Search results for: participatory error correction process
16633 Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement
Authors: M. Z. Kurian, M. V. Chidananda Murthy, H. S. Guruprasad
Abstract:
An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested.Keywords: advanced b-spline, image super-resolution, mean square error (MSE), peak signal to noise ratio (PSNR), resolution down converter
Procedia PDF Downloads 39916632 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria
Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter
Abstract:
Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis
Procedia PDF Downloads 7516631 Behaviour of an RC Circuit near Extreme Point
Authors: Tribhuvan N. Soorya
Abstract:
Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.Keywords: charging, discharging, RC Circuit, capacitor
Procedia PDF Downloads 44316630 Empowerment at the Grassroots: Impact of Participatory (in) Equalities in Policy Formulation and Recognition and Redistribution of Women at the Grassroots in India
Authors: Samanwita Paul
Abstract:
Borrowing from Kabeer’s framework of empowerment, participation of women at Panchayat level politics (grassroots level of politics in India) has been conceptualized as a resource in the study and the impact of the same in influencing the policies at the grassroots as an agency. The study attempts to examine such intricacies in the dynamics of participation and policy formulation at the Panchayat level and to assess its overall impact in altering the recognition and redistribution of women. A conscious attempt has been made to go beyond formal politics and consider participants of the informal political processes as subjects of the study. Primary surveys were conducted for data collection in 4 Panchayat villages (from Jalpaiguri district in West Bengal) of which 2 wards from each were selected based on the nature of reservation of the panchayat seats. In-depth interviews with the Panchayat members and an approximate of 80 voters from each of the villages were conducted. This has been further analyzed with the aid of appropriate statistical tools and narratives. Preliminary findings show that women from vulnerable sections tend to participate more in the political process since it offers them a means of negotiating with their vulnerabilities however in case of its impact on policy formulation, the effect of women’s participation does to appear to be as profound.Keywords: recognition, redistribution, political participation, women
Procedia PDF Downloads 13616629 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing
Procedia PDF Downloads 14816628 Covariance of the Queue Process Fed by Isonormal Gaussian Input Process
Authors: Samaneh Rahimirshnani, Hossein Jafari
Abstract:
In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process.Keywords: queue length process, Malliavin calculus, covariance function, fractional Brownian motion, sub-fractional Brownian motion
Procedia PDF Downloads 6416627 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging
Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul
Abstract:
Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.Keywords: mung bean, near infrared, germinatability, hard seed
Procedia PDF Downloads 30516626 Performance Evaluation and Dear Based Optimization on Machining Leather Specimens to Reduce Carbonization
Authors: Khaja Moiduddin, Tamer Khalaf, Muthuramalingam Thangaraj
Abstract:
Due to the variety of benefits over traditional cutting techniques, the usage of laser cutting technology has risen substantially in recent years. Hot wire machining can cut the leather in the required shape by controlling the wire by generating thermal energy. In the present study, an attempt has been made to investigate the effects of performance measures in the hot wire machining process on cutting leather specimens. Carbonization and material removal rates were considered as quality indicators. Burning leather during machining might cause carbon particles, reducing product quality. Minimizing the effect of carbon particles is crucial for assuring operator and environmental safety, health, and product quality. Hot wire machining can efficiently cut the specimens by controlling the current through it. Taguchi- DEAR-based optimization was also performed in the process, which resulted in a required Carbonization and material removal rate. Using the DEAR approach, the optimal parameters of the present study were found with 3.7% prediction error accuracy.Keywords: cabronization, leather, MRR, current
Procedia PDF Downloads 6416625 On Chvátal’s Conjecture for the Hamiltonicity of 1-Tough Graphs and Their Complements
Authors: Shin-Shin Kao, Yuan-Kang Shih, Hsun Su
Abstract:
In this paper, we show that the conjecture of Chv tal, which states that any 1-tough graph is either a Hamiltonian graph or its complement contains a specific graph denoted by F, does not hold in general. More precisely, it is true only for graphs with six or seven vertices, and is false for graphs with eight or more vertices. A theorem is derived as a correction for the conjecture.Keywords: complement, degree sum, hamiltonian, tough
