Search results for: slip diameter steel rod
2601 Critical Study on the Sensitivity of Corrosion Fatigue Crack Growth Rate to Cyclic Waveform and Microstructure in Marine Steel
Authors: V. C. Igwemezie, A. N. Mehmanparast
Abstract:
The primary focus of this work is to understand how variations in the microstructure and cyclic waveform affect the corrosion fatigue crack growth (CFCG) in steel, especially in the Paris region of the da/dN vs. ΔK curve. This work is important because it provides fundamental information on the modelling, design, selection, and use of steels for various engineering applications in the marine environment. The corrosion fatigue tests data on normalized and thermomechanical control process (TMCP) ferritic-pearlitic steels by the authors were compared with several studies on different microstructures in the literature. The microstructures of these steels are radically different and general comparative fatigue crack growth resistance performance study on the effect of microstructure in these materials are very scarce and where available are limited to few studies. The results, for purposes of engineering application, in this study show less dependency of fatigue crack growth rate (FCGR) on yield strength, tensile strength, ductility, frequency and stress ratio in the range 0.1 – 0.7. The nature of the steel microstructure appears to be a major factor in determining the rate at which fatigue cracks propagate in the entire da/dN vs. ΔK sigmoidal curve. The study also shows that the sine wave shape is the most damaging fatigue waveform for ferritic-pearlitic steels. This tends to suggest that the test under sine waveform would be a conservative approach, regardless of the waveform for design of engineering structures.Keywords: BS7910, corrosion-fatigue crack growth rate, cyclic waveform, microstructure, steel
Procedia PDF Downloads 1552600 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers
Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan
Abstract:
PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of the concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to a decrease of diameter of nanofiber.Keywords: amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile
Procedia PDF Downloads 3092599 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings
Authors: Soroor Ghaziof, Wei Gao
Abstract:
Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance
Procedia PDF Downloads 3932598 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 202597 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor
Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly
Abstract:
In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.Keywords: nano iron, core-shell, reduction reaction, K-M reactor
Procedia PDF Downloads 3092596 Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys
Authors: Mario Robinson, Moe Rabea
Abstract:
This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness.Keywords: heat treatment, corrosion resistance, steel, industrial appilcations
Procedia PDF Downloads 1772595 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates
Authors: Jiro Takagi
Abstract:
Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses
Procedia PDF Downloads 2262594 Alternative Coating Compositions by Thermal Arc Spraying to Improve the Contact Heat Treatment in Press Hardening
Authors: Philipp Burger, Jonas Sommer, Haneen Daoud, Franz Hilmer, Uwe Glatzel
Abstract:
Press-hardened structural components made of coated high-strength steel are an essential part of the automotive industry when it comes to weight reduction, safety, and durability. Alternative heat treatment processes, such as contact heating, have been developed to improve the efficiency of this process. However, contact heating of the steel sheets often results in cracking within the Al-Si-coated layer. Therefore, this paper will address the development of alternative coating compositions based on Al-Si-X, suitable for contact heating. For this purpose, robot-assisted thermal arc spray was applied to coat the high-strength steel sheets. This ensured high reproducibility as well as effectiveness. The influence of the coating parameters and the variation of the nozzle geometry on the microstructure of the developed coatings will be discussed. Finally, the surface and mechanical properties after contact heating and press hardening will be presented.Keywords: press hardening, hot stamping, thermal spraying, arc spraying, coating compositions
Procedia PDF Downloads 942593 Influence of Aluminium on Grain Refinement in As-Rolled Vanadium-Microalloyed Steels
Authors: Kevin Mark Banks, Dannis Rorisang Nkarapa Maubane, Carel Coetzee
Abstract:
