Search results for: heavy metal resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6349

Search results for: heavy metal resistance

5689 Pyrethroid Resistance and Its Mechanism in Field Populations of the Sand Termite, Psammotermes hypostoma Desneux

Authors: Mai. M. Toughan, Ahmed A. A. Sallam, Ashraf O. Abd El-Latif

Abstract:

Termites are eusocial insects that are found on all continents except Antarctica. Termites have serious destructive impact, damaging local huts and crops of poor subsistence. The annual cost of termite damage and its control is determined in the billions globally. In Egypt, most of these damages are due to the subterranean termite species especially the sand termite, P. hypostoma. Pyrethroids became the primary weapon for subterranean termite control, after the use of chlorpyrifos as a soil termiticide was banned. Despite the important role of pyrethroids in termite control, its extensive use in pest control led to the eventual rise of insecticide resistance which may make many of the pyrethroids ineffective. The ability to diagnose the precise mechanism of pyrethroid resistance in any insect species would be the key component of its management at specified location for a specific population. In the present study, detailed toxicological and biochemical studies was conducted on the mechanism of pyrethroid resistance in P. hypostoma. The susceptibility of field populations of P. hypostoma against deltamethrin, α-cypermethrin and ƛ-cyhalothrin was evaluated. The obtained results revealed that the workers of P. hypostoma have developed high resistance level against the tested pyrethroids. Studies carried out through estimation of detoxification enzyme activity indicated that enhanced esterase and cytochrome P450 activities were probably important mechanisms for pyrethroid resistance in field populations. Elevated esterase activity and also additional esterase isozyme were observed in the pyrethroid-resistant populations compared to the susceptible populations. Strong positive correlation between cytochrome P450 activity and pyrethroid resistance was also reported. |Deltamethrin could be recommended as a resistance-breaking pyrethroid that is active against resistant populations of P. hypostoma.

Keywords: Psammotermes hypostoma, pyrethroid resistance, esterase, cytochrome P450

Procedia PDF Downloads 154
5688 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite

Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala

Abstract:

The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.

Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂

Procedia PDF Downloads 115
5687 The Impact of Foliar Application of the Calcium-Containing Compounds in Increasing Resistance to Blue Mold on Apples

Authors: Masoud Baghalian, Musa Arshad

Abstract:

In order to investigate the effect of foliar application of calcium chloride on the resistance of fruits such as Red and Golden Lebanese apple varieties to blue mold, a split plot experiment in time and space, based on accidental blocks, with three replications under foliar application were done (Control, one in a thousand, two in thousands) and the results of the variance analysis showed that there is a significant difference between the levels of foliar and variety at 5% level and between time, there is significant difference in interaction of variety × time and three way interaction of foliar×variety×time, at 1% level. The highest resistance to the blue mold disease in foliar application was observed at two in thousands calcium (calcium chloride) level.

Keywords: apple, blue mold, foliar calcium, resistance

Procedia PDF Downloads 246
5686 Investigations of Thermo Fluid Characteristics of Copper Alloy Porous Heat Sinks by Forced Air Cooling

Authors: Ashish Mahalle, Kishore Borakhade

Abstract:

High porosity metal foams are excellent for heat dissipation. There use has been widened to include heat removal from high density microelectronics circuits. Other important applications have been found in compact heat exchangers for airborne equipment, regenerative and dissipative air cooled condenser towers, and compact heat sinks for power electronic. The low relative density, open porosity and high thermal conductivity of the cell edges, large accessible surface area per unit volume, and the ability to mix the cooling fluid make metal foam heat exchangers efficient, compact and light weight. This paper reports the thermal performance of metal foam for high heat dissipation. In experimentation metal foam samples of different pore diameters i.e. 35 µ, 20 µ, 12 µ, are analyzed for varying velocities and heat inputs. The study investigate the effect of various dimensionless no. like Re,Nu, Pr and heat transfer characteristics of basic flow configuration.