Procedia PDF Downloads 28916624 Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit
Authors: Rohana Musa, Yuzman Yusoff, Chia Chieu Yin, Hanif Che Lah
Abstract:
This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra’s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (Vth) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 µW with a supply voltage of 1.8V with a silicon area of 190 µm X 60 µm. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results.Keywords: CMOS process sensor, PVT sensor, threshold extractor circuit, Vth extractor circuit
Procedia PDF Downloads 17516623 The New Waterfront: Examining the Impact of Planning on Waterfront Regeneration in Da Nang
Authors: Ngoc Thao Linh Dang
Abstract:
Urban waterfront redevelopment is a global phenomenon, and thousands of schemes are being carried out in large metropoles, medium-sized cities, and even small towns all over the world. This opportunity brings the city back to the river and rediscovers waterfront revitalization as a unique opportunity for cities to reconnect with their unique historical and cultural image. The redevelopment can encourage economic investments, serve as a social platform for public interactions, and allow dwellers to express their rights to the city. Many coastal cities have effectively transformed the perception of their waterfront area through years of redevelopment initiatives, having been neglected for over a century. However, this process has never been easy due to the particular complexity of the space: local culture, history, and market-led development. Moreover, municipal governments work out the balance of diverse stakeholder interests, especially when repurposing high-profile and redundant spaces that form the core of urban economic investment while also accommodating the present and future generations in sustainable environments. Urban critics consistently grapple with the effectiveness of the planning process on the new waterfront, where public spaces are criticized for presenting a lack of opportunities for actual public participation due to privatization and authoritarian governance while no longer doing what they are ‘meant to’: all arise in reaction to the perceived failure of these places to meet expectations. The planning culture and the decision-making context determine the level of public involvement in the planning process; however, in the context of competing market forces and commercial interests dominating cities’ planning agendas, planning for public space in urban waterfronts tends to be for economic gain rather than supporting residents' social needs. These newly pleasing settings satisfied the cluster of middle-class individuals, new communities living along the waterfront, and tourists. A trend of public participatory exclusion is primarily determined by the nature of the planning being undertaken and the decision-making context in which it is embedded. Starting from this context, the research investigates the influence of planning on waterfront regeneration and the role of participation in this process. The research aims to look specifically at the characteristics of the planning process of the waterfront in Da Nang and its impact on the regeneration of the place to regain the city’s historical value and enhance local cultural identity and images. Vietnam runs a top-down planning system where municipal governments have control or power over what happens in their city following the approved planning from the national government. The community has never been excluded from development; however, their participation is still marginalized. In order to ensure social equality, a proposed approach called "bottom-up" should be considered and implemented alongside the traditional "top-down" process and provide a balance of perspectives, as it allows for the voices of the most underprivileged social group involved in a planning project to be heard, rather than ignored. The research provides new insights into the influence of the planning process on the waterfront regeneration in the context of Da Nang.Keywords: planning process, public participation, top-down planning, waterfront regeneration
Procedia PDF Downloads 7116622 Signal Restoration Using Neural Network Based Equalizer for Nonlinear channels
Authors: Z. Zerdoumi, D. Benatia, , D. Chicouche
Abstract:
This paper investigates the application of artificial neural network to the problem of nonlinear channel equalization. The difficulties caused by channel distortions such as inter symbol interference (ISI) and nonlinearity can overcome by nonlinear equalizers employing neural networks. It has been shown that multilayer perceptron based equalizer outperform significantly linear equalizers. We present a multilayer perceptron based equalizer with decision feedback (MLP-DFE) trained with the back propagation algorithm. The capacity of the MLP-DFE to deal with nonlinear channels is evaluated. From simulation results it can be noted that the MLP based DFE improves significantly the restored signal quality, the steady state mean square error (MSE), and minimum Bit Error Rate (BER), when comparing with its conventional counterpart.Keywords: Artificial Neural Network, signal restoration, Nonlinear Channel equalization, equalization
