Search results for: wire coating die
390 Evaluation of an Organic Coating Applied on Algerian Oil Tanker in Sea water by EIS
Authors: Nadia Hammouda, Kamel Belmokre
Abstract:
Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, seawater
Procedia PDF Downloads 417389 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors
Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment
Procedia PDF Downloads 456388 Advanced Technologies for Detector Readout in Particle Physics
Authors: Y. Venturini, C. Tintori
Abstract:
Given the continuous demand for improved readout performances in particle and dark matter physics, CAEN SpA is pushing on the development of advanced technologies for detector readout. We present the Digitizers 2.0, the result of the success of the previous Digitizers generation, combined with expanded capabilities and a renovation of the user experience introducing the open FPGA. The first product of the family is the VX2740 (64 ch, 125 MS/s, 16 bit) for advanced waveform recording and Digital Pulse Processing, fitting with the special requirements of Dark Matter and Neutrino experiments. In parallel, CAEN is developing the FERS-5200 platform, a Front-End Readout System designed to read out large multi-detector arrays, such as SiPMs, multi-anode PMTs, silicon strip detectors, wire chambers, GEM, gas tubes, and others. This is a highly-scalable distributed platform, based on small Front-End cards synchronized and read out by a concentrator board, allowing to build extremely large experimental setup. We plan to develop a complete family of cost-effective Front-End cards tailored to specific detectors and applications. The first one available is the A5202, a 64-channel unit for SiPM readout based on CITIROC ASIC by Weeroc.Keywords: dark matter, digitizers, front-end electronics, open FPGA, SiPM
Procedia PDF Downloads 128387 Solutions for Food-Safe 3D Printing
Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov
Abstract:
Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this studyKeywords: food safety, 3D printing, filaments, microbial, temperature
Procedia PDF Downloads 142386 Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water
Authors: Nadia Hammouda, K. Belmokre
Abstract:
Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water
Procedia PDF Downloads 481385 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films
Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui
Abstract:
In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.Keywords: physical properties, sol, gel, TiO2/SiO2 composite films
Procedia PDF Downloads 493384 Formulation and Evaluation of Colon-Specific Drug Delivery System of Zaltoprofen
Authors: Surajj Sarode, G. P. Vadnere, G. Vidya Sagar
Abstract:
Compression coating is one of the strategies for delivering drug to the colon based on Gastrointestinal PH and transit time concept. The main aim of these formulations to develop rapidly disintegrating Zaltoprofen core tablets compression-coated with a mixture of time-dependent hydrophilic swellable polymer HPMC K 15 and PH responsive soluble polymer Chitosan and Guar gum in different ratios. The effect of the proportion of HPMC, Chitosan and Guar gum in the coat on premature drug release in upper part (Stomach and small intestine) of GIT and the amount of drug release in colon target area was studied. The formulations are carried out by using Direct Compression method. Sodium starch Glycolate used for rapid disintegration. FTIR used for Drug-Polymer Interaction studies. The prepared tablets were evaluated for hardness, thickness, friability, in-vitro disintegration, in-Vitro dissolution and in-vitro kinetic study.Keywords: zaltoprofen, chitosan, formulation, drug delivery
Procedia PDF Downloads 452383 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties
Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim
Abstract:
The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification
Procedia PDF Downloads 125382 Atmospheric Pressure Microwave Plasma System and Its Applications
Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf
Abstract:
A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide
Procedia PDF Downloads 271381 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water
Authors: Nadia Hammouda, Kamel Belmokre
Abstract:
Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water
Procedia PDF Downloads 374380 Cladding Technology for Metal-Hybrid Composites with Network-Structure
Authors: Ha-Guk Jeong, Jong-Beom Lee