The influence of aluminium content, reheating temperature, and sizing (final) strain on the as-rolled microstructure was systematically investigated in vanadium-microalloyed and C-Mn plate steels. Reheating, followed by hot rolling and air cooling simulations were performed on steels containing a range of aluminium and nitrogen contents. Natural air cooling profiles, corresponding to 6 and 20mm thick plates, were applied. The austenite and ferrite/pearlite microstructures were examined using light optical microscopy. Precipitate species and volume fraction were determined on selected specimens. No influence of aluminium content was found below 0.08% on the as-rolled grain size in all steels studied. A low Al-V-steel produced the coarsest initial austenite grain size due to AlN dissolution at low temperatures leading to abnormal grain growth. An Al-free V-N steel had the finest initial microstructure. Although the as-rolled grain size for 20mm plate was similar in all steels tested, the grain distribution was relatively mixed. The final grain size in 6mm plate was similar for most compositions; the exception was an as-cast V low N steel, where the size of the second phase was inversely proportional to the sizing strain. This was attributed to both segregation and a low VN volume fraction available for effective pinning of austenite grain boundaries during cooling. Increasing the sizing strain refined the microstructure significantly in all steels.Keywords: aluminium, grain size, nitrogen, reheating, sizing strain, steel, vanadium
Procedia PDF Downloads 1522592 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant
Authors: Dimitrie Marinceu, Alan Murchison
Abstract:
The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.Keywords: used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository
Procedia PDF Downloads 2752591 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition
Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher
Abstract:
Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication
Procedia PDF Downloads 3002590 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation
Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie
Abstract:
Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)
Procedia PDF Downloads 1352589 Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads
Authors: R. Ziaie Moayed, M. Hossein Zade
Abstract:
Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.Keywords: encased stone column, laterally load, ordinary stone column, validation
Procedia PDF Downloads 3692588 Study of the Feasibility of Submerged Arc Welding(SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Swapan Bhaumik, Saurav Datta, Abhijit Bhowmik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. voltage, wire feed rate, travel speed, and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: submerged arc welding, zero degree celsius, Taguchi’s design of experiment, geometry of weldment
Procedia PDF Downloads 4492587 Feasibility Study of Submerged Arc Welding (SAW) on Mild Steel Plate IS 2062 Grade B at Zero Degree Celsius
Authors: Ajay Biswas, Abhijit Bhowmik, Saurav Datta, Swapan Bhaumik
Abstract:
A series of experiments has been carried out to study the feasibility of submerged arc welding (SAW) on mild steel plate of designation IS 2062 grade B. Specimen temperature of which is reduced to zero degree Celsius whereas the ambient temperature is about 25-27 degree Celsius. To observe this, bead on plate submerged arc welding is formed on the specimen plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring zero degree Celsius temperature to the specimen plate. Sixteen numbers of cold samples is welded by varying the most influencing parameters viz. Voltage, wire feed rate, travel speed and electrode stick-out at four different levels. Another sixteen numbers of specimens are at normal room temperature are welded by applying same combination of parameters. Those sixteen numbers of specimens are selected based on the design of experiment of Taguchi‘s L16 orthogonal array with the intension of reducing the number of experimental runs. Different attributes of bead geometry of the entire sample for both the situations are measured and compared. It is established that submerged arc welding is feasible at zero degree Celsius on mild steel plate of designation IS 2062 grade B and optimization of the process parameters can also be drawn as a clear response of parameters are obtained.Keywords: geometry of weldment, submerged arc welding, Taguchi’s design of experiment, zero degree Celsius
Procedia PDF Downloads 4332586 Effect of Tree Age on Fruit Quality of Different Cultivars of Sweet Orange
Authors: Muhammad Imran, Faheem Khadija, Zahoor Hussain, Raheel Anwar, M. Nawaz Khan, M. Raza Salik
Abstract:
Amongst citrus species, sweet orange (Citrus sinensis L. Osbeck) occupies a dominant position in the orange producing countries in the world. Sweet orange is widely consumed both as fresh fruit as well as juice and its global demand is attributed due to higher vitamin C and antioxidants. Fruit quality is most important for the external appearance and marketability of sweet orange fruit, especially for fresh consumption. There are so many factors affecting fruit quality, tree age is the most important one, but remains unexplored so far. The present study, we investigated the role of tree age on fruit quality of different cultivars of sweet oranges. The difference between fruit quality of 5-year young and 15-year old trees was discussed in the current study. In case of fruit weight, maximum fruit weight (238g) was recorded in 15-year old sweet orange cv. Sallustiana cultivar while minimum fruit weight (142g) was recorded in 5-year young tree of Succari sweet orange fruit. The results of the fruit diameter showed that the maximum fruit diameter (77.142mm) was recorded in 15-year old Sallustiana orange but the minimum fruit diameter (66.046mm) was observed in 5-year young tree of sweet orange cv. Succari. The minimum value of rind thickness (4.142mm) was noted in 15-year old tree of cv. Red blood. On the other hand maximum value of rind thickness was observed in 5-year young tree of cv. Sallustiana. The data regarding total soluble solids (TSS), acidity (TA), TSS/TA, juice content, rind, flavedo thickness, pH and fruit diameter have also been discussed.Keywords: age, cultivars, fruit, quality, sweet orange (Citrus Sinensis L. Osbeck)
Procedia PDF Downloads 2282585 Comparative Study on Performance of Air-Cooled Condenser (ACC) Steel Platform Structures using SCBF Frames, Spatial Structures and CFST Frames
Authors: Hassan Gomar, Shahin Bagheri, Nader Keyvan, Mozhdeh Shirinzadeh
Abstract:
Air-Cooled Condenser (ACC) platform structures are the most complicated and principal structures in power plants and other industrial parts which need to condense the low-pressure steam in the cycle. Providing large spans for this structure has great merit as there would be more space for other subordinate buildings and pertinent equipment. Moreover, applying methods to reduce the overall cost of construction while maintaining its strength against severe seismic loading is of high significance. Tabular spatial structures and composite frames have been widely used in recent years to satisfy the need for higher strength at a reasonable price. In this research program, three different structural systems have been regarded for ACC steel platform using Special Concentrate Braced Frames (SCBF), which is the most common system (first scheme), modular spatial frames (second scheme) and finally, a modified method applying Concrete Filled Steel Tabular (CFST) columns (third scheme). The finite element method using Sap2000 and Etabs software was conducted to investigate the behavior of the structures and make a precise comparison between the models. According to the results, the total weight of the steel structure in the second scheme decreases by 13% compared to the first scheme and applying CFST columns in the third scheme causes a 3% reduction in the total weight of the structure in comparison with the second scheme while all the lateral displacements and P-M interaction ratios are in the admissible limit.Keywords: ACC, SCBF frames, spatial structures, CFST frames
Procedia PDF Downloads 1972584 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals
Authors: Mohammad Javad Shariatzadeh, Dana Grecov
Abstract:
The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.Keywords: gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants
Procedia PDF Downloads 1852583 Rational Approach to Analysis and Construction of Curved Composite Box Girders in Bridges
Authors: Dongming Feng, Fangyin Zhang, Liling Cao
Abstract:
Horizontally curved steel-concrete composite box girders are extensively used in highway bridges. They consist of reinforced concrete deck on top of prefabricated steel box section beam which exhibits a high torsional rigidity to resist torsional effects induced by the curved structural geometry. This type of structural system is often constructed in two stages. The composite section will take the tension mainly by the steel box and, the compression by the concrete deck. The steel girders are delivered in large pre-fabricated U-shaped sections that are designed for ease of construction. They are then erected on site and overlaid by cast-in-place reinforced concrete deck. The functionality of the composite section is not achieved until the closed section is formed by fully cured concrete. Since this kind of composite section is built in two stages, the erection of the open steel box presents some challenges to contractors. When the reinforced concrete slab is cast-in-place, special care should be taken on bracings that can prevent the open U-shaped steel box from global and local buckling. In the case of multiple steel boxes, the design detailing should pay enough attention to the installation requirement of the bracings connecting adjacent steel boxes to prevent the global buckling. The slope in transverse direction and grade in longitudinal direction will result in some local deformation of the steel boxes that affect the connection of the bracings. During the design phase, it is common for engineers to model the curved composite