Keywords: pores, foam, effective thermal conductivity, permeability

Procedia PDF Downloads 291
5685 Review on Green Synthesis of Gold Nanoparticles

Authors: Shabnam, Jagdeep Kumar

Abstract:

Because of the impact of their greater surface area and smaller quantum sizes in comparison with other metal atoms or bulk metals, metal nanoparticles, such as those formed of gold, exhibit a variety of unusual chemical and physical properties. The size- and shape-dependent properties of gold nanoparticles (GNPs) are particularly notable. Metal nanoparticles have received a lot of attention due to their unique properties and exciting prospective uses in photonics, electronics, biological sensing, and imaging. The latest developments in GNP synthesis are discussed in this review. Green chemistry measures were used to assess the production of gold nanoparticles, with a focus on Process Mass Intensity (PMI). Based on these measurements, opportunities for improving synthetic approaches were found. With PMIs that were often in the thousands, solvent usage was found to be the main obstacle for nanoparticle synthesis, even ones that were otherwise considered to be environmentally friendly. Since ligated metal nanoparticles are the most industrially relevant but least environmentally friendly, their synthesis by arrested precipitation was chosen as the best chance for significant advances. Gold nanoparticles of small sizes and bio-stability are produced biochemically, and they are used in many biological applications.

Keywords: gold, nanoparticles, green synthesis, AuNP

Procedia PDF Downloads 65
5684 Evaluation of Toxic Metals in Water Hyacinth (Eichhornia crassipes) from Valsequillo Reservoir, Puebla, Central Mexico

Authors: Jacobo Tabla, P. F. Rodriguez-Espinosa, M. E. Perez-Lopez

Abstract:

Valsequillo reservoir located in Puebla City, Central Mexico receives water from the Atoyac River (Northwest) and from Alseseca River in the north. It has been the receptacle of municipal and industrial wastes for the past few decades affecting the water quality lethally. As a result, there is an outburst of water hyacinths (Eichhornia crassipes) in the reservoir occupying around 50 % of the total area. Therefore, the aim of the present work was to assess the concentration levels of toxic metals (Co, Zn, Ni, Cu and As) in the water hyacinths and the ambient waters during the dry season. Fourteen water samples and three water hyacinth samples were procured from the Valsequillo reservoir. The collected samples of water hyacinth (roots, rhizome, stems and leaves) were analyzed using an Inductively coupled plasma mass spectrometry (ICP-MS) Ultramass 700 (Varian Inc.) to determine the metal levels. Results showed that water hyacinth presented an exhaustion in metal capture from the inlet to outlet of the reservoir. The maximum bioaccumulation factors (BF) of Co, Zn, Ni, Cu and As were 5000, 47474, 4929, 17090 and 74000 respectively. On the other hand, the maximum Translocation Factor (TF) of 0.85 was observed in Zn, whilst Co presented the minimum TF of 0.059. Thus, the results presented the fact that water hyacinth in Valsequillo reservoir proves to be an important environmental utility for efficiently accumulating and translocating heavy metals from the ambient waters to its organelles (stems and leaves).

Keywords: bioaccumulation factor, toxic metals, translocation factor, water hyacinth

Procedia PDF Downloads 238
5683 Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils

Authors: Seyed Abolhasan Naeini, Mohammad Mahdi Shojaedin

Abstract:

Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.

Keywords: cyclic triaxial test, liquefaction resistance, oil contamination, sandy soil

Procedia PDF Downloads 507
5682 ED Machining of Particulate Reinforced Metal Matrix Composites

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.

