Search results for: model based clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38025

Search results for: model based clustering

37365 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model

Authors: Youngjae Jin, Daeshik Kim

Abstract:

This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.

Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning

Procedia PDF Downloads 446
37364 Developing Fuzzy Logic Model for Reliability Estimation: Case Study

Authors: Soroor K. H. Al-Khafaji, Manal Mohammad Abed

Abstract:

The research aim of this paper is to evaluate the reliability of a complex engineering system and to design a fuzzy model for the reliability estimation. The designed model has been applied on Vegetable Oil Purification System (neutralization system) to help the specialist user based on the concept of FMEA (Failure Mode and Effect Analysis) to estimate the reliability of the repairable system at the vegetable oil industry. The fuzzy model has been used to predict the system reliability for a future time period, depending on a historical database for the two past years. The model can help to specify the system malfunctions and to predict its reliability during a future period in more accurate and reasonable results compared with the results obtained by the traditional method of reliability estimation.

Keywords: fuzzy logic, reliability, repairable systems, FMEA

Procedia PDF Downloads 614
37363 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 393
37362 The Limits of Charity: Advancing a Rights-based Justice Model to Remedy Poverty and Hunger

Authors: Tracy Smith-Carrier

Abstract:

In 1995, the World Health Organization declared that poverty was the biggest killer and the greatest cause of suffering in the world. Income is certainly a key social determinant of health, the lack of which causes innumerable health and mental health conditions. In seeking to provide relief from financial hardship for residents within their populace, states in the Global North have largely turned to the non-profit and charitable sector. The stigma and shame of accessing charity is a significant barrier for many, but what is more problematic is that the embrace of the charitable model has let governments off the hook from responding to their international human rights obligations. Although states are signatories to various human rights treaties and conventions internationally, many of these laws have not been implemented domestically. This presentation explores the limits of the charitable model in addressing poverty in countries of the Global North. Unlike in the ages passed, when poverty was thought to be an individual problem, we now know that poverty is largely systemic in nature. In this presentation, we will identify the structural determinants of poverty, outline why people are reticent to access charitable programs and services and how income security is reproduced through the charitable model, and discuss evidence-informed solutions, such as a basic income guarantee, to move beyond the charitable model in favour of a rights-based justice model. To move beyond charity, we must demand that governments recognize our fundamental human rights and address poverty and hunger using a justice model based on substantive human rights.

Keywords: basic income, charity, poverty, income security, hunger, food security, social justice, human rights

Procedia PDF Downloads 117
37361 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm

Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri

Abstract:

Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.

Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering

Procedia PDF Downloads 103
37360 Towards a Security Model against Denial of Service Attacks for SIP Traffic

Authors: Arellano Karina, Diego Avila-Pesántez, Leticia Vaca-Cárdenas, Alberto Arellano, Carmen Mantilla

Abstract:

Nowadays, security threats in Voice over IP (VoIP) systems are an essential and latent concern for people in charge of security in a corporate network, because, every day, new Denial-of-Service (DoS) attacks are developed. These affect the business continuity of an organization, regarding confidentiality, availability, and integrity of services, causing frequent losses of both information and money. The purpose of this study is to establish the necessary measures to mitigate DoS threats, which affect the availability of VoIP systems, based on the Session Initiation Protocol (SIP). A Security Model called MS-DoS-SIP is proposed, which is based on two approaches. The first one analyzes the recommendations of international security standards. The second approach takes into account weaknesses and threats. The implementation of this model in a VoIP simulated system allowed to minimize the present vulnerabilities in 92% and increase the availability time of the VoIP service into an organization.

Keywords: Denial-of-Service SIP attacks, MS-DoS-SIP, security model, VoIP-SIP vulnerabilities

Procedia PDF Downloads 203
37359 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States

Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh

Abstract:

The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.

Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation

Procedia PDF Downloads 232
37358 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning

Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag

Abstract:

The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.

Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling

Procedia PDF Downloads 91
37357 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Authors: Aid Abdelkrim

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading

Procedia PDF Downloads 396
37356 Analysis of the Fair Distribution of Urban Facilities in Kabul City by Population Modeling

Authors: Ansari Mohammad Reza, Hiroko Ono

Abstract:

In this study, we investigated how much of the urban facilities are fairly distributing in the city of Kabul based on the factor of population. To find the answer to this question we simulated a fair model for the distribution of investigated facilities in the city which is proposed based on the consideration of two factors; the number of users for each facility and the average distance of reach of each facility. Then the model was evaluated to make sure about its efficiency. And finally, the two—the existing pattern and the simulation model—were compared to find the degree of bias in the existing pattern of distribution of facilities in the city. The result of the study clearly clarified that the facilities are not fairly distributed in Kabul city based on the factor of population. Our analysis also revealed that the education services and the parks are the most and the worst fair distributed facilities in this regard.

Keywords: Afghanistan, ArcGIS Software, Kabul City, fair distribution, urban facilities

Procedia PDF Downloads 179
37355 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 121
37354 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 111
37353 A User Study on the Adoption of Context-Aware Destination Mobile Applications

Authors: Shu-Lu Hsu, Fang-Yi Chu

Abstract:

With the advances in information and communications technology, mobile context-aware applications have become powerful marketing tools. In Apple online store, there are numerous mobile applications (APPs) developed for destination tour. This study investigated the determinants of adoption of context-aware APPs for destination tour services. A model is proposed based on Technology Acceptance Model and privacy concern theory. The model was empirically tested based on a sample of 259 users of a tourism APP published by Kaohsiung Tourism Bureau, Taiwan. The results showed that the fitness of the model is well and, among all the factors, the perceived usefulness and perceived ease of use have the most significant influences on the intention to adopt context-aware destination APPs. Finally, contrary to the findings of previous literature, the effect of privacy concern on the adoption intention of context-aware APP is insignificant.

Keywords: mobile application, context-aware, privacy concern, TAM

Procedia PDF Downloads 258
37352 Application of Model Tree in the Prediction of TBM Rate of Penetration with Synthetic Minority Oversampling Technique

Authors: Ehsan Mehryaar

Abstract:

The rate of penetration is (RoP) one of the vital factors in the cost and time of tunnel boring projects; therefore, predicting it can lead to a substantial increase in the efficiency of the project. RoP is heavily dependent geological properties of the project site and TBM properties. In this study, 151-point data from Queen’s water tunnel is collected, which includes unconfined compression strength, peak slope index, angle with weak planes, and distance between planes of weaknesses. Since the size of the data is small, it was observed that it is imbalanced. To solve that problem synthetic minority oversampling technique is utilized. The model based on the model tree is proposed, where each leaf consists of a support vector machine model. Proposed model performance is then compared to existing empirical equations in the literature.

Keywords: Model tree, SMOTE, rate of penetration, TBM(tunnel boring machine), SVM

Procedia PDF Downloads 174
37351 Developing a Green Strategic Management Model with regarding HSE-MS

Authors: Amin Padash, Gholam Reza Nabi Bid Hendi, Hassan Hoveidi

Abstract:

Purpose: The aim of this research is developing a model for green management based on Health, Safety and Environmental Management System. An HSE-MS can be a powerful tool for organizations to both improve their environmental, health and safety performance, and enhance their business efficiency to green management. Model: The model is developed in this study can be used for industries as guidelines for implementing green management issue by considering Health, Safety and Environmental Management System. Case Study: The Pars Special Economic / Energy Zone Organization on behalf of Iran’s Petroleum Ministry and National Iranian Oil Company (NIOC) manages and develops the South and North oil and gas fields in the region. Methodology: This research according to objective is applied and based on implementing is descriptive and also prescription. We used technique MCDM (Multiple Criteria Decision-Making) for determining the priorities of the factors. Based on process approach the model consists of the following steps and components: first factors involved in green issues are determined. Based on them a framework is considered. Then with using MCDM (Multiple Criteria Decision-Making) algorithms (TOPSIS) the priority of basic variables are determined. The authors believe that the proposed model and results of this research can aid industries managers to implement green subjects according to Health, Safety and Environmental Management System in a more efficient and effective manner. Finding and conclusion: Basic factors involved in green issues and their weights can be the main finding. Model and relation between factors are the other finding of this research. The case is considered Petrochemical Company for promoting the system of ecological industry thinking.

