Search results for: molecular diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4029

Search results for: molecular diagnosis

3369 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
3368 Free and Encapsulated (TiO2)2 Dimers into Carbon Nanotubes

Authors: S. Dargouthi, S. Boughdiri, B. Tangour

Abstract:

This work invoked two complementary parts. In the first, we performed a theoretical study of various dimers of molecular of titanium dioxide. Five structures were examined. Three among them, the (T), (C) and (T/P) isomers, may be considered as stable compounds because they represent absolute minima on their potential energy surfaces. (T) and (C) may coexist because they are separted by only 6.5 kcal mol-1 but (T/P) dimer is in a metastable state from an energetic point of view. Non bonded dimer (P) transforms into its homologue (O) which has been considered as transitory specie with low lifetime which evolves to (T) structure. In the second part, we highlight the possible stabilization of (T), (C) and (P) dimers by encapsulation in carbon nanotubes. This indicates the probable role that plays this transitory specie the polymerization process of molecular TiO2. Confinement is suitable to control the fast evolution process and could towards the synthesis of new titanium dioxide nanostructured materials. An alternative description of TiO2 polymorphs (Rutie, anatase et Brookite) is proposed from (T), (C) and (T/P) dimmers motifs.

Keywords: titanium dioxide, carbon nanotube, confinement. encapsulation, transitory specie

Procedia PDF Downloads 291
3367 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 337
3366 Static Eccentricity Fault Diagnosis in Synchronous Reluctance Motor and Permanent Magnet Assisted Synchronous Reluctance Motor

Authors: M. Naeimi, H. Aghazadeh, E. Afjei, A. Siadatan

Abstract:

In this paper, a novel view of air gap magnetic field analysis of synchronous reluctance motor and permanent magnet assisted synchronous reluctance motor under static eccentricity to provide the precise fault diagnosis based on three-dimensional finite element method is presented. Analytical nature of this method makes it possible to simulate reliable and precise model by considering the end effects and axial fringing effects. The results of the three-dimensional finite element analysis of synchronous reluctance motor and permanent magnet synchronous reluctance motor such as flux linkage, flux density, and compression both of SynRM and PM-SynRM for various eccentric motor conditions are obtained and analyzed. These results present useful information regarding to the detection of static eccentricity.

Keywords: synchronous reluctance motor (SynRM), permanent magnet assisted synchronous reluctance motor (PMaSynRM), finite element method, static eccentricity, fault analysis

Procedia PDF Downloads 311
3365 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
3364 A Molecular Dynamics Study on Intermittent Plasticity and Dislocation Avalanche Emissions in FCC and BCC Crystals

Authors: Javier Varillas, Jorge Alcalá

Abstract:

We investigate dislocation avalanche phenomena in face-centered cubic (FCC) and body-centered cubic (BCC) crystals using massive, large-scale molecular dynamics (MD) simulations. The analysis is focused on the intermittent development of dense dislocation arrangements subjected to uniaxial tensile straining under displacement control. We employ a novel computational scheme that allows us to inject an entangled dislocation structure in periodic MD domains. We assess the emission of plastic bursts (or dislocation avalanches) in terms of the sharp stress drops detected in the stress-strain curve. The plastic activity corresponds to the sporadic operation of specific dislocation glide processes exhibiting quiescent periods between successive avalanche events. We find that the plastic intermittences in our simulations do not overlap in time under sufficiently low strain rates as dissipation operates faster than driving, where the dense dislocation networks evolve through the emission of dislocation avalanche events whose carried slip adheres to self-organized power-law distributions. These findings enable the extension of the slip distributions obtained from strict displacement-controlled micropillar compression experiments towards smaller values of slip size. Our results furnish further understanding upon the development of entangled dislocation networks in metal plasticity, including specific mechanisms of dislocation propagation and annihilation, along with the evolution of specific dislocation populations through dislocation density analyses.