Keywords: metal matrix composites (MMCS), metal removal rate (MRR), surface roughness (SR), surface integrity (SI), tool wear rate (TWR), technique for order preference by similarity to ideal solution (TOPSIS)

Procedia PDF Downloads 273
5681 Environmental Health Risk Assessment of Hospital Wastewater in Enugu Urban, Nigeria

Authors: C. T. Eze, I. N. E. Onwurah

Abstract:

An important hydrogeologic problem in areas of high faults formations is high environmental health hazard occasioned by microbial and heavy metals contamination of ground waters. Consequently, we examined the microbial load and heavy metals concentration of hospital wastewater discharged into the environment at Park Lane General Hospital Enugu Urban, Nigeria. The microbial counts, characteristics and frequency of occurrences of the isolated microorganisms were determined by cultural, morphological and biochemical characteristics using established procedure while the varying concentrations of the identified heavy metals were determined using the spectrophotometric method. The microbiological analyses showed a mean total aerobic bacteria counts from 13.7 ± 0.65 × 107 to 22.8 ± 1.14 ×1010 CFU/ml, mean total anaerobic bacteria counts from 6.0 ± 1.6 × 103 to 1.7 ± 0.41 ×104 CFU/ml and mean total fungal counts from 0 ± 0 to 2.3 ± 0.16 × 105 CFU/ml. The isolated micro-organisms which included both pathogenic and non-pathogenic organisms were Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Bacillus subtilis, Proteus vulgaris, Klesbsiella pneumonia and bacteriodes sp. The only fungal isolate was Candida albican. The heavy metals identified in the leachate were Arsenic, Cadmium, Lead, Mercury and Chromium and their concentrations ranged from 0.003 ± 0.00082 to 0.14 ± 0.0082 mg/l. These values were above WHO permissible limits while others fall within the limits. Therefore, hospital waste water can pose the environmental health risk when not properly treated before discharge, especially in geologic formations with high fault formations.

Keywords: bacterial isolates, fungal isolates, heavy metals, hospital wastewater, microbial counts

Procedia PDF Downloads 331
5680 Antimicrobial Resistance Patterns of Salmonella spp. Isolate from Chickens at Slaughterhouses in Northeast of Thailand

Authors: Seree Klaengair, Sunpetch Angkititrakul, Dusadee Phongaran, Chaiyaporn Soikum

Abstract:

The objectives of this study is to determine the prevalence and antimicrobial resistance pattern of Salmonella spp. isolated from chickens at slaughterhouses in northeast of Thailand. During 2015-2016, all samples were isolated and identified by ISO 6579:2002. A total of 604 samples of rectal swab were collected and isolated for the presence of Salmonella. Salmonella was detected in 109 of 604 (18.05%) samples. The most prevalent serovars were Salmonella Kentucky (22.94%), Give (20.18%) and Typhimurium (7.34%). In this study, 66.97% of the isolates were resistant to at least one antimicrobial drug and 38.39% were multidrug resistant. The highest resistances were found in nalidixic acid (49.54%), ampicillin (30.28%), tetracycline (27.52%), amoxicillin (26.61%), ciprofloxacin (23.85) and norfloxacin (19.27%). The results showed high prevalence of Salmonella spp. in chickens and antimicrobial resistance patterns. Prevention and control of Salmonella contamination in chickens should be consumer healthy.

Keywords: antimicrobial resistance, Salmonella spp., chicken, slaughterhouse

Procedia PDF Downloads 143
5679 Resistance to Change as a Lever of Innovation: Case of Tangier, Tetouan and Hoceima Region, Morocco

Authors: Jihane Abdessadak, Hicham Achelhi, Kamal Reklaoui

Abstract:

For any company or organization, change must be natural and binding in order to evolve its business, protect its durability and remain competitive. "Adapt or disappear". But how often managers, leaders or employees develop astonishing ideas that could improve several aspects of the organization and the feedback is less that encouraging and people give unrealistic judgments just to escape change. In this paper, we are going to discuss what we do know about change and resistance to change and what we can do to tame this phenomenon and, above all, the main steps that can follow an idea man in the delicate and decisive implementation of innovations.

