Search results for: quantile function model
19705 Quasistationary States and Mean Field Model
Authors: Sergio Curilef, Boris Atenas
Abstract:
Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states
Procedia PDF Downloads 21119704 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 17119703 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: heuristic, MIP model, remedial course, school, timetabling
Procedia PDF Downloads 60519702 Model of MSD Risk Assessment at Workplace
Authors: K. Sekulová, M. Šimon
Abstract:
This article focuses on upper-extremity musculoskeletal disorders risk assessment model at workplace. In this model are used risk factors that are responsible for musculoskeletal system damage. Based on statistic calculations the model is able to define what risk of MSD threatens workers who are under risk factors. The model is also able to say how MSD risk would decrease if these risk factors are eliminated.Keywords: ergonomics, musculoskeletal disorders, occupational diseases, risk factors
Procedia PDF Downloads 55119701 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 40719700 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17019699 Cognitive Function and Coping Behavior in the Elderly: A Population-Based Cross-Sectional Study
Authors: Ryo Shikimoto, Hidehito Niimura, Hisashi Kida, Kota Suzuki, Yukiko Miyasaka, Masaru Mimura
Abstract:
Introduction: In Japan, the most aged country in the world, it is important to explore predictive factors of cognitive function among the elderly. Coping behavior relieves chronic stress and improves lifestyle, and consequently may reduce the risk of cognitive impairment. One of the most widely investigated frameworks evaluated in previous studies is approach-oriented and avoidance-oriented coping strategies. The purpose of this study is to investigate the relationship between cognitive function and coping strategies among elderly residents in urban areas of Japan. Method: This is a part of the cross-sectional Arakawa geriatric cohort study for 1,099 residents (aged 65 to 86 years; mean [SD] = 72.9 [5.2]). Participants were assessed for cognitive function using the Mini-Mental State Examination (MMSE) and diagnosed by psychiatrists in face-to-face interviews. They were then investigated for their each coping behaviors and coping strategies (approach- and avoidance-oriented coping) using stress and coping inventory. A multiple regression analysis was used to investigate the relationship between MMSE score and each coping strategy. Results: Of the 1,099 patients, the mean MMSE score of the study participants was 27.2 (SD = 2.7), and the numbers of the diagnosis of normal, mild cognitive impairment (MCI), and dementia were 815 (74.2%), 248 (22.6%), and 14 (1.3%), respectively. Approach-oriented coping score was significantly associated with MMSE score (B [partial regression coefficient] = 0.12, 95% confidence interval = 0.05 to 0.19) after adjusting for confounding factors including age, sex, and education. Avoidance-oriented coping did not show a significant association with MMSE score (B [partial regression coefficient] = -0.02, 95% confidence interval = -0.09 to 0.06). Conclusion: Approach-oriented coping was clearly associated with neurocognitive function in the Japanese population. A future longitudinal trial is warranted to investigate the protective effects of coping behavior on cognitive function.Keywords: approach-oriented coping, cognitive impairment, coping behavior, dementia
Procedia PDF Downloads 12919698 Kirchoff Type Equation Involving the p-Laplacian on the Sierpinski Gasket Using Nehari Manifold Technique
Authors: Abhilash Sahu, Amit Priyadarshi
Abstract:
In this paper, we will discuss the existence of weak solutions of the Kirchhoff type boundary value problem on the Sierpinski gasket. Where S denotes the Sierpinski gasket in R² and S₀ is the intrinsic boundary of the Sierpinski gasket. M: R → R is a positive function and h: S × R → R is a suitable function which is a part of our main equation. ∆p denotes the p-Laplacian, where p > 1. First of all, we will define a weak solution for our problem and then we will show the existence of at least two solutions for the above problem under suitable conditions. There is no well-known concept of a generalized derivative of a function on a fractal domain. Recently, the notion of differential operators such as the Laplacian and the p-Laplacian on fractal domains has been defined. We recall the result first then we will address the above problem. In view of literature, Laplacian and p-Laplacian equations are studied extensively on regular domains (open connected domains) in contrast to fractal domains. In fractal domains, people have studied Laplacian equations more than p-Laplacian probably because in that case, the corresponding function space is reflexive and many minimax theorems which work for regular domains