Abstract:
Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics
Procedia PDF Downloads 180379 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 135378 Corrosion Protective Coatings in Machines Design
Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi
Abstract:
During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.Keywords: coatings, corrosion, PVD, stainless steel
Procedia PDF Downloads 158377 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport
Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto
Abstract:
The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell
Procedia PDF Downloads 92376 Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings
Authors: Preeti Makkar, R. C. Agarwala, Vijaya Agarwala
Abstract:
The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN).Keywords: Electroless (EL), Ni-P-Al2O3, nanocomposite, mechanical milling, microhardness
Procedia PDF Downloads 286375 Synthesis and Characterization of Thiourea-Formaldehyde Coated Fe3O4 (TUF@Fe3O4) and Its Application for Adsorption of Methylene Blue
Authors: Saad M. Alshehri, Tansir Ahamad
Abstract:
Thiourea-Formaldehyde Pre-Polymer (TUF) was prepared by the reaction thiourea and formaldehyde in basic medium and used as a coating materials for magnetite Fe3O4. The synthesized polymer coated microspheres (TUF@Fe3O4) was characterized using FTIR, TGA SEM and TEM. Its BET surface area was up to 1680 m2 g_1. The adsorption capacity of this ACF product was evaluated in its adsorption of Methylene Blue (MB) in water under different pH values and different temperature. We found that the adsorption process was well described both by the Langmuir and Freundlich isotherm model. The kinetic processes of MB adsorption onto TUF@Fe3O4 were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo second-order rate model. Evaluated ∆Go and ∆Ho specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (∆So is negative). The monolayer capacity for MB was up to 450 mg g_1 and was one of the highest among similar polymeric products. It was due to its large BET surface area.Keywords: TGA, FTIR, magentite, thiourea formaldehyde resin, methylene blue, adsorption
Procedia PDF Downloads 350374 Study on the Thermal Conductivity about Porous Materials in Wet State
Authors: Han Yan, Jieren Luo, Qiuhui Yan, Xiaoqing Li
Abstract:
The thermal conductivity of porous materials is closely related to the thermal and moisture environment and the overall energy consumption of the building. The study of thermal conductivity of porous materials has great significance for the realization of low energy consumption building and economic construction building. Based on the study of effective thermal conductivity of porous materials at home and abroad, the thermal conductivity under a variety of different density of polystyrene board (EPS), plastic extruded board (XPS) and polyurethane (PU) and phenolic resin (PF) in wet state through theoretical analysis and experimental research has been studied. Initially, the moisture absorption and desorption properties of specimens had been discussed under different density, which led a result indicates the moisture absorption of four porous materials all have three stages, fast, stable and gentle. For the moisture desorption, there are two types. One is the existence of the rapid phase of the stage, such as XPS board, PU board. The other one does not have the fast desorption, instead, it is more stabilized, such as XPS board, PF board. Furthermore, the relationship between water content and thermal conductivity of porous materials had been studied and fitted, which figured out that in the wake of the increasing water content, the thermal conductivity of porous material is continually improving. At the same time, this result also shows, in different density, when the same kind of materials decreases, the saturated moisture content increases. Finally, the moisture absorption and desorption properties of the four kinds of materials are compared comprehensively, and it turned out that the heat preservation performance of PU board is the best, followed by EPS board, XPS board, PF board.Keywords: porous materials, thermal conductivity, moisture content, transient hot-wire method
Procedia PDF Downloads 187373 Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Godson Osueke, Edward Gobina
Abstract:
A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery.Keywords: gas permeation, silica membrane, separation factor, membrane layer thickness