Keywords: innovation, change, resistance to change/innovation, barriers to innovation, levers of innovation

Procedia PDF Downloads 282
5678 Produce Large Surface Area Activated Carbon from Biomass for Water Treatment

Authors: Rashad Al-Gaashani

Abstract:

The physicochemical activation method was used to produce high-quality activated carbon (AC) with a large surface area of about 2000 m2/g from low-cost and abundant biomass wastes in Qatar, namely date seeds. X-Ray diffraction (XRD), scanning electron spectroscopy (SEM), energy dispersive X-Ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis was used to evaluate the AC samples. AC produced from date seeds has a wide range of pores available, including micro- and nano-pores. This type of AC with a well-developed pore structure may be very attractive for different applications, including air and water purification from micro and nano pollutants. Heavy metals iron (III) and copper (II) ions were removed from wastewater using the AC produced using a batch adsorption technique. The AC produced from date seeds biomass wastes shows high removal of heavy metals such as iron (III) ions (100%) and copper (II) ions (97.25%). The highest removal of copper (II) ions (100%) with AC produced from date seeds was found at pH 8, whereas the lowest removal (22.63%) occurred at pH 2. The effect of adsorption time, adsorbent dose, and pH on the removal of heavy metals was studied.

Keywords: activated carbon, date seeds, biomass, heavy metals removal, water treatment

Procedia PDF Downloads 61
5677 Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution

Authors: Yasser M. Abd-elrhman, Mohamed A. Gepreel, Kiochi Nakamura, Ahmed Abd El-Moneim, Sengo Kobayashi, Mervat M. Ibrahim

Abstract:

Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities.

Keywords: titanium alloys, corrosion resistance, Ringer’s solution, electrochemical corrosion

Procedia PDF Downloads 630
5676 Understanding the Thermal Resistance of Active Dry Yeast by Differential Scanning Calorimetry Approach

Authors: Pauline Ribert, Gaelle Roudaut, Sebastien Dupont, Laurent Beney

Abstract:

Yeasts, anhydrobiotic organisms, can survive extreme water disturbances, thanks to the prolonged and reversible suspension of their cellular activity as well as the establishment of a defense arsenal. This property is exploited by many industrialists. One of the protection systems implemented by yeast is the vitrification of its cytoplasm by trehalose. The thermal resistance of dry yeasts is a crucial parameter for their use. However, studies on the thermal resistance of dry yeasts are often based on yeasts produced in laboratory conditions with non-optimal drying processes. We, therefore, propose a study on the thermal resistance of industrial dry yeasts in relation to their thermophysical properties. Heat stress was applied at three temperatures (50, 75, and 100°C) for 10, 30, or 60-minute treatments. The survival of yeasts to these treatments was estimated, and their thermophysical properties were studied by differential scanning calorimetry. The industrial dry yeasts resisted 60 minutes at 50°C and 75°C and 10 minutes at a temperature close to 100°C. At 100°C, yeast was above their glass transition temperature. Industrial dry yeasts are therefore capable of withstanding high thermal stress if maintained in a specific thermophysical state.

Keywords: dry yeast, glass transition, thermal resistance, vitrification

Procedia PDF Downloads 130
5675 An Investigation of Aluminum Foil-Epoxy Laminated Composites for Rapid Tooling Applications

Authors: Kevlin Govender, Anthony Walker, Glen Bright

Abstract:

Mass customization is an area of increased importance and the development of rapid tooling applications is pivotal to the success of mass customization. This paper presents a laminated object manufacturing (LOM) process for rapid tooling. The process is termed 3D metal laminate printing and utilizes domestic-grade aluminum foil and epoxy for layered manufacturing. A detailed explanation of the process is presented to produce complex metal laminated composite parts. Aluminum-epoxy composite specimens were manufactured from 0.016mm aluminum and subjected to tensile tests to determine the mechanical properties of the manufactured composite in relation to solid metal specimens. The fracture zone of the specimens was analyzed under scanning electron microscopy (SEM) in order to characterize the fracture mode and study the interfacial bonding of the manufactured laminate specimens.