is applicable there which is not the case for the p-Laplacian. This motivates us to study equations involving p-Laplacian on the Sierpinski gasket. Problems on fractal domains lead to nonlinear models such as reaction-diffusion equations on fractals, problems on elastic fractal media and fluid flow through fractal regions etc. We have studied the above p-Laplacian equations on the Sierpinski gasket using fibering map technique on the Nehari manifold. Many authors have studied the Laplacian and p-Laplacian equations on regular domains using this Nehari manifold technique. In general Euler functional associated with such a problem is Frechet or Gateaux differentiable. So, a critical point becomes a solution to the problem. Also, the function space they consider is reflexive and hence we can extract a weakly convergent subsequence from a bounded sequence. But in our case neither the Euler functional is differentiable nor the function space is known to be reflexive. Overcoming these issues we are still able to prove the existence of at least two solutions of the given equation.Keywords: Euler functional, p-Laplacian, p-energy, Sierpinski gasket, weak solution
Procedia PDF Downloads 23419697 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)
Authors: Azimollah Aleshzadeh, Enver Vural Yavuz
Abstract:
The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping
Procedia PDF Downloads 13219696 Clinician's Perspective of Common Factors of Change in Family Therapy: A Cross-National Exploration
Authors: Hassan Karimi, Fred Piercy, Ruoxi Chen, Ana L. Jaramillo-Sierra, Wei-Ning Chang, Manjushree Palit, Catherine Martosudarmo, Angelito Antonio
Abstract:
Background: The two psychotherapy camps, the randomized clinical trials (RCTs) and the common factors model, have competitively claimed specific explanations for therapy effectiveness. Recently, scholars called for empirical evidence to show the role of common factors in therapeutic outcome in marriage and family therapy. Purpose: This cross-national study aims to explore how clinicians, across different nations and theoretical orientations, attribute the contribution of common factors to therapy outcome. Method: A brief common factors questionnaire (CFQ-with a Cronbach’s Alpha, 0.77) was developed and administered in seven nations. A series of statistical analyses (paired-samples t-test, independent sample t-test, ANOVA) were conducted: to compare clinicians perceived contribution of total common factors versus model-specific factors, to compare each pair of common factors’ categories, and to compare clinicians from collectivistic nations versus clinicians from individualistic nation. Results: Clinicians across seven nations attributed 86% to common factors versus 14% to model-specific factors. Clinicians attributed 34% of therapeutic change to client’s factors, 26% to therapist’s factors, 26% to relationship factors, and 14% to model-specific techniques. The ANOVA test indicated each of the three categories of common factors (client 34%, therapist 26%, relationship 26%) showed higher contribution in therapeutic outcome than the category of model specific factors (techniques 14%). Clinicians with psychology degree attributed more contribution to model-specific factors than clinicians with MFT and counseling degrees who attributed more contribution to client factors. Clinicians from collectivistic nations attributed larger contributions to therapist’s factors (M=28.96, SD=12.75) than the US clinicians (M=23.22, SD=7.73). The US clinicians attributed a larger contribution to client’s factors (M=39.02, SD=1504) than clinicians from the collectivistic nations (M=28.71, SD=15.74). Conclusion: The findings indicate clinicians across the globe attributed more than two thirds of therapeutic change to CFs, which emphasize the training of the common factors model in the field. CFs, like model-specific factors, vary in their contribution to therapy outcome in relation to specific client, therapist, problem, treatment model, and sociocultural context. Sociocultural expectations and norms should be considered as a context in which both CFs and model-specific factors function toward therapeutic goals. Clinicians need to foster a cultural competency specifically regarding the divergent ways that CFs can be activated due to specific sociocultural values.Keywords: common factors, model-specific factors, cross-national survey, therapist cultural competency, enhancing therapist efficacy
Procedia PDF Downloads 28719695 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 36119694 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 24419693 Determination of Effect Factor for Effective Parameter on Saccharification of Lignocellulosic Material by Concentrated Acid
Authors: Sina Aghili, Ali Arasteh Nodeh
Abstract:
Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio-ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increased with time, temperature and solid content and acid concentration was a parabola influence in glucose production.The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were in optimum condition.Keywords: fermentable sugar, saccharification, wood, hydrolysis
Procedia PDF Downloads 33419692 Thermal and Caloric Imperfections Effect on the Supersonic Flow Parameters with Application for Air in Nozzles
Authors: Merouane Salhi, Toufik Zebbiche, Omar Abada
Abstract:
When the stagnation pressure of perfect gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with this pressure. The gas does not remain perfect. Its state equation change and it becomes a real gas. In this case, the effects of molecular size and inter molecular attraction forces intervene to correct the state equation. The aim of this work is to show and discuss the effect of stagnation pressure on supersonic thermo dynamical, physical and geometrical flow parameters, to find a general case for real gas. With the assumptions that Berthelot’s state equation accounts for molecular size and inter molecular force effects, expressions are developed for analyzing supersonic flow for thermally and calorically imperfect gas lower than the dissociation molecules threshold. The designs parameters for supersonic nozzle like thrust coefficient depend directly on stagnation parameters of the combustion chamber. The application is for air. A computation of error is made in this case to give a limit of perfect gas model compared to real gas model.Keywords: supersonic flow, real gas model, Berthelot’s state equation, Simpson’s method, condensation function, stagnation pressure
Procedia PDF Downloads 52519691 OmniDrive Model of a Holonomic Mobile Robot
Authors: Hussein Altartouri
Abstract:
In this paper the kinematic and kinetic models of an omnidirectional holonomic mobile robot is presented. The kinematic and kinetic models form the OmniDrive model. Therefore, a mathematical model for the robot equipped with three- omnidirectional wheels is derived. This model which takes into consideration the kinematics and kinetics of the robot, is developed to state space representation. Relative analysis of the velocities and displacements is used for the kinematics of the robot. Lagrange’s approach is considered in this study for deriving the equation of motion. The drive train and the mechanical assembly only of the Festo Robotino® is considered in this model. Mainly the model is developed for motion control. Furthermore, the model can be used for simulation purposes in different virtual environments not only Robotino® View. Further use of the model is in the mechatronics research fields with the aim of teaching and learning the advanced control theories.Keywords: mobile robot, omni-direction wheel, mathematical model, holonomic mobile robot
Procedia PDF Downloads 60919690 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies
Authors: Roberta Martino, Viviana Ventre
Abstract:
Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty
Procedia PDF Downloads 12919689 Economic Valuation of Forest Landscape Function Using a Conditional Logit Model
Authors: A. J. Julius, E. Imoagene, O. A. Ganiyu
Abstract:
The purpose of this study is to estimate the economic value of the services and functions rendered by the forest landscape using a conditional logit model. For this study, attributes and levels of forest landscape were chosen; specifically, attributes include topographical forest type, forest type, forest density, recreational factor (side trip, accessibility of valley), and willingness to participate (WTP). Based on these factors, 48 choices sets with balanced and orthogonal form using statistical analysis system (SAS) 9.1 was adopted. The efficiency of the questionnaire was 6.02 (D-Error. 0.1), and choice set and socio-economic variables were analyzed. To reduce the cognitive load of respondents, the 48 choice sets were divided into 4 types in the questionnaire, so that respondents could respond to 12 choice sets, respectively. The study populations were citizens from seven metropolitan cities including Ibadan, Ilorin, Osogbo, etc. and annual WTP per household was asked by using the interview questionnaire, a total of 267 copies were recovered. As a result, Oshogbo had 0.45, and the statistical similarities could not be found except for urban forests, forest density, recreational factor, and level of WTP. Average annual WTP per household for forest landscape was 104,758 Naira (Nigerian currency) based on the outcome from this model, total economic value of the services and functions enjoyed from Nigerian forest landscape has reached approximately 1.6 trillion Naira.Keywords: economic valuation, urban cities, services, forest landscape, logit model, nigeria
Procedia PDF Downloads 13319688 Stoa: Urban Community-Building Social Experiment through Mixed Reality Game Environment