Procedia PDF Downloads 359372 Edible Active Antimicrobial Coatings onto Plastic-Based Laminates and Its Performance Assessment on the Shelf Life of Vacuum Packaged Beef Steaks
Authors: Andrey A. Tyuftin, David Clarke, Malco C. Cruz-Romero, Declan Bolton, Seamus Fanning, Shashi K. Pankaj, Carmen Bueno-Ferrer, Patrick J. Cullen, Joe P. Kerry
Abstract:
Prolonging of shelf-life is essential in order to address issues such as; supplier demands across continents, economical profit, customer satisfaction, and reduction of food wastage. Smart packaging solutions presented in the form of naturally occurred antimicrobially-active packaging may be a solution to these and other issues. Gelatin film forming solution with adding of natural sourced antimicrobials is a promising tool for the active smart packaging. The objective of this study was to coat conventional plastic hydrophobic packaging material with hydrophilic antimicrobial active beef gelatin coating and conduct shelf life trials on beef sub-primal cuts. Minimal inhibition concentration (MIC) of Caprylic acid sodium salt (SO) and commercially available Auranta FV (AFV) (bitter oranges extract with mixture of nutritive organic acids) were found of 1 and 1.5 % respectively against bacterial strains Bacillus cereus, Pseudomonas fluorescens, Escherichia coli, Staphylococcus aureus and aerobic and anaerobic beef microflora. Therefore SO or AFV were incorporated in beef gelatin film forming solution in concentration of two times of MIC which was coated on a conventional plastic LDPE/PA film on the inner cold plasma treated polyethylene surface. Beef samples were vacuum packed in this material and stored under chilling conditions, sampled at weekly intervals during 42 days shelf life study. No significant differences (p < 0.05) in the cook loss was observed among the different treatments compared to control samples until the day 29. Only for AFV coated beef sample it was 3% higher (37.3%) than the control (34.4 %) on the day 36. It was found antimicrobial films did not protect beef against discoloration. SO containing packages significantly (p < 0.05) reduced Total viable bacterial counts (TVC) compared to the control and AFV samples until the day 35. No significant reduction in TVC was observed between SO and AFV films on the day 42 but a significant difference was observed compared to control samples with a 1.40 log of bacteria reduction on the day 42. AFV films significantly (p < 0.05) reduced TVC compared to control samples from the day 14 until the day 42. Control samples reached the set value of 7 log CFU/g on day 27 of testing, AFV films did not reach this set limit until day 35 and SO films until day 42 of testing. The antimicrobial AFV and SO coated films significantly prolonged the shelf-life of beef steaks by 33 or 55% (on 7 and 14 days respectively) compared to control film samples. It is concluded antimicrobial coated films were successfully developed by coating the inner polyethylene layer of conventional LDPE/PA laminated films after plasma surface treatment. The results indicated that the use of antimicrobial active packaging coated with SO or AFV increased significantly (p < 0.05) the shelf life of the beef sub-primal. Overall, AFV or SO containing gelatin coatings have the potential of being used as effective antimicrobials for active packaging applications for muscle-based food products.Keywords: active packaging, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 303371 Hybrid Laser-Gas Metal Arc Welding of ASTM A106-B Steel Pipes
Authors: Masoud Mohammadpour, Nima Yazdian, Radovan Kovacevic
Abstract:
The Oil and Gas industries are vigorously looking for new ways to increase the efficiency of their pipeline constructions. Besides the other approaches, implementing of new welding methods for joining pipes can be the best candidate on this regard. Hybrid Laser Arc Welding (HLAW) with the capabilities of high welding speed, deep penetration, and excellent gap bridging ability can be a possible alternative method in pipeline girth welding. This paper investigates the feasibility of applying the HLAW to join ASTM A106-B as the mostly used piping material for transporting high-temperature and high-pressure fluids and gases. The experiments were carried out on six-inch diameter pipes with the wall thickness of 10mm. AWS ER 70 S6 filler wire with diameter of 1.2mm was employed. Relating to this welding procedure, characterization of welded samples such as hardness, tensile testing and Charpy V-notch testing were performed and the results will be reported in this paper. In order to have better understanding about the thermal history and the microstructural alterations caused by the welding heat cycle, a comprehensive Finite Element (FE) model was also conducted. The obtained results have shown that the Gas Metal Arc Welding (GMAW) procedure with the minimum number of 5 passes to complete the wall thickness, was reduced to only single pass by using the HLAW process with the welding time less than 15s.Keywords: finite element modeling, high-temperature service, hybrid laser/arc welding, welding pipes