Keywords: 3D metal laminate printer, aluminum-epoxy composite, laminated object manufacturing, rapid tooling

Procedia PDF Downloads 267
5674 Effects of Oil Pollution on Euryglossa orientalis and Psettodes erumei in the Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour, Reza Khoshnood, Zahra Khoshnood, Rastin Afkhami

Abstract:

Marine pollution is a global environmental problem. Different human activities on land, in the water and in the air contribute to the contamination of seawater, sediments and organisms with potentially toxic substances. Contaminants can be natural substances or artificially produced compounds. After discharge into the sea, contaminants can stay in the water in dissolved form or they can be removed from the water column through sedimentation to the bottom sediments. Histopathological alterations can be used as indicators for the effects of various anthropogenic pollutants on organisms and are a reflection of the overall health of the entire population in the ecosystem. These histo pathological biomarkers are closely related to other biomarkers of stress since many pollutants have to undergo metabolic activation in order to be able to provoke cellular change in the affected organism. In order to make evaluation of the effects of oil pollution, some heavy metals bioaccumulation and explore their histopathological effects on hepatocytes of Oriental sole (Euryglossa orientalis) and Deep flounder (Psettodes erumei), fishes caught from two areas of north coast of the Persian Gulf: Bandar Abbass and Bandar Lengeh. Concentrations of Ni and V in liver of both species in two sampling regions were in following order: Bandar abbass Bandar lengeh; also between two species, these quantities were higher in P. erumei than E. orientalis in both sampling regions. Histopathology of the liver shows some cellular alterations including: degeneration, necrosis and tissue disruption, and histopathological effects were severe in P. erumei than E. orientalis. Results showed that Bandar Abbass region was more polluted than Bandar Lengeh, and because Ni and V were oil pollution indicators, and two flat fishes were benthic, they can receive considerable amount of oil pollution through their biological activities like feeding. Also higher amounts of heavy metal concentrations and major histopathological effects in E. orientalis showed strong relationship between benthic habitat of the fish and amounts of received pollutants from water and sediments, because E. orientalis is more related to the bottom than P. erumei.

Keywords: heavy metals, flatfishes, Persian Gulf, oil pollution

Procedia PDF Downloads 328
5673 Phylogenetic Diversity and Antibiotic Resistance in Sediments of Aegean Sea

Authors: Ilknur Tuncer, Nihayet Bizsel

Abstract:

The studies in bacterial diversity and antimicrobial resistance in coastal areas are important to understand the variability in the community structures and metabolic activities. In the present study, antimicrobial susceptibility and phylogenetic analysis of bacteria isolated from stations with different depths and influenced by terrestrial and marine fluxes in eastern Aegean Sea were illustrated. 51% of the isolates were found as resistant and 14% showed high MAR index indicating the high-risk sources of contamination in the environment. The resistance and the intermediate levels and high MAR index of the study area were 38–60%, 11–38% and 0–40%, respectively. According to 16S rRNA gene analysis, it was found that the isolates belonged to two phyla Firmicutes and Gammaproteobacteria with the genera Bacillus, Halomonas, Oceanobacillus, Photobacterium, Pseudoalteromonas, Psychrobacter, and Vibrio. 47% of Bacillus strains which were dominant among all isolates were resistant. In addition to phylogenetically diverse bacteria, the variability in resistance, intermediate and high MAR index levels of the study area indicated the effect of geographical differences.