Keywords: dislocations, intermittent plasticity, molecular dynamics, slip distributions

Procedia PDF Downloads 139
3363 Identifying Degradation Patterns of LI-Ion Batteries from Impedance Spectroscopy Using Machine Learning

Authors: Yunwei Zhang, Qiaochu Tang, Yao Zhang, Jiabin Wang, Ulrich Stimming, Alpha Lee

Abstract:

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved challenge that limits technologies such as consumer electronics and electric vehicles. Here we build an accurate battery forecasting system by combining electrochemical impedance spectroscopy (EIS) -- a real-time, non-invasive and information-rich measurement that is hitherto underused in battery diagnosis -- with Gaussian process machine learning. We collect over 20,000 EIS spectra of commercial Li-ion batteries at different states of health, states of charge and temperatures -- the largest dataset to our knowledge of its kind. Our Gaussian process model takes the entire spectrum as input, without further feature engineering, and automatically determines which spectral features predict degradation. Our model accurately predicts the remaining useful life, even without complete knowledge of past operating conditions of the battery. Our results demonstrate the value of EIS signals in battery management systems.

Keywords: battery degradation, machine learning method, electrochemical impedance spectroscopy, battery diagnosis

Procedia PDF Downloads 148
3362 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients

Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori

Abstract:

Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.

Keywords: asthma, datamining, classification, machine learning

Procedia PDF Downloads 447
3361 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation

Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi

Abstract:

Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.

Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation

Procedia PDF Downloads 78
3360 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19

Authors: M. Bilal Ishfaq, Adnan N. Qureshi

Abstract:

COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.

Keywords: COVID-19, feature engineering, artificial neural networks, radiology images

Procedia PDF Downloads 75
3359 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 341
3358 Comparison of Nucleic Acid Extraction Platforms On Tissue Samples

Authors: Siti Rafeah Md Rafei, Karen Wang Yanping, Park Mi Kyoung

Abstract:

Tissue samples are precious supply for molecular studies or disease identification diagnosed using molecular assays, namely real-time PCR (qPCR). It is critical to establish the most favorable nucleic acid extraction that gives the PCR-amplifiable genomic DNA. Furthermore, automated nucleic acid extraction is an appealing alternative to labor-intensive manual methods. Operational complexity, defined as the number of steps required to obtain an extracted sample, is one of the criteria in the comparison. Here we are comparing the One BioMed’s automated X8 platform with the commercially available manual-operated kits from QIAGEN Mini Kit and Roche. We extracted DNA from rat fresh-frozen tissue (from different type of organs) in the matrices. After tissue pre-treatment, it is added to the One BioMed’s X8 pre-filled cartridge, and the QIAGEN QIAmp column respectively. We found that the results after subjecting the eluates to the Real Time PCR using BIORAD CFX are comparable.

Keywords: DNA extraction, frozen tissue, PCR, qPCR, rat

Procedia PDF Downloads 160
3357 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing

Authors: T. Bensana, S. Mekhilef

Abstract:

The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.

Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising

Procedia PDF Downloads 379
3356 Hypotonia - A Concerning Issue in Neonatal Care

Authors: Eda Jazexhiu-Postoli, Gladiola Hoxha, Ada Simeoni, Sonila Biba

Abstract:

Background Neonatal hypotonia represents a commonly encountered issue in the Neonatal Intensive Care Unit and newborn nursery. The differential diagnosis is broad, encompassing chromosome abnormalities, primary muscular dystrophies, neuropathies and inborn errors of metabolism. Aim of study Our study describes some of the main clinical features of hypotonia in newborns and presents clinical cases of neonatal hypotonia we treated in our Neonatal unit in the last 3 years. Case reports Four neonates born in our hospital presented with hypotonia after birth, one preterm newborn 35-36 weeks of gestational age and three other term newborns (38-39 weeks of gestational age). Prenatal data revealed a decrease in fetal movements in both cases. Intrapartum meconium-stained amniotic fluid was found in 75% of our hypotonic newborns. Clinical features included inability to establish effective respiratory movements and need for resuscitation in the delivery room, respiratory distress syndrome, feeding difficulties and need for oro-gastric tube feeding, dysmorphic features, hoarse voice and moderate to severe muscular hypotonia. The genetic workup revealed the diagnosis of Autosomal Recessive Congenital Myasthenic Syndrome 1-B, Sotos Syndrome, Spinal Muscular Atrophy Type 1 and Transient Hypotonia of the Newborn. Two out of four hypotonic neonates were transferred to the Pediatric Intensive Care Unit and died at the age of three to five months old. Conclusion Hypotonia is a concerning finding in neonatal care and it is suggested by decreased intrauterine fetal movements, failure to establish first breaths, respiratory distress and feeding difficulties in the neonate. Prognosis is determined by its etiology and time of diagnosis and intervention.