Procedia PDF Downloads 208370 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures
Authors: Mohammad Reza Zamani Kouhpanji
Abstract:
Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law
Procedia PDF Downloads 400369 Air-Purifying Properties of Cement Mortars Intermixed with TiO₂-SiO₂ Composites
Authors: A.M. Kaja, Q. Yu, H.J.H Brouwers
Abstract:
An increased functionality of concrete towards higher eco-efficiency is nowadays of great importance due to the decreasing air quality in urban areas. Surface modifications of concrete walls and roads, as a coating or an intermixing of the surface layer with TiO₂, provide an opportunity to improve the air quality by reducing NOx via photocatalytic phenomena. Nevertheless, there are still concerns regarding the cost-efficiency as well as the toxicity of intermediate products which can be produced during the photocatalysis, limiting a widespread adoption of these materials. This study addresses the problem of the selectivity of cement mortars towards nitrate in terms of microstructural characteristics and hydration products. The ability of cement mortars matrix intermixed with commercial TiO₂ and TiO₂-SiO₂ composite to abate NO₂ is investigated. The influence of hydration products formed under the carbonation facilitating conditions is discussed and solutions how to optimize the mix design are proposed. The incorporation of the TiO₂-SiO₂ composite into cement mortar is found to increase the nitrate selectivity index.Keywords: cement matrix, NO₂ abatement, photocatalysis, TiO₂-SiO₂ composite
Procedia PDF Downloads 162368 Development and Evaluation of Surgical Sutures Coated with Antibiotic Loaded Gold Nanoparticles
Authors: Sunitha Sampathi, Pankaj Kumar Tiriya, Sonia Gera, Sravanthi Reddy Pailla, V. Likhitha, A. J. Maruthi
Abstract:
Surgical site infections (SSIs) are the most common nosocomial infections localized at the incision site. With an estimated 27 million surgical procedures each year in USA, approximately 2-5% rate of SSIs are predicted to occur annually. SSIs are treated with antibiotic medication. Current trend suggest that the direct drug delivery from the suture to the scared tissue can improve patient comfort and wound recovery. For that reason coating the surface of the medical device such as suture and catguts with broad spectrum antibiotics can prevent the formation of bactierial colonies with out comprimising the mechanical properties of the sutures.Hence, the present study was aimed to develop and evaluate a surgical suture coated with an antibiotic Ciprofloxacin hydrochloride loaded on gold nanoparticles. Gold nanoparticles were synthesized by chemical reduction method and conjugated with ciprofloxacin using Polyvinylpyrolidone as stabilizer and gold as carrier. Ciprofloxacin conjugated gold nanoparticles were coated over an absorbable surgical suture made of Polyglactan using sodium alginate as an immobilising agent by slurry dipping technique. The average particle size and Polydispersity Index of drug conjugated gold NPs were found to be 129±2.35 nm and 0.243±0.36 respectively. Gold nanoparticles are characterized by UV-Vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Scanning electron microscopy and Transmission electron microscopy. FT-IR revealed that there is no chemical interaction between drug and polymer. Antimicrobial activity for coated sutures was evaluated by disc diffusion method on culture plates of both gram negative (E-coli) and gram positive bacteria (Staphylococcus aureus) and results found to be satisfactory. In vivo studies for coated sutures was performed on Swiss albino mice and histological evaluation of intestinal wound healing parameters such as wound edges in mucosa, muscularis, presence of necrosis, exudates, granulation tissue, granulocytes, macrophages, restoration, and repair