Keywords: bacterial diversity, multiple antibiotic resistance, 16S rRNA genes, Aegean Sea

Procedia PDF Downloads 395
5672 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: composite material, fiber-metal-laminate, lightweight construction, prepreg-press-technology, large-series production

Procedia PDF Downloads 224
5671 Synthesis, Characterization and Biological Activites of Azomethine Derivatives

Authors: Lynda Golea, Rachid Chebaki

Abstract:

Schiff bases contain heterocyclic structural units with N and O donor atoms which plays an important role in coordination chemistry. Azomethine groups are a broad class of widely used compounds with applications in many fields, including analytical, inorganic chemistry and biological. Schiff's base is of promising research interest due to the widespread antibacterial resistance in medical science. In addition, the research is essential to generate Schiff base metal complexes with various applications. Schiff complexes have been used as drugs and have antibacterial, antifungal, antiviral, and anti-inflammatory properties. The various donor atoms they contain offer a special ability for metal binding. In this research on the physicochemical properties of azomethine groups, we synthesized and studied the Schiff base compounds by a condensation reaction of tryptamines and acetophenone in ethanol. The structure of the prepared compound was interpreted using 1H NMR, 13C NMR, UV-vis and FT-IR. A computational analysis at the level of DFT with functional B3LYP in conjunction with the base 6-311+G (d, p) was conducted to study its electronic and molecular structure. The biological study was performed on three bacterial strains usually causing infection, including Gram-positive and Gram-negative, for antibacterial activity. Results showed moderate biological activity and proportional activity with increasing concentration.

Keywords: azomethine, HOMO, LUMO, RMN, molecular docking

Procedia PDF Downloads 46
5670 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 86
5669 Coordination Behavior, Theoretical studies and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands: glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 93
5668 Investigations of Heavy Metals Pollution in Sediments of Small Urban Lakes in Karelia Republic

Authors: Aleksandr Medvedev, Zakhar Slukovsii

Abstract:

Waterbodies, which are located either within urban areas or nearby towns, permanently undergo anthropogenic load. The extent of the load can be determined via investigations of chemical composition of both water and sediments. Lakes, as a rule, are considered as a landscape depressions, hence they are capable of natural material accumulating, which has been delivered from the catchment area through rivers as well as temporary flows. As a result, lacustrine sediments (especially closed-basin lakes sediments) are considered as perfect archives, which are served for reconstructing past sedimentation process, assessment of the modern contamination level, and prognostication of possible ways of changing in the future. The purposes of the survey are to define a heavy metals content in lake sediments cores, which were retrieved from four urban lakes located in the southern part of Karelia Republic, and to ascertain the main sources of heavy metals input to these waterbodies. It is really crucial to be aware of heavy metals content in environment, because chemical composition of a landscape may have a significant effect on living organisms and people’s health. Sediment columns were sampled in a field with 2-cm intervals by a gravitational corer called «Limnos». The sediment samples were analyzed by inductively coupled plasma spectrometry (ICP MS) for 8 chemical elements (Pb, Cd, Zn, Cr, Ni, Cu, Mn, V). The highest concentrations of trace elements were established in the upper and middle layers of the cores. It has also been ascertained that the extent of contamination mostly depends on a remoteness of a lake from various pollution sources and features of the sources.

Keywords: bottom sediments, environmental pollution, heavy metals, lakes

Procedia PDF Downloads 129
5667 Spectrum of Causative Pathogens and Resistance Rates to Antibacterial Agents in Bacterial Prostatitis

Authors: kamran Bhatti

Abstract:

Objective: To evaluate spectrum and resistance rates to antibacterial agents in causative pathogens of bacterial prostatitis in patients from Southern Europe, the Middle East, and Africa. Materials: 1027 isolates from cultures of urine or expressed prostatic secretion, post-massage urine or seminal fluid, or urethral samples were considered. Results: Escherichia coli (32%) and Enterococcus spp. (21%) were the most common isolates. Other Gram-negative, Gram-positive, and atypical pathogens accounted for 22%, 20%, and 5%, respectively. Resistance was <15% for piperacillin/tazobactam and carbapenems (both Gram-negative and -positive pathogens); <5% for glycopeptides against Gram-positive; 7%, 14%, and 20% for aminoglycosides, fosfomycin, and macrolides against Gram-negative pathogens, respectively; 10% for amoxicillin/clavulanate against Gram-positive pathogens; <20% for cephalosporins and fluoroquinolones against to Gram-negative pathogens (higher against Gram-positive pathogens); none for macrolides against atypical pathogens, but 20% and 27% for fluoroquinolones and tetracyclines. In West Africa, the resistance rates were generally higher, although the highest rates for ampicillin, cephalosporins, and fluoroquinolones were observed in the Gulf area. Lower rates were observed in Southeastern Europe. Conclusions: Resistance to antibiotics is a health problem requiring local health authorities to combat this phenomenon. Knowledge of the spectrum of pathogens and antibiotic resistance rates is crucial to assess local guidelines for the treatment of prostatitis.

Keywords: enterobacteriacae; escherichia coli, gram-positive pathogens, antibiotic, bacterial prostatitis, resistance

Procedia PDF Downloads 50
5666 Preparation of Metal Containing Epoxy Polymer and Investigation of Their Properties as Fluorescent Probe

Authors: Ertuğ Yıldırım, Dile Kara, Salih Zeki Yıldız

Abstract:

Metal containing polymers (MCPs) are macro molecules usually containing metal-ligand coordination units and are a multidisciplinary research field mainly based at the interface between coordination chemistry and polymer science. The progress of this area has also been reinforced by the growth of several other closely related disciplines including macro molecular engineering, crystal engineering, organic synthesis, supra molecular chemistry and colloidal and material science. Schiff base ligands are very effective in constructing supra molecular architectures such as coordination polymers, double helical and triple helical complexes. In addition, Schiff base derivatives incorporating a fluorescent moiety are appealing tools for optical sensing of metal ions. MCPs are well-known systems in which the combinations of local parameters are possible by means of fluoro metric techniques. Generally, without incorporation of the fluorescent groups with polymers is unspecific, and it is not useful to analyze their fluorescent properties. Therefore, it is necessary to prepare a new type epoxy polymers with fluorescent groups in terms of metal sensing prop and the other photo chemical applications. In the present study metal containing polymers were prepared via poly functional monomeric Schiff base metal chelate complexes in the presence of dis functional monomers such as diglycidyl ether Bisphenol A (DGEBA). The synthesized complexes and polymers were characterized by FTIR, UV-VIS and mass spectroscopies. The preparations of epoxy polymers have been carried out at 185 °C. The prepared composites having sharp and narrow excitation/emission properties are expected to be applicable in various systems such as heat-resistant polymers and photo voltaic devices. The prepared composite is also ideal for various applications, easily prepared, safe, and maintain good fluorescence properties.

Keywords: Schiff base ligands, crystal engineering, fluorescence properties, Metal Containing Polymers (MCPs)

Procedia PDF Downloads 329
5665 An Assessment of Water and Sediment Quality of the Danube River: Polycyclic Aromatic Hydrocarbons and Trace Metals

Authors: A. Szabó Nagy, J. Szabó, I. Vass

Abstract:

Water and sediment samples from the Danube River and Moson Danube Arm (Hungary) have been collected and analyzed for contamination by 18 polycyclic aromatic hydrocarbons (PAHs) and eight trace metal(loid)s (As, Cu, Pb, Ni, Cr, Cd, Hg and Zn) in the period of 2014-2015. Moreover, the trace metal(loid) concentrations were measured in the Rába and Marcal rivers (parts of the tributary system feeding the Danube). Total PAH contents in water were found to vary from 0.016 to 0.133 µg/L and concentrations in sediments varied in the range of 0.118 mg/kg and 0.283 mg/kg. Source analysis of PAHs using diagnostic concentration ratios indicated that PAHs found in sediments were of pyrolytic origins. The dissolved trace metal and arsenic concentrations were relatively low in the surface waters. However, higher concentrations were detected in the water samples of Rába (Zn, Cu, Ni, Pb) and Marcal (As, Cu, Ni, Pb) compared to the Danube and Moson Danube. The concentrations of trace metals in sediments were higher than those found in water samples.