Procedia PDF Downloads 49716621 Business Process Mashup
Authors: Fethia Zenak, Salima Benbernou, Linda Zaoui
Abstract:
Recently, many companies are based on process development from scratch to achieve their business goals. The process development is not trivial and the main objective of enterprise managing processes is to decrease the software development time. Several concepts have been proposed in the field of business process-based reused development, known as BP Mashup. This concept consists of reusing existing business processes which have been modeled in order to respond to a particular goal. To meet user process requirements, our contribution is to mix parts of processes as 'processes fragments' components to build a new process (i.e. process mashup). The main idea of our paper is to offer graphical framework tool for both creating and running processes mashup. Allow users to perform a mixture of fragments, using a simple interface with set of graphical mixture operators based on a proposed formal model. A process mashup and mixture behavior are described within a new specification of a high-level language, language for process mashup (BPML).Keywords: business process, mashup, fragments, bp mashup
Procedia PDF Downloads 63516620 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee
Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado
Abstract:
Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses
Procedia PDF Downloads 3616619 Dutch Disease and Industrial Development: An Investigation of the Determinants of Manufacturing Sector Performance in Nigeria
Authors: Kayode Ilesanmi Ebenezer Bowale, Dominic Azuh, Busayo Aderounmu, Alfred Ilesanmi
Abstract:
There has been a debate among scholars and policymakers about the effects of oil exploration and production on industrial development. In Nigeria, there were many reforms resulting in an increase in crude oil production in the recent past. There is a controversy on the importance of oil production in the development of the manufacturing sector in Nigeria. Some scholars claim that oil has been a blessing to the development of the manufacturing sector, while others regard it as a curse. The objective of the study is to determine if empirical analysis supports the presence of Dutch Disease and de-industrialisation in the Nigerian manufacturing sector between 2019- 2022. The study employed data that were sourced from World Development Indicators, Nigeria Bureau of Statistics, and the Central Bank of Nigeria Statistical Bulletin on manufactured exports, manufacturing employment, agricultural employment, and service employment in line with the theory of Dutch Disease using the unit root test to establish their level of stationarity, Engel and Granger cointegration test to check their long-run relationship. Autoregressive. Distributed Lagged bound test was also used. The Vector Error Correction Model will be carried out to determine the speed of adjustment of the manufacturing export and resource movement effect. The results showed that the Nigerian manufacturing industry suffered from both direct and indirect de-industrialisation over the period. The findings also revealed that there was resource movement as labour moved away from the manufacturing sector to both the oil sector and the services sector. The study concluded that there was the presence of Dutch Disease in the manufacturing industry, and the problem of de-industrialisation led to the crowding out of manufacturing output. The study recommends that efforts should be made to diversify the Nigerian economy. Furthermore, a conducive business environment should be provided to encourage more involvement of the private sector in the agriculture and manufacturing sectors of the economy.Keywords: Dutch disease, resource movement, manufacturing sector performance, Nigeria
Procedia PDF Downloads 7916618 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome
Authors: Karam Chand Gupta
Abstract:
When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.Keywords: dome, mesh, slab, steel
Procedia PDF Downloads 68116617 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 57516616 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing
Procedia PDF Downloads 17816615 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Israel: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Israel using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests significant positive impacts of coal and natural gas consumptions on GDP in Israel. In the short run, GDP positively affects coal consumption. While there exists a positive unidirectional causality running from coal consumption to consumption of petroleum products and the direct combustion of crude oil, there exists a negative unidirectional causality running from natural gas consumption to consumption of petroleum products and the direct combustion of crude oil in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Israel over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Israel, time series analysis
Procedia PDF Downloads 65216614 Jensen's Inequality and M-Convex Functions
Authors: Yamin Sayyari
Abstract:
In this paper, we generalized the Jensen's inequality for m-convex functions and also we present a correction of Jensen's inequality which is a better than the generalization of this inequality for m-convex functions. Finally, we have found new lower and new upper bounds for Jensen's discrete inequality.Keywords: Jensen's inequality, m-convex function, Convex function, Inequality
Procedia PDF Downloads 14516613 Nurture Early for Optimal Nutrition: A Community-Based Randomized Controlled Trial to Improve Infant Feeding and Care Practices Using Participatory Learning and Actions Approach
Authors: Priyanka Patil, Logan Manikam
Abstract:
Background: The first 1000 days of life are a critical window and can result in adverse health consequences due to inadequate nutrition. South-Asian (SA) communities face significant health disparities, particularly in maternal and child health. Community-based interventions, often employing Participatory-Learning and Action (PLA) approaches, have effectively addressed health inequalities in lower-income nations. The aim of this study was to assess the feasibility of implementing a PLA intervention to improve infant feeding and care practices in SA communities living in London. Methods: Comprehensive analyses were conducted to assess the feasibility/fidelity of this pilot randomized controlled trial. Summary statistics were computed to compare key metrics, including participant consent rates, attendance, retention, intervention support, and perceived effectiveness, against predefined progression rules guiding toward a definitive trial. Secondary outcomes were analyzed, drawing insights from multiple sources, such as The Children’s-Eating-Behaviour Questionnaire (CEBQ), Parental-Feeding-Style Questionnaires (PFSQ), Food-diary, and the Equality-Impact-Assessment (EIA) tool. A video analysis of children's mealtime behavior trends was conducted. Feedback interviews were collected from study participants. Results: Process-outcome measures met predefined progression rules for a definitive trial, which deemed the intervention as feasible and acceptable. The secondary outcomes analysis revealed no significant changes in children's BMI z-scores. This could be attributed to the abbreviated follow-up period of 6 months, reduced from 12 months, due to COVID-19-related delays. CEBQ analysis showed increased food responsiveness, along with decreased emotional over/undereating. A similar trend was observed in PFSQ. The EIA tool found no potential discrimination areas, and video analysis revealed a decrease in force-feeding practices. Participant feedback revealed improved awareness and knowledge sharing. Conclusion: This study demonstrates that a co-adapted PLA intervention is feasible and well-received in optimizing infant-care practices among South-Asian community members in a high-income country. These findings highlight the potential of community-based interventions to enhance health outcomes, promoting health equity.Keywords: child health, childhood obesity, community-based, infant nutrition
Procedia PDF Downloads 5616612 Application of Failure Mode and Effects Analysis (FMEA) on the Virtual Process Hazard Analysis of Acetone Production Process
Authors: Princes Ann E. Prieto, Denise F. Alpuerto, John Rafael C. Unlayao, Neil Concibido, Monet Concepcion Maguyon-Detras
Abstract:
Failure Mode and Effects Analysis (FMEA) has been used in the virtual Process Hazard Analysis (PHA) of the Acetone production process through the dehydrogenation of isopropyl alcohol, for which very limited process risk assessment has been published. In this study, the potential failure modes, effects, and possible causes of selected major equipment in the process were identified. During the virtual FMEA mock sessions, the risks in the process were evaluated and recommendations to reduce and/or mitigate the process risks were formulated. The risk was estimated using the calculated risk priority number (RPN) and was classified into four (4) levels according to their effects on acetone production. Results of this study were also used to rank the criticality of equipment in the process based on the calculated criticality rating (CR). Bow tie diagrams were also created for the critical hazard scenarios identified in the study.Keywords: chemical process safety, failure mode and effects analysis (FMEA), process hazard analysis (PHA), process safety management (PSM)