Keywords: hypotonic neonate, respiratory distress, feeding difficulties, fetal movements

Procedia PDF Downloads 115
3355 Correlation between Polysaccharides Molecular Weight Changes and Pectinases Gene Expression during Papaya Ripening

Authors: Samira B. R. Prado, Paulo R. Melfi, Beatriz T. Minguzzi, João P. Fabi

Abstract:

Fruit softening is the main change that occurs during papaya (Carica papaya L.) ripening. It is characterized by the depolymerization of cell wall polysaccharides, especially the pectic fractions, which causes cell wall disassembling. However, it is uncertain how the modification of the two main pectin polysaccharides fractions (water-soluble – WSF, and oxalate-soluble fractions - OSF) accounts for fruit softening. The aim of this work was to correlate molecular weight changes of WSF and OSF with the gene expression of pectin-solubilizing enzymes (pectinases) during papaya ripening. Papaya fruits obtained from a producer were harvest and storage under specific conditions. The fruits were divided in five groups according to days after harvesting. Cell walls from all groups of papaya pulp were isolated and fractionated (WSF and OSF). Expression profiles of pectinase genes were achieved according to the MIQE guidelines (Minimum Information for publication of Quantitative real-time PCR Experiments). The results showed an increased yield and a decreased molecular weight throughout ripening for WSF and OSF. Gene expression data support that papaya softening is achieved by polygalacturonases (PGs) up-regulation, in which their actions might have been facilitated by the constant action of pectinesterases (PMEs). Moreover, BGAL1 gene was up-regulated during ripening with a simultaneous galactose release, suggesting that galactosidases (GALs) could also account for pulp softening. The data suggest that a solubilization of galacturonans and a depolymerization of cell wall components were caused mainly by the action of PGs and GALs.

Keywords: carica papaya, fruit ripening, galactosidases, plant cell wall, polygalacturonases

Procedia PDF Downloads 423
3354 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done

Authors: Geir Kirkebøen

Abstract:

Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.

Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis

Procedia PDF Downloads 329
3353 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
3352 Production of New Hadron States in Effective Field Theory

Authors: Qi Wu, Dian-Yong Chen, Feng-Kun Guo, Gang Li

Abstract:

In the past decade, a growing number of new hadron states have been observed, which are dubbed as XYZ states in the heavy quarkonium mass regions. In this work, we present our study on the production of some new hadron states. In particular, we investigate the processes Υ(5S,6S)→ Zb (10610)/Zb (10650)π, Bc→ Zc (3900)/Zc (4020)π and Λb→ Pc (4312)/Pc (4440)/Pc (4457)K. (1) For the production of Zb (10610)/Zb (10650) from Υ(5S,6S) decay, two types of bottom-meson loops were discussed within a nonrelativistic effective field theory. We found that the loop contributions with all intermediate states being the S-wave ground state bottom mesons are negligible, while the loops with one bottom meson being the broad B₀* or B₁' resonance could provide the dominant contributions to the Υ(5S)→ Zb⁽'⁾ π. (2) For the production of Zc (3900)/Zc (4020) from Bc decay, the branching ratios of Bc⁺→ Z (3900)⁺ π⁰ and Bc⁺→ Zc (4020)⁺ π⁰ are estimated to be of order of 10⁽⁻⁴⁾ and 10⁽⁻⁷⁾ in an effective Lagrangian approach. The large production rate of Zc (3900) could provide an important source of the production of Zc (3900) from the semi-exclusive decay of b-flavored hadrons reported by D0 Collaboration, which can be tested by the exclusive measurements in LHCb. (3) For the production of Pc (4312), Pc (4440) and Pc (4457) from Λb decay, the ratio of the branching fraction of Λb→ Pc K was predicted in a molecular scenario by using an effective Lagrangian approach, which is weakly dependent on our model parameter. We also find the ratios of the productions of the branching fractions of Λb→ Pc K and Pc→ J/ψ p can be well interpreted in the molecular scenario. Moreover, the estimated branching fractions of Λb→ Pc K are of order 10⁽⁻⁶⁾, which could be tested by further measurements in LHCb Collaboration.

