipocytes to oleate. In this line, SEPT11 silencing in 3T3-L1 adipocytes impaired insulin signaling and decreased insulin-induced lipogenesis. Conclusions: Those findings demonstrate that SEPT11 is a novel component of the adipocyte cytoskeleton that plays an important role in the regulation of lipid traffic, metabolism and can thus represent a potential biomarker of insulin resistance in obesity in adipocytes through its interaction with both CAV1 and FABP5.

Keywords: caveolae, lipid metabolism, obesity, septins

Procedia PDF Downloads 216
1175 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 85
1174 Persistent Organochlorine Pesticides (POPs) in Water, Sediment, Fin Fishes (Schilbes mystus and Hemichromis fasciatus) from River Ogun, Lagos, Nigeria

Authors: Edwin O. Clarke, Akintade O. Adeboyejo

Abstract:

Intensive use of pesticides resulted in dispersal of pollutants throughout the globe. This study was carried out to investigate persistent Organochlorine pesticides (POPs) in water, sediment and fin fishes, Schilbes mystus and Hemichromis fasciatus from two different sampling stations along River Ogun between the month of June 2012 and January 2013. The Organochlorine pesticides analyzed include DDT (pp’1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane), DDD, DDE (pp1,1-dichloro-2, 2-bis-(4-chlorophenyl) ethylene, HCH (gamma 1,2,3,4,5,6-hexachlorocylohexane, HCB hexachlorobenzene),Dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a octahydro- 1,4,5,8 dimethanonaphthalene). The analysis was done using Gas Chromatograph with Electron Capture Detector. In water sample, the result showed that PPDDT, Endrin aldehyde, Endrin ketone concentrations were high in both stations. The mean value of Organochlorine analyzed in water range from Beta BHC (0.50±0.10µg/l) to PP DDT (162.86±0.21µg/l) in Kara sample station and Beta BHC (0.20±0.07µg/l) to Endrin Aldehyde (76.47±0.02µg/l) in Odo-Ogun sample station. The levels of POPs obtained in sediments ranged from 0.40±0.23µg/g (Beta BHC) to 259.90 ± 1.00µg/kg (Endosulfan sulfate) in Kara sample station and 0.64±0.00µg/g (Beta BHC) to 379.77 ±0.15 µg/g (Endosulfan sulfate) in Odo-Ogun sample station. The levels of POPs obtained in fin fish samples ranged from 0.29±0.00µg/g (Delta BHC) to 197.87 ± 0.31µg/g (PP DDT) in Kara sample station and in Odo-Ogun sample station the mean value for fish samples range from 0.29 ± 0.00 µg/g (Delta BHC) to 197.87 ± 0.32 µg/g (PP DDT). The study showed that the accumulation of POPs affect the environment and reduce water quality. The results showed that the concentrations were found to exceed the maximum acceptable concentration of 0.10µg/l value set by the European Union for the protection of freshwater aquatic life and this can be hazardous if the trend is not checked.

Keywords: hazardous, persistent, pesticides, biomes

Procedia PDF Downloads 295
1173 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 407
1172 Expert Supporting System for Diagnosing Lymphoid Neoplasms Using Probabilistic Decision Tree Algorithm and Immunohistochemistry Profile Database

Authors: Yosep Chong, Yejin Kim, Jingyun Choi, Hwanjo Yu, Eun Jung Lee, Chang Suk Kang

Abstract:

For the past decades, immunohistochemistry (IHC) has been playing an important role in the diagnosis of human neoplasms, by helping pathologists to make a clearer decision on differential diagnosis, subtyping, personalized treatment plan, and finally prognosis prediction. However, the IHC performed in various tumors of daily practice often shows conflicting and very challenging results to interpret. Even comprehensive diagnosis synthesizing clinical, histologic and immunohistochemical findings can be helpless in some twisted cases. Another important issue is that the IHC data is increasing exponentially and more and more information have to be taken into account. For this reason, we reached an idea to develop an expert supporting system to help pathologists to make a better decision in diagnosing human neoplasms with IHC results. We gave probabilistic decision tree algorithm and tested the algorithm with real case data of lymphoid neoplasms, in which the IHC profile is more important to make a proper diagnosis than other human neoplasms. We designed probabilistic decision tree based on Bayesian theorem, program computational process using MATLAB (The MathWorks, Inc., USA) and prepared IHC profile database (about 104 disease category and 88 IHC antibodies) based on WHO classification by reviewing the literature. The initial probability of each neoplasm was set with the epidemiologic data of lymphoid neoplasm in Korea. With the IHC results of 131 patients sequentially selected, top three presumptive diagnoses for each case were made and compared with the original diagnoses. After the review of the data, 124 out of 131 were used for final analysis. As a result, the presumptive diagnoses were concordant with the original diagnoses in 118 cases (93.7%). The major reason of discordant cases was that the similarity of the IHC profile between two or three different neoplasms. The expert supporting system algorithm presented in this study is in its elementary stage and need more optimization using more advanced technology such as deep-learning with data of real cases, especially in differentiating T-cell lymphomas. Although it needs more refinement, it may be used to aid pathological decision making in future. A further application to determine IHC antibodies for a certain subset of differential diagnoses might be possible in near future.