Keywords: Fuzzy-AHP method , green management, health, safety and environmental management system, MCDM technique, TOPSIS

Procedia PDF Downloads 411
37350 Application of the Micropolar Beam Theory for the Construction of the Discrete-Continual Model of Carbon Nanotubes

Authors: Samvel H. Sargsyan

Abstract:

Together with the study of electron-optical properties of nanostructures and proceeding from experiment-based data, the study of the mechanical properties of nanostructures has become quite actual. For the study of the mechanical properties of fullerene, carbon nanotubes, graphene and other nanostructures one of the crucial issues is the construction of their adequate mathematical models. Among all mathematical models of graphene or carbon nano-tubes, this so-called discrete-continuous model is specifically important. It substitutes the interactions between atoms by elastic beams or springs. The present paper demonstrates the construction of the discrete-continual beam model for carbon nanotubes or graphene, where the micropolar beam model based on the theory of moment elasticity is accepted. With the account of the energy balance principle, the elastic moment constants for the beam model, expressed by the physical and geometrical parameters of carbon nanotube or graphene, are determined. By switching from discrete-continual beam model to the continual, the models of micropolar elastic cylindrical shell and micropolar elastic plate are confirmed as continual models for carbon nanotube and graphene respectively.

Keywords: carbon nanotube, discrete-continual, elastic, graphene, micropolar, plate, shell

Procedia PDF Downloads 159
37349 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms

Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios

Abstract:

Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.

Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction

Procedia PDF Downloads 184
37348 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments

Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing

Abstract:

Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.

Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization

Procedia PDF Downloads 166
37347 Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes

Authors: Bruno Vilić Belina, Jadranko Matuško

Abstract:

The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment.

Keywords: control systems, cyber attacks, resiliency, robustness, tube based model predictive control

Procedia PDF Downloads 67
37346 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset

Procedia PDF Downloads 353
37345 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 368
37344 Improvement of Camera Calibration Based on the Relationship between Focal Length and Aberration Coefficient

Authors: Guorong Sui, Xingwei Jia, Chenhui Yin, Xiumin Gao

Abstract:

In the processing of camera-based high precision and non-contact measurement, the geometric-optical aberration is always inevitably disturbing the measuring system. Moreover, the aberration is different with the different focal length, which will increase the difficulties of the system’s calibration. Therefore, to understand the relationship between the focal length as a function of aberration properties is a very important issue to the calibration of the measuring systems. In this study, we propose a new mathematics model, which is based on the plane calibration method by Zhang Zhengyou, and establish a relationship between the focal length and aberration coefficient. By using the mathematics model and carefully modified compensation templates, the calibration precision of the system can be dramatically improved. The experiment results show that the relative error is less than 1%. It is important for optoelectronic imaging systems that apply to measure, track and position by changing the camera’s focal length.

Keywords: camera calibration, aberration coefficient, vision measurement, focal length, mathematics model

Procedia PDF Downloads 364
37343 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying

Procedia PDF Downloads 500
37342 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
37341 Fama French Four Factor Model: A Study of Nifty Fifty Companies

Authors: Deeksha Arora

Abstract:

The study aims to explore the applicability of the widely used asset pricing models, namely, Capital Asset Pricing Model (CAPM) and the Fama-French Four Factor Model in the Indian equity market. The study will be based on the companies that form part of the Nifty Fifty Index for a period of five years: 2011 to 2016. The asset pricing model is examined by forming portfolios on the basis of three variables – market capitalization (size effect), book-to-market equity ratio (value effect) and profitability. The study provides a basis to test the presence of the Fama-French Four factor model in Indian stock market. This study may provide a basis for future research in the generalized asset pricing model comprising of multiple risk factors.