box girder using one-dimensional beam elements. This is adequate to analyze the global behavior, however, it is unable to capture the local deformation which affects the installation of the field bracing connection. The presence of the local deformation may become a critical component to control the construction tolerance, and overlooking this deformation will produce inadequate structural details that eventually cause misalignment in field and erection failure. This paper will briefly describe the construction issues we encountered in real structures, investigate the difference between beam element modeling and shell/solid element modeling, and their impact on the different construction stages. P-delta effect due to the slope and curvature of the composite box girder is analyzed, and the secondary deformation is compared to the first-order response and evaluated for its impact on installation of lateral bracings. The paper will discuss the rational approach to prepare construction documents and recommendations are made on the communications between engineers, erectors, and fabricators to smooth out construction process.Keywords: buckling, curved composite box girder, stage construction, structural detailing
Procedia PDF Downloads 1222582 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression
Authors: Zhifeng Xu, Zhongfan Chen
Abstract:
A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test
Procedia PDF Downloads 3372581 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well
Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao
Abstract:
When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.Keywords: air compression, foaming agents, gas well, liquid loading
Procedia PDF Downloads 1352580 A Surgical Correction and Innovative Splint for Swan Neck Deformity in Hypermobility Syndrome
Authors: Deepak Ganjiwale, Karthik Vishwanathan
Abstract:
Objective: Splinting is a great domain of occupational therapy profession.Making a splint for the patient would depend upon the need or requirement of the problems and deformities. Swan neck deformity is not very common in finger it may occur after any disease. Conservative treatment of the swan neck deformity is available by using different static splints only. There are very few reports of surgical correction of swan-neck deformity in benign hypermobility syndrome. Method: This case report describes the result of surgical intervention and hand splint in a twenty year old lady with past history of cardiovascular stroke with no residual neurological deficit. She presented with correctable swan neck deformity and failed to improve with static ring splints to correct the deformity. She was noted to have hyperlaxity (EhlerDanlos type) as per modified Beighton’s score of 5/9. She underwent volar plate plication of the proximal interphalangeal joint of the left ring finger along with hemitenodesis of ulnar slip of flexor digitorum superficialis (FDS) tendon whereby, the ulnar slip of FDS was passed through a small surgically created rent in A2 pulley and sutured back to itself. Result: Postoperatively, the patient was referred to occupational therapy for splinting with the instruction that the splint would work some time for as static and some time as dynamic for positional and correction of the finger. Conclusion: After occupational therapy intervention and splinting, the patient had a full correction of the swan-neck deformity with near full flexion of the operated finger and is able to work independently.Keywords: swan neck, finger, deformity, splint, hypermobility
Procedia PDF Downloads 2542579 Investigations on the Influence of Web Openings on the Load Bearing Behavior of Steel Beams
Authors: Felix Eyben, Simon Schaffrath, Markus Feldmann
Abstract:
A building should maximize the potential for use through its design. Therefore, flexible use is always important when designing a steel structure. To create flexibility, steel beams with web openings are increasingly used, because these offer the advantage that cables, pipes and other technical equipment can easily be routed through without detours, allowing for more space-saving and aesthetically pleasing construction. This can also significantly reduce the height of ceiling systems. Until now, beams with web openings were not explicitly considered in the European standard. However, this is to be done with the new EN 1993-1-13, in which design rules for different opening forms are defined. In order to further develop the design concepts, beams with web openings under bending are therefore to be investigated in terms of damage mechanics as part of a German national research project aiming to optimize the verifications for steel structures based on a wider database and a validated damage prediction. For this purpose, first, fundamental factors influencing the load-bearing behavior of girders with web openings under bending load were investigated numerically without taking material damage into account. Various