Search results for: rain - wind induced vibration
4191 Machine Installation and Maintenance Management
Authors: Mohammed Benmostefa
Abstract:
In the industrial production of large series or even medium series, there are vibration problems. In continuous operations, technical devices result in vibrations in solid bodies and machine components, which generate solid noise and/or airborne noise. This is because vibrations are the mechanical oscillations of an object near its equilibrium point. In response to the problems resulting from these vibrations, a number of remedial acts and solutions have been put forward. These include insulation of machines, insulation of concrete masses, insulation under screeds, insulation of sensitive equipment, point insulation of machines, linear insulation of machines, full surface insulation of machines, and the like. Following this, the researcher sought not only to raise awareness on the possibility of lowering the vibration frequency in industrial machines but also to stress the significance of procedures involving the pre-installation process of machinery, namely, setting appropriate installation and start-up methods of the machine, allocating and updating imprint folders to each machine, and scheduling maintenance of each machine all year round to have reliable equipment, gain cost reduction and maintenance efficiency to eventually ensure the overall economic performance of the company.Keywords: maintenance, vibration, efficiency, production, machinery
Procedia PDF Downloads 874190 Improved Functions For Runoff Coefficients And Smart Design Of Ditches & Biofilters For Effective Flow detention
Authors: Thomas Larm, Anna Wahlsten
Abstract:
An international literature study has been carried out for comparison of commonly used methods for the dimensioning of transport systems and stormwater facilities for flow detention. The focus of the literature study regarding the calculation of design flow and detention has been the widely used Rational method and its underlying parameters. The impact of chosen design parameters such as return time, rain intensity, runoff coefficient, and climate factor have been studied. The parameters used in the calculations have been analyzed regarding how they can be calculated and within what limits they can be used. Data used within different countries have been specified, e.g., recommended rainfall return times, estimated runoff times, and climate factors used for different cases and time periods. The literature study concluded that the determination of runoff coefficients is the most uncertain parameter that also affects the calculated flow and required detention volume the most. Proposals have been developed for new runoff coefficients, including a new proposed method with equations for calculating runoff coefficients as a function of return time (years) and rain intensity (l/s/ha), respectively. Suggestions have been made that it is recommended not to limit the use of the Rational Method to a specific catchment size, contrary to what many design manuals recommend, with references to this. The proposed relationships between return time or rain intensity and runoff coefficients need further investigation and to include the quantification of uncertainties. Examples of parameters that have not been considered are the influence on the runoff coefficients of different dimensioning rain durations and the degree of water saturation of green areas, which will be investigated further. The influence of climate effects and design rain on the dimensioning of the stormwater facilities grassed ditches and biofilters (bio retention systems) has been studied, focusing on flow detention capacity. We have investigated how the calculated runoff coefficients regarding climate effect and the influence of changed (increased) return time affect the inflow to and dimensioning of the stormwater facilities. We have developed a smart design of ditches and biofilters that results in both high treatment and flow detention effects and compared these with the effect from dry and wet ponds. Studies of biofilters have generally before focused on treatment of pollutants, but their effect on flow volume and how its flow detention capability can improve is only rarely studied. For both the new type of stormwater ditches and biofilters, it is required to be able to simulate their performance in a model under larger design rains and future climate, as these conditions cannot be tested in the field. The stormwater model StormTac Web has been used on case studies. The results showed that the new smart design of ditches and biofilters had similar flow detention capacity as dry and wet ponds for the same facility area.Keywords: runoff coefficients, flow detention, smart design, biofilter, ditch
Procedia PDF Downloads 874189 Pharmacogenetics Study of Dapsone-Induced Severe Cutaneous Adverse Reactions and HLA Class I Alleles in Thai Patients
Authors: Patompong Satapornpong, Therdpong Tempark, Pawinee Rerknimitr, Jettanong Klaewsongkram, Chonlaphat Sukasem
Abstract:
Dapsone (4, 4’-diaminodiphenyl sulfone, DDS) is broadly used for the treatment of inflammatory diseases and infections such as; leprosy, Pneumocystis jiroveci pneumonia in patients with HIV infection, neutrophilic dermatoses, dermatitis herpetiformis and autoimmune bullous disease. The severe cutaneous adverse drug reactions (SCARs) including, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are rare but severe life-threatening adverse drug reactions. Dapsone is one of many culprit drugs induced SJS, TEN and DRESS. Notwithstanding, to our knowledge, there are no studies of the association of HLA class I alleles and dapsone-induced SCARs in non-leprosy Thai patients. This investigation was a prospective cohort study, which performed in a total of 45 non-leprosy patients. Fifteen patients of dapsone-induced SCARs were classified as following the RegiSCAR criteria, and 30 dapsone-tolerant controls were exposed to dapsone more than 6 months without any evidence of cutaneous reactions. The genotyping of HLA-A, -B and –C were performed using sequence-specific oligonucleotides (PCR-SSOs). The Ethics Committee of Ramathibodi hospital, Mahidol University, approved this study. Among all HLA class I alleles, HLA-A*24:07, HLA-B*13:01, HLA-B*15:02, HLA-C*03:04 and HLA-C*03:09 were significantly associated with dapsone-induced SCARs (OR = 10.55, 95% CI = 1.06 – 105.04, p = 0.0360; OR = 56.00, 95% CI = 8.27 – 379.22, p = 0.0001; OR = 7.00, 95% CI = 1.17 – 42.00, p = 0.0322; OR = 6.00, 95% CI = 1.24 – 29.07, p = 0.0425 and OR = 17.08, 95% CI = 0.82 – 355.45, p = 0.0321, respectively). Furthermore, HLA-B*13:01 allele had strong association with dapsone-induced SJS-TEN and DRESS when compared with dapsone-tolerant controls (OR = 42.00, 95% CI = 2.88 – 612.31, p = 0.0064 and OR = 63.00, 95% CI = 7.72 – 513.94 and p = 0.0001, respectively). Consequently, HLA-B*13:01 might serve as a pharmacogenetic marker for screening before initiating the therapy with dapsone for prevention of dapsone-induced SCARs.Keywords: dapsone-induced SCARs, HLA-B*13:01, HLA class I alleles, severe cutaneous adverse reactions, Thai
Procedia PDF Downloads 2334188 Exploring the Efficacy of Nitroglycerin in Filler-Induced Facial Skin Ischemia: A Narrative Review
Authors: Amir Feily, Hazhir Shahmoradi Akram, Mojtaba Ghaedi, Farshid Javdani, Naser Hatami, Navid Kalani, Mohammad Zarenezhad
Abstract:
Background: Filler-induced facial skin ischemia is a potential complication of dermal filler injections that can result in tissue damage and necrosis. Nitroglycerin has been suggested as a treatment option due to its vasodilatory effects, but its efficacy in this context is unclear. Methods: A narrative review was conducted to examine the available evidence on the efficacy of nitroglycerin in filler-induced facial skin ischemia. Relevant studies were identified through a search of electronic databases and manual searching of reference lists. Results: The review found limited evidence supporting the efficacy of nitroglycerin in this context. While there were case reports where the combination of nitroglycerin and hyaluronidase was successful in treating filler-induced facial skin ischemia, there was only one case report where nitroglycerin alone was successful. Furthermore, a rat model did not demonstrate any benefits of nitroglycerin and showed harmful results. Conclusion: The evidence regarding the efficacy of nitroglycerin in filler-induced facial skin ischemia is inconclusive and seems to be against its application. Further research is needed to determine the effectiveness of nitroglycerin alone and in combination with other treatments for this condition. Clinicians should consider limited evidence bases when deciding on treatment options for patients with filler-induced facial skin ischemia.Keywords: nitroglycerin, facial, skin ischemia, fillers, efficacy, narrative review
Procedia PDF Downloads 934187 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 1864186 Numerical Investigation of Turbulent Inflow Strategy in Wind Energy Applications
Authors: Arijit Saha, Hassan Kassem, Leo Hoening
Abstract:
Ongoing climate change demands the increasing use of renewable energies. Wind energy plays an important role in this context since it can be applied almost everywhere in the world. To reduce the costs of wind turbines and to make them more competitive, simulations are very important since experiments are often too costly if at all possible. The wind turbine on a vast open area experiences the turbulence generated due to the atmosphere, so it was of utmost interest from this research point of view to generate the turbulence through various Inlet Turbulence Generation methods like Precursor cyclic and Kaimal Spectrum Exponential Coherence (KSEC) in the computational simulation domain. To be able to validate computational fluid dynamic simulations of wind turbines with the experimental data, it is crucial to set up the conditions in the simulation as close to reality as possible. This present work, therefore, aims at investigating the turbulent inflow strategy and boundary conditions of KSEC and providing a comparative analysis alongside the Precursor cyclic method for Large Eddy Simulation within the context of wind energy applications. For the generation of the turbulent box through KSEC method, firstly, the constrained data were collected from an auxiliary channel flow, and later processing was performed with the open-source tool PyconTurb, whereas for the precursor cyclic, only the data from the auxiliary channel were sufficient. The functionality of these methods was studied through various statistical properties such as variance, turbulent intensity, etc with respect to different Bulk Reynolds numbers, and a conclusion was drawn on the feasibility of KSEC method. Furthermore, it was found necessary to verify the obtained data with DNS case setup for its applicability to use it as a real field CFD simulation.Keywords: Inlet Turbulence Generation, CFD, precursor cyclic, KSEC, large Eddy simulation, PyconTurb