Keywords: book to market equity, Fama French four factor model, market capitalization, profitability, size effect, value effect

Procedia PDF Downloads 263
37340 Tackling the Value-Action-Gap: Improving Civic Participation Using a Holistic Behavioral Model Approach

Authors: Long Pham, Julia Blanke

Abstract:

An increasingly popular way of establishing citizen engagement within communities is through ‘city apps’. Currently, most of these mobile applications seem to be extensions of the existing communication media, sometimes merely replicating the information available on the classical city web sites, and therefore provide minimal additional impact on citizen behavior and engagement. In order to overcome this challenge, we propose to use a holistic behavioral model to generate dynamic and contextualized app content based on optimizing well defined city-related performance goals constrained by the proposed behavioral model. In this paper, we will show how the data collected by the CorkCitiEngage project in the Irish city of Cork can be utilized to calibrate aspects of the proposed model enabling the design of a personalized citizen engagement app aiming at positively influencing people’s behavior towards more active participation in their communities. We will focus on the important aspect of intentions to act, which is essential for understanding the reasons behind the common value-action-gap being responsible for the mismatch between good intentions and actual observable behavior, and will discuss how customized app design can be based on a rigorous model of behavior optimized towards maximizing well defined city-related performance goals.

Keywords: city apps, holistic behaviour model, intention to act, value-action-gap, citizen engagement

Procedia PDF Downloads 226
37339 Efficiency Measurement of Turkish via the Stochastic Frontier Model

Authors: Yeliz Mert Kantar, İsmail Yeni̇lmez, Ibrahim Arik

Abstract:

In this study, the efficiency measurement of the top fifty Turkish Universities has been conducted. The top fifty Turkish Universities are listed by The Scientific and Technological Research Council of Turkey (TÜBITAK) according to the Entrepreneur and Innovative University Index every year. The index is calculated based on four components since 2018. Four components are scientific and technological research competency, intellectual property pool, cooperation and interaction, and economic and social contribution. The four components consist of twenty-three sub-components. The 2021 list announced in January 2022 is discussed in this study. Efficiency analysis have been carried out using the Stochastic Frontier Model. Statistical significance of the sub-components that make up the index with certain weights has been examined in terms of the efficiency measurement calculated through the Stochastic Frontier Model. The relationship between the efficiency ranking estimated based on the Stochastic Frontier Model and the Entrepreneur and Innovative University Index ranking is discussed in detail.

Keywords: efficiency, entrepreneur and innovative universities, turkish universities, stochastic frontier model, tübi̇tak

Procedia PDF Downloads 89
37338 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks

Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan

Abstract:

The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.

Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks

Procedia PDF Downloads 505
37337 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 86
37336 Petri Net Modeling and Simulation of a Call-Taxi System

Authors: T. Godwin

Abstract:

A call-taxi system is a type of taxi service where a taxi could be requested through a phone call or mobile app. A schematic functioning of a call-taxi system is modeled using Petri net, which provides the necessary conditions for a taxi to be assigned by a dispatcher to pick a customer as well as the conditions for the taxi to be released by the customer. A Petri net is a graphical modeling tool used to understand sequences, concurrences, and confluences of activities in the working of discrete event systems. It uses tokens on a directed bipartite multi-graph to simulate the activities of a system. The Petri net model is translated into a simulation model and a call-taxi system is simulated. The simulation model helps in evaluating the operation of a call-taxi system based on the fleet size as well as the operating policies for call-taxi assignment and empty call-taxi repositioning. The developed Petri net based simulation model can be used to decide the fleet size as well as the call-taxi assignment policies for a call-taxi system.

Keywords: call-taxi, discrete event system, petri net, simulation modeling

Procedia PDF Downloads 424