Keywords: database, expert supporting system, immunohistochemistry, probabilistic decision tree

Procedia PDF Downloads 229
1171 Parameters of Main Stage of Discharge between Artificial Charged Aerosol Cloud and Ground in Presence of Model Hydrometeor Arrays

Authors: D. S. Zhuravkova, A. G. Temnikov, O. S. Belova, L. L. Chernensky, T. K. Gerastenok, I. Y. Kalugina, N. Y. Lysov, A.V. Orlov

Abstract:

Investigation of the discharges from the artificial charged water aerosol clouds in presence of the arrays of the model hydrometeors could help to receive the new data about the peculiarities of the return stroke formation between the thundercloud and the ground when the large volumes of the hail particles participate in the lightning discharge initiation and propagation stimulation. Artificial charged water aerosol clouds of the negative or positive polarity with the potential up to one million volts have been used. Hail has been simulated by the group of the conductive model hydrometeors of the different form. Parameters of the impulse current of the main stage of the discharge between the artificial positively and negatively charged water aerosol clouds and the ground in presence of the model hydrometeors array and of its corresponding electromagnetic radiation have been determined. It was established that the parameters of the array of the model hydrometeors influence on the parameters of the main stage of the discharge between the artificial thundercloud cell and the ground. The maximal values of the main stage current impulse parameters and the electromagnetic radiation registered by the plate antennas have been found for the array of the model hydrometeors of the cylinder revolution form for the negatively charged aerosol cloud and for the array of the hydrometeors of the plate rhombus form for the positively charged aerosol cloud, correspondingly. It was found that parameters of the main stage of the discharge between the artificial charged water aerosol cloud and the ground in presence of the model hydrometeor array of the different considered forms depend on the polarity of the artificial charged aerosol cloud. In average, for all forms of the investigated model hydrometeors arrays, the values of the amplitude and the current rise of the main stage impulse current and the amplitude of the corresponding electromagnetic radiation for the artificial charged aerosol cloud of the positive polarity were in 1.1-1.9 times higher than for the charged aerosol cloud of the negative polarity. Thus, the received results could indicate to the possible more important role of the big volumes of the large hail arrays in the thundercloud on the parameters of the return stroke for the positive lightning.

Keywords: main stage of discharge, hydrometeor form, lightning parameters, negative and positive artificial charged aerosol cloud

Procedia PDF Downloads 256
1170 Modeling the Effects of Temperature on Ambient Air Quality Using AERMOD

Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson

Abstract:

Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO₂) – as a model air pollutant. The research uses AERMOD model to predict the SO₂ dispersion trends in the surrounding area. Emissions from five (5) industrial stacks on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1ᵒC, + 3ᵒC and + 5ᵒC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO₂ at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO₂ concentration levels. The average increase of SO₂ levels was 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees, respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.

Keywords: air quality, sulfur dioxide, dispersion models, global warming, KSA

Procedia PDF Downloads 85
1169 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 184
1168 Anti-lipidemic and Hematinic Potentials of Moringa Oleifera Leaves: A Clinical Trial on Type 2 Diabetic Subjects in a Rural Nigerian Community

Authors: Ifeoma C. Afiaenyi, Elizabeth K. Ngwu, Rufina N. B. Ayogu

Abstract:

Diabetes has crept into the rural areas of Nigeria, causing devastating effects on its sufferers; most of them could not afford diabetic medications. Moringa oleifera has been used extensively in animal models to demonstrate its antilipidaemic and haematinic qualities; however, there is a scarcity of data on the effect of graded levels of Moringa oleifera leaves on the lipid profile and hematological parameters in human diabetic subjects. The study determined the effect of Moringa oleifera leaves on the lipid profile and hematological parameters of type 2 diabetic subjects in Ukehe, a rural Nigerian community. Twenty-four adult male and female diabetic subjects were purposively selected for the study. These subjects were shared into four groups of six subjects each. The diets used in the study were isocaloric. A control group (diabetics, group 1) was fed diets without Moringa oleifera leaves. Experimental groups 2, 3 and 4 received 20g, 40g and 60g of Moringa oleifera leaves daily, respectively, in addition to the diets. The subjects' lipid profile and hematological parameters were measured prior to the feeding trial and at the end of the feeding trial. The feeding trial lasted for fourteen days. The data obtained were analyzed using the computer program Statistical Product for Service Solution (SPSS) for windows version 21. A Paired-samples t-test was used to compare the means of values collected before and after the feeding trial within the groups and significance was accepted at p < 0.05. There was a non-significant (p > 0.05) decrease in the mean total cholesterol of the subjects in groups 1, 2 and 3 after the feeding trial. There was a non-significant (p > 0.05) decrease in the mean triglyceride levels of the subjects in group 1 after the feeding trial. Groups 1 and 3 subjects had a non-significant (p > 0.05) decrease in their mean low-density lipoprotein (LDL) cholesterol after the feeding trial. Groups 1, 2 and 4 had a significant (p < 0.05) increase in their mean high-density lipoprotein (HDL) cholesterol after the feeding trial. A significant (p < 0.05) decrease in the mean hemoglobin level was observed only in group 4 subjects. Similarly, there was a significant (p < 0.05) decrease in the mean packed cell volume of group 4 subjects. It was only in group 4 that a significant (p < 0.05) decrease in the mean white blood cells of the subjects was also observed. The changes observed in the parameters assessed were not dose-dependent. Therefore, a similar study of longer duration and more samples is imperative to authenticate these results.

Keywords: anemia, diabetic subjects, lipid profile, moringa oleifera

Procedia PDF Downloads 208
1167 Study and Fine Characterization of the SS 316L Microstructures Obtained by Laser Beam Melting Process

Authors: Sebastien Relave, Christophe Desrayaud, Aurelien Vilani, Alexey Sova

Abstract:

Laser beam melting (LBM) is an additive manufacturing process that enables complex 3D parts to be designed. This process is now commonly employed for various applications such as chemistry or energy, requiring the use of stainless steel grades. LBM can offer comparable and sometimes superior mechanical properties to those of wrought materials. However, we observed an anisotropic microstructure which results from the process, caused by the very high thermal gradients along the building axis. This microstructure can be harmful depending on the application. For this reason, control and prediction of the microstructure are important to ensure the improvement and reproducibility of the mechanical properties. This study is focused on the 316L SS grade and aims at understanding the solidification and transformation mechanisms during process. Experiments to analyse the nucleation and growth of the microstructure obtained by the LBM process according to several conditions. These samples have been designed on different type of support bulk and lattice. Samples are produced on ProX DMP 200 LBM device. For the two conditions the analysis of microstructures, thanks to SEM and EBSD, revealed a single phase Austenite with preferential crystallite growth along the (100) plane. The microstructure was presented a hierarchical structure consisting columnar grains sizes in the range of 20-100 µm and sub grains structure of size 0.5 μm. These sub-grains were found in different shapes (columnar and cellular). This difference can be explained by a variation of the thermal gradient and cooling rate or element segregation while no sign of element segregation was found at the sub-grain boundaries. A high dislocation concentration was observed at sub-grain boundaries. These sub-grains are separated by very low misorientation walls ( < 2°) this causes a lattice of curvature inside large grain. A discussion is proposed on the occurrence of these microstructures formation, in regard of the LBM process conditions.

Keywords: selective laser melting, stainless steel, microstructure

Procedia PDF Downloads 162
1166 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions

Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi

Abstract:

Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.

Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles

Procedia PDF Downloads 112
1165 Transcriptome Sequencing of the Spleens Reveals Genes Involved in Antiviral Response in Chickens Infected with Castv

Authors: Sajewicz-Krukowska Joanna, Domańska-Blicharz Katarzyna, Tarasiuk Karolina, Marzec-Kotarska Barbara

Abstract:

Astroviral infections pose a significant problem in the poultry industry, leading to multiple adverse effects such as decreased egg production, breeding disorders, poor weight gain, and even increased mortality. Commonly observed chicken astrovirus (CAstV) was recently reported to be responsible for "white chicks syndrome" associated with increased embryo/chick mortality. The CAstV-mediated pathogenesis in chicken occurs due to complex interactions between the infectious pathogen and the immune system. Many aspects of CAstV-chicken interactions remain unclear, and there is no information available regarding gene expression changes in the chicken's spleen in response to CAstV infection. We aimed to investigate the molecular background triggered by CAstV infection. Ten 21-day-old SPF White Leghorn chickens were divided into two groups of 5 birds each. One group was inoculated with CAstV, and the other was used as the negative control. On 4th dpi, spleen samples were collected and immediately frozen at -70°C for RNA isolation. We analysed transcriptional profiles of the chickens' spleens at the 4th day following infection using RNA-seq to establish differentially expressed genes (DEGs). The RNA-seq findings were verified by quantitative real-time PCR (qRT-PCR). A total of 31959 transcripts were identified in response to CAstV infection. Eventually 45 DEGs (p-value<0.05; Log2Foldchange>1)were recognized in the spleen after CAstV infection (26 upregulated DEGs and 19 downregulated DEGs). qRT-PCR performed on 4 genes (IFIT5, OASL, RASD1, DDX60) confirmed RNAseq results. Top differentially expressed genes belonged to novel putative IFN-induced CAstV restriction factors. Most of the DEGs were associated with RIG-I–like signalling pathway or, more generally, with an innate antiviral response(upregulated: BLEC3, CMPK2, IFIT5, OASL, DDX60, IFI6, and downregulated: SPIK5, SELENOP, HSPA2, TMEM158, RASD1, YWHAB). The study provided a global analysis of host transcriptional changes that occur during CAstV infection in vivo and proved the cell cycle in the spleen and immune signalling in chickens were predominantly affected upon CAstV infection.

Keywords: chicken astrovirus, CastV, RNA-seq, transcriptome, spleen

Procedia PDF Downloads 158
1164 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 299
1163 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 201
1162 The Changes of Chemical Composition of Rice Straw Treated by a Biodecomposer Developed from Rumen Bacterial of Buffalo

Authors: A. Natsir, M. Nadir, S. Syahrir, A. Mujnisa

Abstract:

In tropical countries such as in Indonesia, rice straw plays an important role in fulfilling the needs of feed for ruminant, especially during the dry season in which the availability of forage is very limited. However, the main problem of using rice straw as a feedstuff is low digestibility due to the existence of the links between lignin and cellulose or hemicellulose, and imbalance of its minerals content. One alternative to solve this problem is by application of biodecomposer (BS) derived from rumen bacterial of the ruminant. This study was designed to assess the effects of BS application on the changes of the chemical composition of rice straw. Four adults local buffalo raised under typical feeding conditions were used as a source of inoculum for BS development. The animal was fed for a month with a diet consisted of rice straw and elephant grass before taking rumen fluid samples. Samples of rumen fluid were inoculated in the carboxymethyl cellulose (CMC) media under anaerobic condition for 48 hours at 37°C. The mixture of CMC media and microbes are ready to be used as a biodecomposer following incubation of the mixture under anaerobic condition for 7 days at 45°C. The effectiveness of BS then assessed by applying the BS on the straw according to completely randomized design consisted of four treatments and three replication. One hundred g of ground coarse rice straw was used as the substrate. The BS was applied to the rice straw substrate with the following composition: Rice straw without BS (P0), rice straw + 5% BS (P1), rice straw +10% BS (P2), and rice straw + 15% BS. The mixture of rice straw and BS then fermented under anaerobic for four weeks. Following the fermentation, the chemical composition of rice straw was evaluated. The results indicated that the crude protein content of rice straw significantly increased (P < 0.05) as the level of BS increased. On the other hand, the concentration of crude fiber of the rice straw was significantly decreased (P < 0.05) as the level of BS increased. Other nutrients such as minerals did not change (P > 0.05) due to the treatments. In conclusion, application of BS developed from rumen bacterial of buffalo has a promising prospect to be used as a biological agent to improve the quality of rice straw as feeding for ruminant.

Keywords: biodecomposer, local buffalo, rumen microbial, chemical composition

Procedia PDF Downloads 215
1161 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus

Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls

Abstract:

The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.