Procedia PDF Downloads 964185 Aerodynamic Design of Three-Dimensional Bellmouth for Low-Speed Open-Circuit Wind Tunnel
Authors: Harshavardhan Reddy, Balaji Subramanian
Abstract:
A systematic parametric study to find the optimum bellmouth profile by relating geometric and performance parameters to satisfy a set of specifications is reported. A careful aerodynamic design of bellmouth intake is critical to properly direct the flow with minimal losses and maximal flow uniformity into the honeycomb located inside the settling chamber of an indraft wind tunnel, thus improving the efficiency of the entire unit. Design charts for elliptically profiled bellmouths with two different contraction ratios (9 and 18) and three different test section speeds (25 m/s, 50 m/s, and 75 m/s) were presented. A significant performance improvement - especially in the Coefficient of discharge and in the flow angularity and boundary layer thickness at the honeycomb inlet - was observed when an entry corner radius (r/D = 0.08) was added to the bellmouth profile. The nonuniformity at the honeycomb inlet drops by about three times (~1% to 0.3%) when moving from square to regular octagonal cross-section. An octagonal cross-sectioned bellmouth intake with L/d = 0.55, D/d = 1.625, and r/D = 0.08 met all the four target performance specifications and is proposed as the best choice for a low-speed wind tunnel.Keywords: bellmouth intake, low-speed wind tunnel, coefficient of discharge, nonuniformity, flow angularity, boundary layer thickness, CFD, aerodynamics
Procedia PDF Downloads 1984184 Investigation of Aerodynamic and Design Features of Twisting Tall Buildings
Authors: Sinan Bilgen, Bekir Ozer Ay, Nilay Sezer Uzol
Abstract:
After decades of conventional shapes, irregular forms with complex geometries are getting more popular for form generation of tall buildings all over the world. This trend has recently brought out diverse building forms such as twisting tall buildings. This study investigates both the aerodynamic and design features of twisting tall buildings through comparative analyses. Since twisting a tall building give rise to additional complexities related with the form and structural system, lateral load effects become of greater importance on these buildings. The aim of this study is to analyze the inherent characteristics of these iconic forms by comparing the wind loads on twisting tall buildings with those on their prismatic twins. Through a case study research, aerodynamic analyses of an existing twisting tall building and its prismatic counterpart were performed and the results have been compared. The prismatic twin of the original building were generated by removing the progressive rotation of its floors with the same plan area and story height. Performance-based measures under investigation have been evaluated in conjunction with the architectural design. Aerodynamic effects have been analyzed by both wind tunnel tests and computational methods. High frequency base balance tests and pressure measurements on 3D models were performed to evaluate wind load effects on a global and local scale. Comparisons of flat and real surface models were conducted to further evaluate the effects of the twisting form without façade texture contribution. Comparisons highlighted that, the twisting form under investigation shows better aerodynamic behavior both for along wind but particularly for across wind direction. Compared to the prismatic counterpart; twisting model is superior on reducing vortex-shedding dynamic response by disorganizing the wind vortices. Consequently, despite the difficulties arisen from inherent complexity of twisted forms, they could still be feasible and viable with their attractive images in the realm of tall buildings.Keywords: aerodynamic tests, motivation for twisting, tall buildings, twisted forms, wind excitation
Procedia PDF Downloads 2344183 Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran
Authors: L.Jowkar. M.Samiee
Abstract:
Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin.Keywords: Arc CN-Run off, rain-runoff, return period, watershed
Procedia PDF Downloads 1274182 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4844181 Effect of Whole-Body Vibration Training on Self-Reported Physical Disability in Employees with Chronic Low-Back Pain: A Randomized Controlled Trial
Authors: Tobias Stephan Kaeding, Rebecca Schwarz, Momme Kück, Lothar Stein
Abstract:
Introduction: The goal of this randomized and controlled study is to examine whether whole-body vibration (WBV) training is able to reduce self-reported physical disability in office employees with chronic low-back pain. Materials and methods: 41 subjects (68.3% female/mean age 45.5 ± 9.1 years/mean BMI 26.6 ± 5.2) were randomly allocated to an intervention group (INT (n= 21)) or a control group (CON (n=20). The INT participated in WBV training 2.5 times per week for 3 months. The primary outcome was the change in the Roland and Morris disability questionnaire (RMQ) score over the study period. In addition, secondary outcomes included changes in the Oswestry Disability Index (ODI). Results: The compliance with the intervention in the INT reached a mean of 81.1% ± 31.2% with no long-lasting unwanted side effects. We found significant positive effects of 3 months of WBV training in the INT compared to the CON regarding the RMQ (p=0.027) and the ODI (p=0.002). Conclusions: WBV training seems to be an effective, safe and suitable intervention for the reduction of the self-reported physical disability in seated working employees with chronic low-back pain.Keywords: back pain, exercise, occupational health management, vibration training
Procedia PDF Downloads 2994180 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines
Authors: Nicolae Constantin, Ştefan Sorohan
Abstract:
The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities
Procedia PDF Downloads 3394179 A Discrete Element Method Centrifuge Model of Monopile under Cyclic Lateral Loads
Authors: Nuo Duan, Yi Pik Cheng
Abstract:
This paper presents the data of a series of two-dimensional Discrete Element Method (DEM) simulations of a large-diameter rigid monopile subjected to cyclic loading under a high gravitational force. At present, monopile foundations are widely used to support the tall and heavy wind turbines, which are also subjected to significant from wind and wave actions. A safe design must address issues such as rotations and changes in soil stiffness subject to these loadings conditions. Design guidance on the issue is limited, so are the availability of laboratory and field test data. The interpretation of these results in sand, such as the relation between loading and displacement, relies mainly on empirical correlations to pile properties. Regarding numerical models, most data from Finite Element Method (FEM) can be found. They are not comprehensive, and most of the FEM results are sensitive to input parameters. The micro scale behaviour could change the mechanism of the soil-structure interaction. A DEM model was used in this paper to study the cyclic lateral loads behaviour. A non-dimensional framework is presented and applied to interpret the simulation results. The DEM data compares well with various set of published experimental centrifuge model test data in terms of lateral deflection. The accumulated permanent pile lateral displacements induced by the cyclic lateral loads were found to be dependent on the characteristics of the applied cyclic load, such as the extent of the loading magnitudes and directions.Keywords: cyclic loading, DEM, numerical modelling, sands
Procedia PDF Downloads 3214178 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 4014177 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 1064176 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate
Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura
Abstract:
The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter
Procedia PDF Downloads 2634175 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 1754174 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka
Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon
Abstract:
Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy
Procedia PDF Downloads 3324173 Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone
Authors: David Ugalde, Arturo Castillo, Leopoldo Breschi
Abstract:
The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas.Keywords: system identification, tuned mass damper, wall buildings, seismic protection
Procedia PDF Downloads 1254172 Modeling of Micro-Grid System Components Using MATLAB/Simulink
Authors: Mahmoud Fouad, Mervat Badr, Marwa Ibrahim
Abstract:
Micro-grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. Renewable power sources such as wind, solar and hydro offer high potential of benign power for future micro-grid systems. Micro-Grid (MG) is basically a low voltage (LV) or medium voltage (MV) distribution network which consists of a number of called distributed generators (DG’s); micro-sources such as photovoltaic array, fuel cell, wind turbine etc. energy storage systems and loads; operating as a single controllable system, that could be operated in both grid-connected and islanded mode. The capacity of the DG’s is sufficient to support all; or most, of the load connected to the micro-grid. This paper presents a micro-grid system based on wind and solar power sources and addresses issues related to operation, control, and stability of the system. Using Matlab/Simulink, the system is modeled and simulated to identify the relevant technical issues involved in the operation of a micro-grid system based on renewable power generation units.Keywords: micro-grid system, photovoltaic, wind turbine, energy storage, distributed generation, modeling
Procedia PDF Downloads 4354171 Numerical Analysis on Triceratops Restraining System: Failure Conditions of Tethers
Authors: Srinivasan Chandrasekaran, Manda Hari Venkata Ramachandra Rao
Abstract:
Increase in the oil and gas exploration in ultra deep-water demands an adaptive structural form of the platform. Triceratops has superior motion characteristics compared to that of the Tension Leg Platform and Single Point Anchor Reservoir platforms, which is well established in the literature. Buoyant legs that support the deck are position-restrained to the sea bed using tethers with high axial pretension. Environmental forces that act on the platform induce dynamic tension variations in the tethers, causing the failure of tethers. The present study investigates the dynamic response behavior of the restraining system of the platform under the failure of a single tether of each buoyant leg in high sea states. Using the rain-flow counting algorithm and the Goodman diagram, fatigue damage caused to the tethers is estimated, and the fatigue life is predicted. Results shows that under failure conditions, the fatigue life of the remaining tethers is quite alarmingly low.Keywords: fatigue life, pm spectrum, rain flow counting, triceratops, failure analysis
Procedia PDF Downloads 1354170 Shared Vision System Support for Maintenance Tasks of Wind Turbines
Authors: Buket Celik Ünal, Onur Ünal
Abstract:
Communication is the most challenging part of maintenance operations. Communication between expert and fieldworker is crucial for effective maintenance and this also affects the safety of the fieldworkers. To support a machine user in a remote collaborative physical task, both, a mobile and a stationary device are needed. Such a system is called a shared vision system and the system supports two people to solve a problem from different places. This system reduces the errors and provides a reliable support for qualified and less qualified users. Through this research, it was aimed to validate the effectiveness of using a shared vision system to facilitate communication between on-site workers and those issuing instructions regarding maintenance or inspection works over long distances. The system is designed with head-worn display which is called a shared vision system. As a part of this study, a substitute system is used and implemented by using a shared vision system for maintenance operation. The benefits of the use of a shared vision system are analyzed and results are adapted to the wind turbines to improve the occupational safety and health for maintenance technicians. The motivation for the research effort in this study can be summarized in the following research questions: -How can expert support technician over long distances during maintenance operation? -What are the advantages of using a shared vision system? Experience from the experiment shows that using a shared vision system is an advantage for both electrical and mechanical system failures. Results support that the shared vision system can be used for wind turbine maintenance and repair tasks. Because wind turbine generator/gearbox and the substitute system have similar failures. Electrical failures, such as voltage irregularities, wiring failures and mechanical failures, such as alignment, vibration, over-speed conditions are the common and similar failures for both. Furthermore, it was analyzed the effectiveness of the shared vision system by using a smart glasses in connection with the maintenance task performed by a substitute system under four different circumstances, namely by using a shared vision system, an audio communication, a smartphone and by yourself condition. A suitable method for determining dependencies between factors measured in Chi Square Test, and Chi Square Test for Independence measured for determining a relationship between two qualitative variables and finally Mann Whitney U Test is used to compare any two data sets. While based on this experiment, no relation was found between the results and the gender. Participants` responses confirmed that the shared vision system is efficient and helpful for maintenance operations. From the results of the research, there was a statistically significant difference in the average time taken by subjects on works using a shared vision system under the other conditions. Additionally, this study confirmed that a shared vision system provides reduction in time to diagnose and resolve maintenance issues, reduction in diagnosis errors, reduced travel costs for experts, and increased reliability in service.Keywords: communication support, maintenance and inspection tasks, occupational health and safety, shared vision system
Procedia PDF Downloads 2604169 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid
Authors: Tran Ich Thinh, Nguyen Manh Cuong
Abstract:
Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell
Procedia PDF Downloads 4984168 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment
Authors: Said Alshukri, Mazhar Hussain Malik
Abstract:
Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest
Procedia PDF Downloads 794167 Performance of Constant Load Feed Machining for Robotic Drilling
Authors: Youji Miyake
Abstract:
In aircraft assembly, a large number of preparatory holes are required for screw and rivet joints. Currently, many holes are drilled manually because it is difficult to machine the holes using conventional computerized numerical control(CNC) machines. The application of industrial robots to drill the hole has been considered as an alternative to the CNC machines. However, the rigidity of robot arms is so low that vibration is likely to occur during drilling. In this study, it is proposed constant-load feed machining as a method to perform high-precision drilling while minimizing the thrust force, which is considered to be the cause of vibration. In this method, the drill feed is realized by a constant load applied onto the tool so that the thrust force is theoretically kept below the applied load. The performance of the proposed method was experimentally examined through the deep hole drilling of plastic and simultaneous drilling of metal/plastic stack plates. It was confirmed that the deep hole drilling and simultaneous drilling could be performed without generating vibration by controlling the tool feed rate in the appropriate range.Keywords: constant load feed machining, robotic drilling, deep hole, simultaneous drilling