Procedia PDF Downloads 13716611 Time-Dependent Modulation on Depressive Responses and Circadian Rhythms of Corticosterone in Models of Melatonin Deficit
Authors: Jana Tchekalarova, Milena Atanasova, Katerina Georgieva
Abstract:
Melatonin deficit can cause a disturbance in emotional status and circadian rhythms of the endocrine system in the body. Both pharmacological and alternative approaches are applied for correction of dysfunctions driven by changes in circadian dynamics of many physiological indicators. In the present study, we tested and compare the beneficial effect of agomelatine (40 mg/kg, i.p. for 3 weeks) and endurance training on depressive behavior in two models of melatonin deficit in rat. The role of disturbed circadian rhythms of plasma melatonin and corticosterone secretion in the mechanism of these treatments was also explored. The continuous exercise program attenuated depressive responses associated with disrupted diurnal rhythm of home-cage motor activity, anhedonia in the sucrose preference test, and despair-like behavior in the forced swimming test were attenuated by agomelatine exposed to chronic constant light (CCL) and long-term exercise in pinealectomized rats. Parallel to the observed positive effect on the emotional status, agomelatine restored CCL-induced impairment of circadian patterns of plasma melatonin but not that of corticosterone. In opposite, exercise training diminished total plasma corticosterone levels and corrected its flattened pattern while it was unable to correct melatonin deficit in pinealectomy. These results suggest that the antidepressant-like effect of pharmacological and alternative approach might be mediated via two different mechanism, correction of the disturbed circadian rhythm of melatonin and corticosterone, respectively. Therefore, these treatment approaches might have a potential therapeutic application in different subpopulations of people characterized by a melatonin deficiency. This work was supported by the National Science Fund of Bulgaria (research grant # № DN 03/10; DN# 12/6).Keywords: agomelatine, exercise training, melatonin deficit, corticosterone
Procedia PDF Downloads 13216610 Bayes Estimation of Parameters of Binomial Type Rayleigh Class Software Reliability Growth Model using Non-informative Priors
Authors: Rajesh Singh, Kailash Kale
Abstract:
In this paper, the Binomial process type occurrence of software failures is considered and failure intensity has been characterized by one parameter Rayleigh class Software Reliability Growth Model (SRGM). The proposed SRGM is mathematical function of parameters namely; total number of failures i.e. η-0 and scale parameter i.e. η-1. It is assumed that very little or no information is available about both these parameters and then considering non-informative priors for both these parameters, the Bayes estimators for the parameters η-0 and η-1 have been obtained under square error loss function. The proposed Bayes estimators are compared with their corresponding maximum likelihood estimators on the basis of risk efficiencies obtained by Monte Carlo simulation technique. It is concluded that both the proposed Bayes estimators of total number of failures and scale parameter perform well for proper choice of execution time.Keywords: binomial process, non-informative prior, maximum likelihood estimator (MLE), rayleigh class, software reliability growth model (SRGM)
Procedia PDF Downloads 38916609 A Holistic Workflow Modeling Method for Business Process Redesign
Authors: Heejung Lee
Abstract:
In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.Keywords: workflow management, re-engineering, formal concept analysis, business process
Procedia PDF Downloads 40916608 MMSE-Based Beamforming for Chip Interleaved CDMA in Aeronautical Mobile Radio Channel
Authors: Sherif K. El Dyasti, Esam A. Hagras, Adel E. El-Hennawy
Abstract:
This paper addresses the performance of antenna array beam-forming on Chip-Interleaved Code Division Multiple Access (CI_CDMA) system based on Minimum Mean Square Error (MMSE) detector in aeronautical mobile radio channel. Multipath fading, Doppler shifts caused by the speed of the aircraft, and Multiple Access Interference (MAI) are the most important reasons that affect and reduce the performance of aeronautical system. In this paper, we suggested the CI-CDMA with antenna array to combat this fading and improve the bit error rate (BER) performance. We further evaluate the performance of the proposed system in the four standard scenarios in aeronautical mobile radio channel.Keywords: aeronautical channel, CI-CDMA, beamforming, communication, information
Procedia PDF Downloads 41816607 Corruption, Institutional Quality and Economic Growth in Nigeria
Authors: Ogunlana Olarewaju Fatai, Kelani Fatai Adeshina
Abstract:
The interplay of corruption and institutional quality determines how effective and efficient an economy progresses. An efficient institutional quality is a key requirement for economic stability. Institutional quality in most cases has been used interchangeably with Governance and these have given room for proxies that legitimized Governance as measures for institutional quality. A poorly-tailored institutional quality has a penalizing effect on corruption and economic growth, while defective institutional quality breeds corruption. Corruption is a hydra-headed phenomenon as it manifests in different forms. The most celebrated definition of corruption is given as “the use or abuse of public office for private benefits or gains”. It also denotes an arrangement between two mutual parties in the determination and allocation of state resources for pecuniary benefits to circumvent state efficiency. This study employed Barro (1990) type augmented model to analyze the nexus among corruption, institutional quality and economic growth in Nigeria using annual time series data, which spanned the period 1996-2019. Within the analytical framework of Johansen Cointegration technique, Error Correction Mechanism (ECM) and Granger Causality tests, findings revealed a long-run relationship between economic growth, corruption and selected measures of institutional quality. The long run results suggested that all the measures of institutional quality except voice & accountability and regulatory quality are positively disposed to economic growth. Moreover, the short-run estimation indicated a reconciliation of the divergent views on corruption which pointed at “sand the wheel” and “grease the wheel” of growth. In addition, regulatory quality and the rule of law indicated a negative influence on economic growth in Nigeria. Government effectiveness and voice & accountability, however, indicated a positive influence on economic growth. The Granger causality test results suggested a one-way causality between GDP and Corruption and also between corruption and institutional quality. Policy implications from this study pointed at checking corruption and streamlining institutional quality framework for better and sustained economic development.Keywords: institutional quality, corruption, economic growth, public policy
Procedia PDF Downloads 17016606 Community Arts-Based Learning for Interdisciplinary Pedagogy: Measuring Program Effectiveness Using Design Imperatives for 'a New American University'
Authors: Kevin R. Wilson, Roger Mantie
Abstract:
Community arts-based learning and participatory education are pedagogical techniques that serve to be advantageous for students, curriculum development, and local communities. Using an interpretive approach to examine the significance of this arts-informed research in relation to the eight ‘design imperatives’ proposed as the new model for measuring quality in scholarship for Arizona State University as ‘A New American University’, the purpose of this study was to investigate personal, social, and cultural benefits resulting from student engagement in interdisciplinary community-based projects. Students from a graduate level music education class at the ASU Tempe campus (n=7) teamed with students from an undergraduate level community development class at the ASU Downtown Phoenix campus (n=14) to plan, facilitate, and evaluate seven community-based projects in several locations around the Phoenix-metro area. Data was collected using photo evidence, student reports, and evaluative measures designed by the students. The effectiveness of each project was measured in terms of their ability to meet the eight design imperatives to: 1) leverage place; 2) transform society; 3) value entrepreneurship; 4) conduct use-inspired research; 5) enable student success; 6) fuse intellectual disciplines; 7) be socially embedded; and 8) engage globally. Results indicated that this community arts-based project sufficiently captured the essence of each of these eight imperatives. Implications for how the nature of this interdisciplinary initiative allowed for the eight imperatives to manifest are provided, and project success is expounded upon in relation to utility of each imperative. Discussion is also given for how this type of service learning project formatted within the ‘New American University’ model for measuring quality in academia can be a beneficial pedagogical tool in higher education.Keywords: community arts-based learning, participatory education, pedagogy, service learning
Procedia PDF Downloads 40116605 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis
Authors: Izabela Kapsa
Abstract:
Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.Keywords: Central and Eastern Europe, e-participation, e-government, post-communism
Procedia PDF Downloads 19316604 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building
Authors: Aaditya U. Jhamb
Abstract:
Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.Keywords: energy efficient buildings, heating load, cooling load, machine learning models
Procedia PDF Downloads 96