Authors: Radek Richtr, Petr Pauš
Abstract:
Social media nowadays connects people more tightly and intensively than ever, but simultaneously, some sort of social distance, incomprehension, lost of social integrity appears. People can be strongly connected to the person on the other side of the world but unaware of neighbours in the same district or street. The Stoa is a type of application from the ”serious games” genre- it is research augmented reality experiment masked as a gaming environment. In the Stoa environment, the player can plant and grow virtual (organic) structure, a Pillar, that represent the whole suburb. Everybody has their own idea of what is an acceptable, admirable or harmful visual intervention in the area they live in; the purpose of this research experiment is to find and/or define residents shared subconscious spirit, genius loci of the Pillars vicinity, where residents live in. The appearance and evolution of Stoa’s Pillars reflect the real world as perceived by not only the creator but also by other residents/players, who, with their actions, refine the environment. Squares, parks, patios and streets get their living avatar depictions; investors and urban planners obtain information on the occurrence and level of motivation for reshaping the public space. As the project is in product conceptual design phase, the function is one of its most important factors. Function-based modelling makes design problem modular and structured and thus decompose it into sub-functions or function-cells. Paper discuss the current conceptual model for Stoa project, the using of different organic structure textures and models, user interface design, UX study and project’s developing to the final state.Keywords: augmented reality, urban computing, interaction design, mixed reality, social engineering
Procedia PDF Downloads 22819687 Growth Curves Genetic Analysis of Native South Caspian Sea Poultry Using Bayesian Statistics
Authors: Jamal Fayazi, Farhad Anoosheh, Mohammad R. Ghorbani, Ali R. Paydar
Abstract:
In this study, to determine the best non-linear regression model describing the growth curve of native poultry, 9657 chicks of generations 18, 19, and 20 raised in Mazandaran breeding center were used. Fowls and roosters of this center distributed in south of Caspian Sea region. To estimate the genetic variability of none linear regression parameter of growth traits, a Gibbs sampling of Bayesian analysis was used. The average body weight traits in the first day (BW1), eighth week (BW8) and twelfth week (BW12) were respectively estimated as 36.05, 763.03, and 1194.98 grams. Based on the coefficient of determination, mean squares of error and Akaike information criteria, Gompertz model was selected as the best growth descriptive function. In Gompertz model, the estimated values for the parameters of maturity weight (A), integration constant (B) and maturity rate (K) were estimated to be 1734.4, 3.986, and 0.282, respectively. The direct heritability of BW1, BW8 and BW12 were respectively reported to be as 0.378, 0.3709, 0.316, 0.389, 0.43, 0.09 and 0.07. With regard to estimated parameters, the results of this study indicated that there is a possibility to improve some property of growth curve using appropriate selection programs.Keywords: direct heritability, Gompertz, growth traits, maturity weight, native poultry
Procedia PDF Downloads 26619686 A Parallel Implementation of k-Means in MATLAB
Authors: Dimitris Varsamis, Christos Talagkozis, Alkiviadis Tsimpiris, Paris Mastorocostas
Abstract:
The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated.Keywords: K-means algorithm, clustering, parallel computations, Matlab
Procedia PDF Downloads 38519685 A Constitutive Model for Time-Dependent Behavior of Clay
Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili
Abstract:
A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.Keywords: bounding surface, consistency theory, constitutive model, viscosity
Procedia PDF Downloads 49219684 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 29719683 Climate Changes Impact on Artificial Wetlands
Authors: Carla Idely Palencia-Aguilar
Abstract:
Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.Keywords: DEM, evapotranspiration, geostatistics, NDVI
Procedia PDF Downloads 12019682 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process
Authors: Samaneh Rahimirshnani, Hossein Jafari
Abstract:
In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion
Procedia PDF Downloads 6519681 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease
Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda
Abstract:
Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline
Procedia PDF Downloads 14719680 Revealing the Structural and Dynamic Properties of Betaine Aldehyde Dehydrogenase 2 from Rice (Oryza sativa): Simulation Studies
Authors: Apisaraporn Baicharoen, Prapasiri Pongprayoon