of mucosal epithelium and muscularis propria on day 7 after surgery were studied. The control animal group, sutured with plain suture (uncoated suture) showed signs of restoration and repair, but presence of necrosis, heamorraghic infiltration and granulation tissue was still noticed. Whereas the animal group treated with ciprofloxacin and ciprofloxacin gold nanoparticle coated sutures has shown promising decrease in terms of haemorraghic infiltration, granulation tissue, necrosis and better repaired muscularis layers on comparision with plain coated sutures indicating faster rate of repair and less chance of sepsis. Hence coating of sutures with broad spectrum antibiotics can be an alternate technique to reduce SSIs.Keywords: ciprofloxacin hydrochloride, gold nanoparticles, surgical site infections, sutures
Procedia PDF Downloads 256367 Heat Exchanger Optimization of a Domestic Refrigerator with Separate Cooling Circuits
Authors: Tugba Tosun, Mert Tosun
Abstract:
Cooling system performance and energy consumption in the bypass two-circuit cycle have been studied experimentally to find optimum evaporator type and geometry, capillary tube diameter and capillary length. Two types of evaporators, such as wire on the tube and finned tube evaporators were used for the experiments in the fresh food compartment. As capillary tube inner diameter and total length; 0.66 mm and 0.8mm, and 3000 mm and 3500 mm were selected as parameters, respectively. Experiments were performed at the 25⁰C ambient temperature while the average temperature of the fresh food compartment is kept at 5⁰C and the highest package temperature of the freezer compartment is kept at -18⁰C, which are defined in IEC 62552 European standard. The Design of Experiments (DOE) technique which is six sigma method has been used to indicate of effective parameters in the bypass two-circuit cycle. The experimental results revealed that the most effective parameter of the system is the evaporator type. Finned tube evaporator with 12 tube passes was found as the best option for the bypass two-circuit refrigeration cycle among the 8 different opportunities. The optimum cooling performance and the lowest energy consumption were provided with 0.66 mm capillary tube inner diameter and 3500 mm capillary tube length.Keywords: capillary tube, energy consumption, heat exchanger, refrigerator, separate cooling circuits
Procedia PDF Downloads 168366 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole
Authors: Wegene Demisie Jima
Abstract:
Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product
Procedia PDF Downloads 193365 Comparison Between Tension Band Wiring Using K-Wires and Cannulated Screws in Transverse Patella Fracture Fixation
Authors: Daniel Francis, Mo Yassin
Abstract:
Transverse patella fractures are routinely fixed using tension band wiring (TBW) using Kirschner wires and a wire in the shape of a figure of 8. The idea of the study was to compare the outcomes of the traditional technique against the more recently used cannulated screws and fiber tape in the shape of a figure of 8. We performed a retrospective cohort study of all the surgically fixed patella fractures from the year 2019 to 2022. The patients were divided into two groups TBW group and cannulated screws group. The primary outcome measure was the failure of fixation and the need for the removal of metalwork. Twenty-six patellar fractures were studied. TBW was used in 14 (53.8%), and cannulated screws were used for fixation in 12 (46.2%). There was one incident of metalwork failure in the TBW and one incident in the cannulated screws group. Five (35.7%) of patients in the TBW needed symptomatic metal work removed and One (8.3%) in the cannulated screw group. In both groups, the rate of fixation failure was low. Symptomatic implants, the most common complication observed, were higher in the TBW group in our practice. Although the small numbers in both groups, the hope of this study is to shine the light on the use of cannulated screws for patella fractures as it would reduce the need for a second operation and reduce the load on the already stretched services as well as improving the patient experience by not requiring further surgery. Although this is not a brand-new technique, it is not commonly used as there have not yet been any studies that demonstrate the lower rates of second surgery needed.Keywords: patella, tension band wiring, randomised, new technique