Keywords: effective Lagrangian approach, hadron loops, molecular states, new hadron states

Procedia PDF Downloads 132
3351 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis

Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza

Abstract:

Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.

Keywords: permanent magnet, diagnosis, demagnetization, modelling

Procedia PDF Downloads 68
3350 High Frequency of Chlamydophila Pneumoniae in Children with Asthma Exacerbations

Authors: Katherine Madero Valencia, Carlos Jaramillo, Elida Dueñas, Carlos Torres, María Del Pilar Delgado

Abstract:

Asthma, described as a chronic inflammatory condition of the airways, courses accompanied by episodes known as exacerbations, characterized by a worsening of symptoms. Among the triggers, some allergen-irritative and infectious agents are found, including Chlamydophila pneumoniae which seems to play an increasingly important role. In this paper a PCR was used to detect C. pneumoniae in order to estimate the frequency of infections caused by this agent in pediatric patients with asthma exacerbations. C. pneumoniae distribution throughout the study period was also evaluated. 175 nasopharyngeal aspirates from children with asthma exacerbations were analyzed by PCR and sequencing. A global prevalence of C. pneumoniae of 53.71% was obtained. This study highlights a high circulation of C. pneumoniae during the study period, in children of all ages and especially in children under 5 years old. Molecular tests applied permit a rapid detection and improved our knowledge about these infections in children with asthma.

Keywords: Chlamydophila pneumoniae, detection, molecular techniques, pediatric asthma

Procedia PDF Downloads 545
3349 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis

Authors: Fahad Qureshi

Abstract:

This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.

Keywords: exhaust side bearing, Gas turbine, rubbing, vibration

Procedia PDF Downloads 186
3348 γ-Irradiation of Oat β- Glucan: Effect on Antioxidant and Antiproliferative Properties

Authors: Asima Shah, F. A. Masoodi, Adil Gani, Bilal Ahmad Ashwar

Abstract:

The present study was designed to evaluate the effect of γ-rays on the antioxidant and antiproliferative potential of β-glucan isolated from oats. The β-glucan was irradiated with 0, 2, 6, and 10 kGy by gamma ray. The samples were characterized by FT-IR, GPC, and quantitative estimation by Megazyme β-glucan assay kit. The average molecular weight of non-irradiated β-glucan was 199 kDa that decreased to 70 kDa at 10 kGy. Both FT-IR spectrum and chemical analysis revealed that the extracted β-glucan was pure having minor impurities. Antioxidant activity was evaluated by DPPH, lipid peroxidation, reducing power, metal chelating ability and oxidative DNA damage assays. Results revealed that the antioxidant activity of β-glucan increased with the increase in irradiation dose. Irradiated β-glucan also exhibited dose dependent cancer cell growth inhibition with irradiation doses. The study revealed that low molecular weight β-glucan with enhanced antioxidant and antiproliferative activities can be produced by a simple irradiation method.

Keywords: γ-irradiation, antioxidant activity, antiproliferative activity, β-glucan, oats

Procedia PDF Downloads 457
3347 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: building system, time series, diagnosis, outliers, delay, data gap

Procedia PDF Downloads 245
3346 Bio-Guided of Active New Alkaloids from Alstonia Brassi Toxicity Antitumour Activity in Silico and Molecular Modeling

Authors: Mesbah Khaled, Bouraoui Ouissal, Benkiniouar Rachid, Belkhiri Lotfi

Abstract:

Alstonia, which are tropical plants with a wide geographical distribution, have been divided into different sections by different authors based on previous studies of several species within the genus. Monachino divides Alstonia into 5 sections, while Pichon divides it into 3 sections. Several plants belonging to this genus, such as Alstonia brassii, have been used in traditional folk medicine to treat ailments such as fever, malaria and dysentery]. Previous studies focusing on the chemical composition of these plants have successfully identified indol alkaloids with cytotoxic, anti-diabetic and anti-inflammatory properties. The newly discovered monomers are structurally similar to the backbones of picralin, affinisin and macrolin. On the other hand, all recently isolated dimeric compounds have a macrolin moiety. In this study, a computational analysis was performed on a series of novel molecules, including both monomeric and dimeric compounds with different structural frameworks. This investigation represents the first computational study of these molecules using an in silico approach incorporating 2D-QSAR data. The analysis involved various computational techniques, including 2D-QSAR modelling, molecular docking studies and subsequent validation by molecular dynamics simulation and assessment of ADMET properties. The chemical composition was identified by 1D and 2D NMR. Eight new alkaloids were isolated, 5 monomers and 3 dimers. In this section, we focus on the biological activity of 4 new alkaloids belonging to two different skeletons, the affinisine skeleton.

Keywords: affinisine, talcarpine, macroline, cytotoxicity, alkaloids

Procedia PDF Downloads 351
3345 Stigmatization of Individuals Who Receive Mental Health Treatment and the Role of Social Media: A Cross-Generational Cohort Design and Extension

Authors: Denise Ben-Porath, Tracy Masterson

Abstract:

In the past, individuals who struggled with and sought treatment for mental health difficulties were stigmatized. However, the current generation holds more open attitudes around mental health issues. Indeed, public figures such as Demi Lovato, Naomi Osaka, and Simone Biles have taken to social media to break the silence around mental health, discussing their own struggles and the benefits of treatment. Thus, there is considerable reason to believe that this generation would hold fewer stigmatizing attitudes toward mental health difficulties and treatment compared to previous ones. In this study, we explored possible changes in stigma on mental health diagnosis and treatment seeking behavior between two generations: Gen Z, the current generation, and Gen X, those born between 1965-1980. It was hypothesized that Gen Z would hold less stigmatizing views on mental illness than Gen X. To examine possible changes in stigma attitudes between these two generations, we conducted a cross-generational cohort design by using the same methodology employed 20 years ago from the Ben-Porath (2002) study. Thus, participants were randomly assigned to read one of the following four case vignettes employed in the Ben-Porath (2002) study: (a) “Tom” who has received psychotherapy due to depression (b) “Tom” who has been depressed but received no psychological help, (c) “Tom” who has received medical treatment due to a back pain, or (d) “Tom” who had a back pain but did not receive medical attention. After reading the vignette, participants rated “Tom” on various personality dimensions using the IFQ Questionnaire and answered questions about their frequency of social media use and willingness to seek mental health treatment on a scale from 1-10. Identical to the results 20 years prior, a significant main effect was found for diagnosis with “Tom” being viewed in more negative terms when he was described as having depression vs. a medical condition (back pain) [F (1, 376) = 126.53, p < .001]. However, in the study conducted 20 years earlier, a significant interaction was found between diagnosis and help-seeking behavior [F (1, 376) = 8.28, p < .005]. Specifically, “Tom” was viewed in the most negative terms when described as depressed and seeking treatment. Alternatively, the current study failed to find a significant interaction between depression and help seeking behavior. These findings suggest that while individuals who hold a mental health diagnosis may still be stigmatized as they were 20 years prior, seeking treatment for mental health issues may be less so. Findings are discussed in the context of social media use and its impact on destigmatization.