Keywords: narcissus, callus, transcriptomics, secondary metabolites

Procedia PDF Downloads 147
1160 Biological Activities of Protease Inhibitors from Cajanus cajan and Phaseolus limensis

Authors: Tooba N. Shamsi, Romana Perveen, Sadaf Fatima

Abstract:

Protease Inhibitors (PIs) are widespread in nature, produced by animals, plants and microorganisms. They play vital role in various biological activities by keeping a check on activity of proteases. Present study aims to investigate antioxidant and anti-inflammatory properties of PPI from Cajanus cajan (CCTI) and Phaseolus limensis (LBTI). PPI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. The anti-oxidant activity was analyzed by two most common radical scavenging assays of FRAP (ferric reducing antioxidant power) and DPPH (1,1- diphenyl-2-picrylhydrazyl). Also, in-vitro anti-inflammatory activity was evaluated using albumin denaturation assay and membrane stabilization assay at different concentrations. Ascorbic acid and aspirin were used as a standards for antioxidant and anti-inflammatory assays respectively. The PPIs were also checked for antimicrobial activity against a number of bacterial strains. The CCTI and LBTI showed DPPH radical scavenging activity in a concentration–dependent manner with IC50 values 544 µg/ml and 506 µg/ml respectively comparative to ascorbic acid which was 258 µg/ml. Following FRAP assay, it was evaluated that LBTI had 87.5% and CCTI showed 84.4% antioxidant activity, taking value of standard ascorbic acid to be 100%. The PPIs also showed in-vitro anti‐inflammatory activity by inhibiting the heat induced albumin denaturation with IC50 values of 686 µg/ml and 615 µg/ml for CCTI and LBTI respectively compared to the standard (aspirin) which was 70.8 µg/ml. Red blood cells membrane stabilization with IC50 values of 641 µg/ml and 587 µg/ml for CCTI and LBTI respectively against aspirin which showed IC50 value of 70.4 µg/ml. PPIs showed antibacterial activity against 7 known strains while there was apparently no action against fungi.

Keywords: Cajanus cajan, Phaseolus limensis, Lima beans, protein protease inhibitor, antioxidant, anti-inflammatory, antimicrobial activity

Procedia PDF Downloads 300
1159 Phytochemical Exploration of Plectranthus stocksii Hook. F. for Antioxidant and Cytotoxic Properties

Authors: Kasipandi Muniyandi, Parimelazhagan Thangaraj

Abstract:

Plants are important prospective wealth of a country, combination of local health care information about a specific plant together with data published by several groups of scientists, can help in deciding whether it should be considered acceptable for medicinal use. In the developed countries, too, plant-derived drugs may be of importance. The wide variety of ailments that are being treated with Plectranthus is an indication of the medicinal value of the genus. A number of species are not toxic and so may be taken orally, whilst others are used topically on the skin or as enemas. This study was designed to evaluate the different properties of Plectranthus stocksii and the aerial parts were collected and extracted with petroleum ether, chloroform, ethyl acetate, acetone and methanol by Soxhlet apparatus and finally macerated with hot water. The quantification assays revealed that, leaf methanol extract showed higher total phenolic (415.41 mg GAE/ g extract) and tannin (177.53 mg GAE/ g extract) contents whereas leaf ethyl acetate exhibited higher flavonoids (777.11 mg RE/ g extract) content. The antioxidant efficiency of the extracts was analyzed by various radical scavenging assays. Among the different antioxidant assays, leaf ethyl acetate extract showed higher free radical scavenging activities against DPPH (IC50 = 3.46 µg/mL), ABTS (27417.65 µM TE/ g extract), FRAP (152.17 mM Fe(II)E/ mg extract) NO• radical (21.46%) and Superoxide radical (IC50 = 24.16 µg/mL) assays. All the parts P. stocksii extracts showed significant protection against OH• induced DNA damage at 50 µg concentration. The HPLC analysis of leaf ethyl acetate extract revealed the presence of Quercetin (30.29 µg/mg of extract) was the major compound. Anticancer activity of leaf ethyl acetate extract showed better IC50 values were 48.87 and 36.08 µg/ mL against MCF-7 and Caco-2 respectively. From this study, P. stocksii can act as a potent antioxidant and cytotoxic antimicrobial agent. The scope for drug development from this plant is endless and there is undoubtedly a call for further research in pharmaceutical industries.