Abstract:
Betaine aldehyde dehydrogenase 2 (BADH2) is an enzyme that inhibits the accumulation of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice fragrance. BADH2 contains three domains (NAD-binding, substrate-binding, and oligomerization domains). It catalyzes the oxidation of amino aldehydes. The lack of BADH2 results in the formation of 2AP and consequently an increase in rice fragrance. To date, inadequate data on BADH2 structure and function are available. An insight into the nature of BADH2 can serve as one of key starting points for the production of high quality fragrant rice. In this study, we therefore constructed the homology model of BADH2 and employed 500-ns Molecular Dynamics simulations (MD) to primarily understand the structural and dynamic properties of BADH2. Initially, Ramachandran plot confirms the good quality of modeled protein structure. Principle Component Analysis (PCA) was also calculated to capture the protein dynamics. Among 3 domains, the results show that NAD binding site is found to be more flexible. Moreover, interactions from key amino acids (N162, E260, C294, and Y419) that are crucial for function are investigated.Keywords: betaine aldehyde dehydrogenase 2, fragrant rice, homology modeling, molecular dynamics simulations
Procedia PDF Downloads 21519679 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte
Abstract:
This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data
Procedia PDF Downloads 32919678 Influence of Annealing Temperature on Optical, Anticandidal, Photocatalytic and Dielectric Properties of ZnO/TiO2 Nanocomposites
Authors: Wasi Khan, Suboohi Shervani, Swaleha Naseem, Mohd. Shoeb, J. A. Khan, B. R. Singh, A. H. Naqvi
Abstract:
We have successfully synthesized ZnO/TiO2 nanocomposite using a two-step solochemical synthesis method. The influence of annealing temperature on microstructural, optical, anticandidal, photocatalytic activities and dielectric properties were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show the formation of nanocomposite and uniform surface morphology of all samples. The UV-Vis spectra indicate decrease in band gap energy with increase in annealing temperature. The anticandidal activity of ZnO/TiO2 nanocomposite was evaluated against MDR C. albicans 077. The in-vitro killing assay revealed that the ZnO/TiO2 nanocomposite efficiently inhibit the growth of the C. albicans 077. The nanocomposite also exhibited the photocatalytic activity for the degradation of methyl orange as a function of time at 465 nm wavelength. The electrical behaviour of composite has been studied over a wide range of frequencies at room temperature using complex impedance spectroscopy. The dielectric constants, dielectric loss and ac conductivity (σac) were studied as the function of frequency, which have been explained by ‘Maxwell Wagner Model’. The data reveals that the dielectric constant and loss (tanδ) exhibit the normal dielectric behavior and decreases with the increase in frequency.Keywords: ZnO/TiO2 nanocomposites, SEM, photocatalytic activity, dielectric properties
Procedia PDF Downloads 40619677 Modelling the Yield Stress of Magnetorheological Fluids
Authors: Hesam Khajehsaeid, Naeimeh Alagheband
Abstract:
Magnetorheological fluids (MRF) are a category of smart materials. They exhibit a reversible change from a Newtonian-like fluid to a semi-solid state upon application of an external magnetic field. In contrast to ordinary fluids, MRFs can tolerate shear stresses up to a threshold value called yield stress which strongly depends on the strength of the magnetic field, magnetic particles volume fraction and temperature. Even beyond the yield, a magnetic field can increase MR fluid viscosity up to several orders. As yield stress is an important parameter in the design of MR devices, in this work, the effects of magnetic field intensity and magnetic particle concentration on the yield stress of MRFs are investigated. Four MRF samples with different particle concentrations are developed and tested through flow-ramp analysis to obtain the flow curves at a range of magnetic field intensity as well as shear rate. The viscosity of the fluids is determined by means of the flow curves. The results are then used to determine the yield stresses by means of the steady stress sweep method. The yield stresses are then determined by means of a modified form of the dipole model as well as empirical models. The exponential distribution function is used to describe the orientation of particle chains in the dipole model under the action of the external magnetic field. Moreover, the modified dipole model results in a reasonable distribution of chains compared to previous similar models.Keywords: magnetorheological fluids, yield stress, particles concentration, dipole model
Procedia PDF Downloads 17919676 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 409