Keywords: stigma, mental illness, help-seeking, social media

Procedia PDF Downloads 81
3344 Identification of Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists for Treatment of Metabolic Disorders, Insilico Screening, and Molecular Dynamics Simulation

Authors: Virendra Nath, Vipin Kumar

Abstract:

Background: TypeII Diabetes mellitus is a foremost health problem worldwide, predisposing to increased mortality and morbidity. Undesirable effects of the current medications have prompted the researcher to develop more potential drug(s) against the disease. The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptors family and take part in a vital role in the regulation of metabolic equilibrium. They can induce or repress genes associated with adipogenesis, lipid, and glucose metabolism. Aims: Investigation of PPARα/γ agonistic hits were screened by hierarchical virtual screening followed by molecular dynamics simulation and knowledge-based structure-activity relation (SAR) analysis using approved PPAR α/γ dual agonist. Methods: The PPARα/γ agonistic activity of compounds was searched by using Maestro through structure-based virtual screening and molecular dynamics (MD) simulation application. Virtual screening of nuclear-receptor ligands was done, and the binding modes with protein-ligand interactions of newer entity(s) were investigated. Further, binding energy prediction, Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit along with the structural comparative analysis of approved PPARα/γ agonists with screened hit was done for knowledge-based SAR. Results and Discussion: The silicone chip-based approach recognized the most capable nine hits and had better predictive binding energy as compared to the reference drug compound (Tesaglitazar). In this study, the key amino acid residues of binding pockets of both targets PPARα/γ were acknowledged as essential and were found to be associated in the key interactions with the most potential dual hit (ChemDiv-3269-0443). Stability studies using molecular dynamics (MD) simulation of PPARα and γ complex was performed with the most promising hit and found root mean square deviation (RMSD) stabile around 2Å and 2.1Å, respectively. Frequency distribution data also revealed that the key residues of both proteins showed maximum contacts with a potent hit during the MD simulation of 20 nanoseconds (ns). The knowledge-based SAR studies of PPARα/γ agonists were studied using 2D structures of approved drugs like aleglitazar, tesaglitazar, etc. for successful designing and synthesis of compounds PPARγ agonistic candidates with anti-hyperlipidimic potential.

Keywords: computational, diabetes, PPAR, simulation

Procedia PDF Downloads 103
3343 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 418
3342 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method

Procedia PDF Downloads 511
3341 Molecular Electron Density Theory Study on the Mechanism and Selectivity of the 1,3 Dipolar Cycloaddition Reaction of N-Methyl-C-(2-Furyl) Nitrone with Activated Alkenes

Authors: Moulay Driss Mellaoui, Abdallah Imjjad, Rachid Boutiddar, Haydar Mohammad-Salim, Nivedita Acharjee, Hassan Bourzi, Souad El Issami, Khalid Abbiche, Hanane Zejli

Abstract:

We have investigated the underlying molecular processes involved in the [3+2] cycloaddition (32CA) reactions between N-methyl-C-(2-furyl) nitrone and three acetylene derivatives: 4b, 5b, and 6b. For this investigation, we utilized molecular electron density theory (MEDT) and density functional theory (DFT) methods at the B3LYP-D3/6 31G (d) computational level. These 32CA reactions, which exhibit a zwitterionic (zw-type) nature, proceed through a one-step mechanism with activation enthalpies ranging from 8.80 to 14.37 kcal mol−1 in acetonitrile and ethanol solvents. When the nitrone reacts with phenyl methyl propiolate (4b), two regioisomeric pathways lead to the formation of two products: P1,5-4b and P1,4-4b. On the other hand, when the nitrone reacts with dimethyl acetylene dicarboxylate (5b) and acetylene dicarboxylic acid (but-2-ynedioic acid) (6b), it results in the formation of a single product. Through topological analysis, we can categorize the nitrone as a zwitterionic three-atom component (TAC). Furthermore, the analysis of conceptual density functional theory (CDFT) indices classifies the 32CA reactions of the nitrone with 4b, 5b, and 6b as forward electron density flux (FEDF) reactions. The study of bond evolution theory (BET) reveals that the formation of new C-C and C-O covalent bonds does not initiate in the transition states, as the intermediate stages of these reactions display pseudoradical centers of the atoms already involved in bonding.

Keywords: 4-isoxazoline, DFT/B3LYP-D3, regioselectivity, cycloaddition reaction, MEDT, ELF

Procedia PDF Downloads 183
3340 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment

Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova

Abstract:

Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).

Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin

Procedia PDF Downloads 123