Keywords: antioxidant, cytotoxicity, phenolics, plectranthus stocksii

Procedia PDF Downloads 388
1158 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 414
1157 The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo

Authors: Titis Indah Adi Rahayu

Abstract:

Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish.

Keywords: angiogenesis, Danio rerio, α-Mangostin, SIV, vegfa, vegfr2

Procedia PDF Downloads 348
1156 Genetic Instabilities in Marine Bivalve Following Benzo(α)pyrene Exposure: Utilization of Combined Random Amplified Polymorphic DNA and Comet Assay

Authors: Mengjie Qu, Yi Wang, Jiawei Ding, Siyu Chen, Yanan Di

Abstract:

Marine ecosystem is facing intensified multiple stresses caused by environmental contaminants from human activities. Xenobiotics, such as benzo(α)pyrene (BaP) have been discharged into marine environment and cause hazardous impacts on both marine organisms and human beings. As a filter-feeder, marine mussels, Mytilus spp., has been extensively used to monitor the marine environment. However, their genomic alterations induced by such xenobiotics are still kept unknown. In the present study, gills, as the first defense barrier in mussels, were selected to evaluate the genetic instability alterations induced by the exposure to BaP both in vivo and in vitro. Both random amplified polymorphic DNA (RAPD) assay and comet assay were applied as the rapid tools to assess the environmental stresses due to their low money- and time-consumption. All mussels were identified to be the single species of Mytilus coruscus before used in BaP exposure at the concentration of 56 μg/l for 1 & 3 days (in vivo exposure) or 1 & 3 hours (in vitro). Both RAPD and comet assay results were showed significantly increased genomic instability with time-specific altering pattern. After the recovery period in 'in vivo' exposure, the genomic status was as same as control condition. However, the relative higher genomic instabilities were still observed in gill cells after the recovery from in vitro exposure condition. Different repair mechanisms or signaling pathway might be involved in the isolated gill cells in the comparison with intact tissues. The study provides the robust and rapid techniques to exam the genomic stability in marine organisms in response to marine environmental changes and provide basic information for further mechanism research in stress responses in marine organisms.

Keywords: genotoxic impacts, in vivo/vitro exposure, marine mussels, RAPD and comet assay

Procedia PDF Downloads 285
1155 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 484
1154 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis

Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe

Abstract:

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.

Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids

Procedia PDF Downloads 74
1153 Polymer Mixing in the Cavity Transfer Mixer

Authors: Giovanna Grosso, Martien A. Hulsen, Arash Sarhangi Fard, Andrew Overend, Patrick. D. Anderson

Abstract:

In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization.

Keywords: Mixing, non-Newtonian fluids, polymers, rheology.

Procedia PDF Downloads 381
1152 Antimicrobial Activity of Sour Cherry Pomace

Authors: Sonja Djilas, Aleksandra Velićanski, Dragoljub Cvetković, Siniša Markov, Eva Lončar, Vesna Tumbas Šaponjac, Milica Vinčić

Abstract:

Due to high content of bioactive compounds, sour cherry possesses antioxidant and antimicrobial activity. Additionally, waste material from industrial processing of sour cherry is also a good source of bioactive compounds. The aim of this study was to screen the antimicrobial activity and determine the minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) of sour cherry pomace extract. Tested strains were Gram-negative bacteria (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028 and wild isolates Escherichia coli and Salmonella sp.), Gram-positive bacteria (Staphylococcus aureus ATCC 11632, Bacillus cereus ATCC 10876 and wild isolates Staphylococcus saprophyticus and Bacillus sp.) and yeasts (Saccharomyces cerevisiae 112, Hefebank Weihenstephan and Candida albicans ATCC 10231). Antimicrobial activity was tested by disc-diffusion method and agar-well diffusion method. MIC and MBC were determined by microdilution method. Screening tests showed that Gram-negative bacteria were resistant to tested extract, with exception of Salmonella typhimurium and Salmonella sp. for which only zones of reduced growth appeared. However, Gram-positive bacteria were more sensitive where the highest clear zones appeared with 100 µl of extract applied. There was no activity against tested yeasts. MIC and MBC values were in the range 3.125-37.5 mg/ml and 6.25-100 mg/ml, respectively. The most susceptible strain was Staphylococcus aureus while the most resistant was Bacillus sp. where MBC was not found in tested concentration range. Sour cherry pomace possesses high antibacterial potential, which indicates that this waste material is a promising source of bioactive compounds and could be used as a functional food ingredient.