parameter studies were carried out for this purpose. For example, the factors under study were the opening shape, size and position as well as structural aspects as the span length, arrangement of stiffeners and loading situation. The load-bearing behavior is evaluated using resulting load-deformation curves. These results are compared with the design rules and critically analyzed. Experimental tests are also planned based on these results. Moreover, the implementation of damage mechanics in the form of the modified Bai-Wierzbicki model was examined. After the experimental tests will have been carried out, the numerical models are validated and further influencing factors will be investigated on the basis of parametric studies.Keywords: damage mechanics, finite element, steel structures, web openings
Procedia PDF Downloads 1742578 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling
Authors: A. Pesin, D. Pustovoytov, M. Sverdlik
Abstract:
During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.Keywords: roughing hot rolling, FEM, crack, bulging
Procedia PDF Downloads 3792577 Investigating the Properties of Asphalt Concrete Containing Recycled Fillers
Authors: Hasan Taherkhani
Abstract:
Increasingly accumulation of the solid waste materials has become a major environmental problem of communities. In addition to the protection of environment, the recycling and reusing of the waste materials are financially beneficial. Waste materials can be used in highway construction. This study aimed to investigate the applicability of recycled concrete, asphalt and steel slag powder, as a replacement of the primary mineral filler in asphalt concrete has been investigated. The primary natural siliceous aggregate filler, as control, has been replaced with the secondary recycled concrete, asphalt and steel slag powders, and some engineering properties of the mixtures have been evaluated. Marshal Stability, flow, indirect tensile strength, moisture damage, static creep and volumetric properties of the mixtures have been evaluated. The results show that, the Marshal Stability of the mixtures containing recycled powders is higher than that of the control mixture. The flow of the mixtures containing recycled steel slag is lower, and that of the mixtures containing recycled asphalt and cement concrete powder is found to be higher than that of the control mixture. It is also found that the resistance against moisture damage and permanent deformation of the mixture can be improved by replacing the natural filler with the recycled powders. The volumetric properties of the mixtures are not significantly influenced by replacing the natural filler with the recycled powders.Keywords: filler, steel slag, recycled concrete, recycled asphalt concrete, tensile strength, moisture damage, creep
Procedia PDF Downloads 2772576 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2992575 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames
Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan
Abstract:
The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.Keywords: seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design
Procedia PDF Downloads 982574 The Effect of Screw Parameters on Pullout Strength of Screw Fixation in Cervical Spine
Authors: S. Ritddech, P. Aroonjarattham, K. Aroonjarattham
Abstract:
The pullout strength had an effect on the stability of plate screw fixation when inserted in the cervical spine. Nine different titanium alloy bone screws were used to test the pullout strength through finite element analysis. The result showed that the Moss Miami I can bear the highest pullout force at 1,075 N, which causes the maximum von Mises stress at 858.87 MPa, a value over the yield strength of titanium. The bone screw should have large outer diameter, core diameter and proximal root radius to increase the pullout strength.Keywords: pullout strength, screw parameter, cervical spine, finite element analysis
Procedia PDF Downloads 2942573 An Excel-Based Educational Platform for Design Analyses of Pump-Pipe Systems
Authors: Mohamed M. El-Awad
Abstract:
This paper describes an educational platform for design analyses of pump-pipe systems by using Microsoft Excel, its Solver add-in, and the associated VBA programming language. The paper demonstrates the capabilities of the Excel-based platform that suits the iterative nature of the design process better than the use of design charts and data tables. While VBA is used for the development of a user-defined function for determining the standard pipe diameter, Solver is used for optimising the pipe diameter of the pipeline and for determining the operating point of the selected pump.Keywords: design analyses, pump-pipe systems, Excel, solver, VBA
Procedia PDF Downloads 1672572 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate
Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung
Abstract:
The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate
Procedia PDF Downloads 520