Procedia PDF Downloads 75364 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic
Authors: Sadık Ata, Kevser Dincer
Abstract:
In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)
Procedia PDF Downloads 241363 Porosity Characterization and Its Destruction by Authigenic Minerals: Reservoir Sandstones, Mamuniyat Formation, Murzuq Basin, SW Libya
Authors: Mohamrd Ali Alrabib
Abstract:
Sandstones samples were selected from cores of seven wells ranging in depth from 5040 to 7181.4 ft. The dominant authigenic cement phase is quartz overgrowth cement (up to 13% by volume) and this is the major mechanism for porosity reduction. Late stage carbonate cements (siderite and dolomite/ferroan dolomite) are present and these minerals infill intergranular porosity and, therefore, further reduce porosity and probably permeability. Authigenic clay minerals are represented by kaolinite, illite, and grain coating clay minerals. Kaolinite occurs as booklet and vermicular forms. Minor amounts of illite were noted in the studied samples, which commonly block pore throats, thereby reducing permeability. Primary porosity of up to 26.5% is present. Secondary porosity (up to 17%) is also present as a result of feldspar dissolution. The high intergranular volume (IGV) of the sandstones indicates that mechanical and chemical compaction played a more important role than cementation of porosity loss.Keywords: authigenic minerals, porosity types, porosity reduction, mamuniyat sandstone reservoir
Procedia PDF Downloads 377362 Degradation Mechanism of Automotive Refinish Coatings Exposed to Biological Substances: The Role of Cross-Linking Density
Authors: M. Mahdavi, M. Mohseni, R. Rafiei, H. Yari
Abstract:
Environmental factors can deteriorate the automotive coatings significantly. Such as UV radiations, humidity, hot-cold shock and destructive chemical compounds. Furthermore, some natural materials such as bird droppings and tree gums have the potential to degrade the coatings as well. The present work aims to study the mechanism of degradation for two automotive refinish coating (PU based) systems exposed to two types of biological materials, i.e. Arabic gum and the simulated bird dropping, pancreatin. To reach this goal, effects of these biological materials on surface properties and appearance were studied using different techniques including digital camera, FT-IR spectroscopy, optical microscopy, and gloss measurements. In addition, the thermo-mechanical behavior of coatings was examined by DMTA. It was found that cross-linking had a crucial role on the biological resistance of clear coat. The higher cross-linking enhanced biological resistance.Keywords: refinish clear coat, pancreatin, Arabic gum, cross-linking, biological degradation
Procedia PDF Downloads 368361 Seasonal Variation of the Unattached Fraction and Equilibrium Factor of ²²²Rn, ²²⁰Rn
Authors: Rajan Jakhu, Rohit Mehra
Abstract:
Radon (²²²Rn) and its decay products are the major sources of natural radiation exposure to general population. The activity concentrations of radon, thoron gasses, and their unattached and attached short-lived progeny in indoor environment of the Jaipur and Ajmer districts of Rajasthan had been calculated via passive measurements using the Pinhole cup dosimeter, deposition based progeny sensors (DRPS/DTPS) and wire mesh capped (DRPS/DTPS) progeny sensors. The results of this study revealed that radon and thoron concentrations (CRn, CTn) are highest in the winter season. The variation of the radon and its decay products are observed to vary seasonally, but these environmental parameters seem not to be affecting the thoron and its decay product concentrations in a regular manner. The average values of the radon and its decay products are maximum in winter and minimum in summer. The equilibrium factor for radon is observed to be 0.50, 0.47 and 0.49 in winter, rainy and summer seasons. The annual average value of the unattached fraction of the radon progeny comes out to be 0.34. On the other hand, the average value of thoron (²²⁰Rn) concentration and its equilibrium factor in the studied area comes to be 74, 39, 45 Bq m⁻³ and 0.07, 0.11, 0.07 respectively for the winter, rainy and summer seasons with the annual average value of the unattached fraction of about 0.18. The annual average radiological dose from exposure to indoor radon and thoron progeny comes out to be 0.88 and 0.78 mSv.Keywords: equilibrium factor, radon, seasonal variation, thoron, unattached fraction
Procedia PDF Downloads 311