Keywords: antimicrobial activity, sour cherry, pomace, bioactive compounds

Procedia PDF Downloads 337
1151 Preliminary Evaluation of Maximum Intensity Projection SPECT Imaging for Whole Body Tc-99m Hydroxymethylene Diphosphonate Bone Scanning

Authors: Yasuyuki Takahashi, Hirotaka Shimada, Kyoko Saito

Abstract:

Bone scintigraphy is widely used as a screening tool for bone metastases. However, the 180 to 240 minutes (min) waiting time after the intravenous (i.v.) injection of the tracer is both long and tiresome. To solve this shortcoming, a bone scan with a shorter waiting time is needed. In this study, we applied the Maximum Intensity Projection (MIP) and triple energy window (TEW) scatter correction to a whole body bone SPECT (Merged SPECT) and investigated shortening the waiting time. Methods: In a preliminary phantom study, hot gels of 99mTc-HMDP were inserted into sets of rods with diameters ranging from 4 to 19 mm. Each rod set covered a sector of a cylindrical phantom. The activity concentration of all rods was 2.5 times that of the background in the cylindrical body of the phantom. In the human study, SPECT images were obtained from chest to abdomen at 30 to 180 min after 99mTc- hydroxymethylene diphosphonate (HMDP) injection of healthy volunteers. For both studies, MIP images were reconstructed. Planar whole body images of the patients were also obtained. These were acquired at 200 min. The image quality of the SPECT and the planar images was compared. Additionally, 36 patients with breast cancer were scanned in the same way. The delectability of uptake regions (metastases) was compared visually. Results: In the phantom study, a 4 mm size hot gel was difficult to depict on the conventional SPECT, but MIP images could recognize it clearly. For both the healthy volunteers and the clinical patients, the accumulation of 99mTc-HMDP in the SPECT was good as early as 90 min. All findings of both image sets were in agreement. Conclusion: In phantoms, images from MIP with TEW scatter correction could detect all rods down to those with a diameter of 4 mm. In patients, MIP reconstruction with TEW scatter correction could improve the detectability of hot lesions. In addition, the time between injection and imaging could be shortened from that conventionally used for whole body scans.

Keywords: merged SPECT, MIP, TEW scatter correction, 99mTc-HMDP

Procedia PDF Downloads 414
1150 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters

Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi

Abstract:

Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).

Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents

Procedia PDF Downloads 110
1149 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 121
1148 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 157
1147 Outcome of Comparison between Partial Thickness Skin Graft Harvesting from Scalp and Lower Limb for Scalp Defect: A Clinical Trial Study

Authors: Mahdi Eskandarlou, Mehrdad Taghipour

Abstract:

Background: Partial-thickness skin graft is the cornerstone for scalp defect repair. Routine donor sites include abdomen, thighs, and buttocks. Given the potential side effects following harvesting from these sites and the potential advantages of harvesting from scalp (broad surface, rapid healing, and better cosmetics results), this study is trying to compare the outcomes of graft harvesting from scalp and lower limb. Methods: This clinical trial is conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to plastic surgery clinic at Besat Hospital during the time period between 2018 and 2019. Sampling was done by simple randomization using random digit table. Data gathering was performed using a designated checklist. The donor site in case group and control group was scalp and lower limb, respectively. The resultant data were analyzed using chi-squared and t-test and SPPS version 21 (SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp). Results: Of the total 40 patients participating in this study, 28 patients (70%) were male, and 12 (30%) were female with and mean age of 63.62 ± 09.73 years. Hypertension and diabetes mellitus were the most common comorbidities among patients with basal cell carcinoma (BCC) and trauma being the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The most common anatomic location of defect for case and control groups was temporal and parietal, respectively. Most of the defects were deep to galea zone. The mean diameter of defect was 24.28 ± 45.37 mm for all of the patients. The difference between diameter of defect in both groups was statistically meaningful, while no such difference between graft diameter was seen. The graft 'Take' was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale, and the satisfaction was higher in them per Likert scale. Conclusion: Scalp can safely be used as donor site for skin graft to be used for scalp defects, which is associated with better results and lower complication rates compared to other donor sites.

Keywords: donor site, leg, partial-thickness graft, scalp

Procedia PDF Downloads 152