Procedia PDF Downloads 1944166 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba
Abstract:
This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine
Procedia PDF Downloads 2174165 Survey the Effects of Climate in Traditional and Modern Architecture of Iran
Authors: Yousefali Ziari, Hamidreza Joudaki
Abstract:
Humans have regularly been interacting with their environment, and have a close relation with their environment. House as a shelter which protects us against hot and cold weather and the other climatic occurrences in the environment has a close relation with climate. Before human could have access to the fossil fuels, preparing the comfort for the house was done by adjusting the building according to the climate conditions, and the help of natural resources. However after the man could access the fossil fuel, this way was forgotten, and caused much use of energy for heating & cooling. This research is trying to find some methods for designing suitable building that create comfort fitting with the zone by studying the climate condition of Arak city and as a result to find a way to reduce the use of energy and improving the design. So for the aim of this research we have used the statistics and information such as temperature, rain, wind and the approximate moisture from a period of 40 years from synoptic station of Arak. After specifying the climate of Arak by the use of effective temperature, Ulgi, Guni, Mahani and Ovenz indicator, we investigated the climate comfort conditions and the harmonious architecture with the climate and then some suggestion was given according to the climate situation of each month of the year and quality of human comfort according to this indicators.Keywords: climate, architecture, traditional and modern architecture, comfort indicator, Arak city
Procedia PDF Downloads 4794164 Development of a Nanocompound Based Fibre to Combat Insects
Authors: Merle Bischoff, Thomas Gries, Gunnar Seide
Abstract:
Pesticides, which harm crop enemies, but can also interfere with the human body, are nowadays mostly used for crop spraying. Silica particles (SiO2) in the nanometer and micrometer scale offer a physical way to combat insects without harming humans and other mammals. Thereby, they allow foregoing pesticides, which can harm the environment. As silica particles are supplied as a powder or in a suspension to farmers, the silica use in large scale agriculture is not sufficient due to erosion through wind and rain. When silica is implemented in a textile’s surface (nanocompound), particles are locally bound and do resist erosion, but can function against bugs. By choosing polypropylene as a matrix polymer, the production of an inexpensive agritextile with an 'anti-bug' effect is made possible. In the Symposium the results of the manufacturing and filament spinning of silica nanocomposites from a polypropylene basis is compared to the fabrication from nanocomposites based on Polybutylene succinate, a biodegradable composite. The investigation focuses on the difference between degradable nanocomposite and stable nanocomposite. Focus will be laid on the filament characteristics as well as the degradation of the nanocompound to underline their potential use and application as an agricultural textile.Keywords: agriculture, environment, insects, protection, silica, textile, nanocomposite
Procedia PDF Downloads 2494163 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform
Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza
Abstract:
The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform
Procedia PDF Downloads 1464162 Band Gap Tuning Based on Adjustable Stiffness of Local Resonators
Authors: Hossein Alimohammadi, Kristina Vassiljeva, Hassan HosseinNia, Eduard Petlenkov
Abstract:
This research article discusses the mechanisms for bandgap tuning of beam-type resonators to achieve broadband vibration suppression through adjustable stiffness. The method involves changing the center of mass of the cantilever-type resonator to achieve piezo-free tuning of stiffness. The study investigates the effect of the center of masses variation (δ) of attached masses on the bandgap and vibration suppression performance of a non-uniform beam-type resonator within a phononic structure. The results suggest that the cantilever-type resonator beam can be used to achieve tunability and real-time control and indicate that varying δ significantly impacts the bandgap and transmittance response. Additionally, the research explores the use of the first and second modes of resonators for tunability and real-time control. These findings examine the feasibility of this approach, demonstrate the potential for improving resonator performance, and provide insights into the design and optimization of metamaterial beams for vibration suppression applications.Keywords: bandgap, adjustable stiffness, spatial variation, tunability
Procedia PDF Downloads 85