Keywords: surface water, sediment, PAH, trace metal

Procedia PDF Downloads 291
5664 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 83
5663 Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration

Authors: Rabia Hunky, Hayat Kalifa, Bai

Abstract:

The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs.

Keywords: EOR, oil gas, IOR, WC, IF, oil and gas

Procedia PDF Downloads 82
5662 Identification of Quantitative Trait Loci Conferring Downy Mildew Resistance in Cucumis sativus

Authors: Pawinee Innark, Hudsaya Punyanitikul, Chanuluk Khanobdee, Chatchawan Jantasuriyarat, Sompid Samipak

Abstract:

One of the most devastating diseases in cucumber is downy mildew caused by the fungus Pseudoperonospora cubensis. To enable the use of marker-assisted breeding for resistance cultivars, sixty six microsatellite markers were used to map (quantitative trait loci) QTLs for DM resistance. Total of 315 F2 population from the cross between DM-resistant inbred line CSL0067 and susceptible CSL0139 were evaluated for downy mildew resistance in cotyledon, first and second true leaf at 7, 10, and 14 day after inoculation. The QTL analysis revealed that the downy mildew resistant genes were controlled by multiple recessive genes. From eight linkage groups (LG 1.1, 1.2, 2, 3, 4, 5.1, 5.2 and 6), fourteen QTL positions were detected on 4 linkage groups (LG 1.1, 2, 5.1 and 6) with the log of odd scores ranged from 3.538 to 9.165. Among them, Cot7_5.1_2 and Cot10_5.1 had major-effect QTL with the R2 values of 10.9 and 12.5%, respectively. The flanking markers for Cot7_5.1_2 were SSR19172 - SSR07531 markers and for Cot10_5.1 were SSR03943 - SSR00772. Besides QTLs on chromosome 1, 5 and 6 that were previously reported, this study also revealed a QTL for DM resistance on chromosome 2 that can be used as a new source in cucumber breeding program.

Keywords: cucumber, DNA marker, downy mildew, QTL

Procedia PDF Downloads 232
5661 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments

Authors: Netsanet Kebede Hundessa

Abstract:

Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.

Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation

Procedia PDF Downloads 47
5660 ‘Social Health’, ‘Physical Health’ and Wellbeing: Analyzing the Interplay between the Practices of Heavy Drinking and Exercise among Young People with Bourdieusian Concepts

Authors: Jukka Törrönen

Abstract:

In the article, we examine the interplay between the practices of heavy drinking and exercise among young people as patterned around the ‘social’ and ‘physical health’ approaches. The comparison helps us to clarify why young people are currently drinking less than earlier and how the neoliberal healthism discourse, as well as the feminine tradition of taking care of one’s body, are modifying young people’s heavy drinking practices. The data is based on interviews (n = 56) in Sweden among 15-16-year-olds and 18˗19-year-olds. By drawing on Pierre Bourdieu’s concepts of habitus, field, and capital, we examine what kinds of resources of wellbeing young people accumulate in the fields of heavy drinking and exercise, how these resources carry symbolic value for distinction, and what kind of health-related habitus they imply. The analysis suggests that as heavy drinking is no longer able to stand as a practice through which one may acquire capital that is more valuable than the capital acquired in other fields, this lessens peer pressure to drink among young people. Our analysis further shows that the healthism discourse modifies young people’s heavy drinking practices both from inside and from outside. The interviewees translate the symbolic value of healthism discourse to social vulnerability and deploy it for the purposes of increasing one’s social status among peers. Moreover, our analysis demonstrates that the social spaces and positions in intoxication and exercise are shaped by gendered dualisms of masculine dominance. However, while the interviewees naturalize the gender binaries in intoxication as based on biological drives, they understand gender binaries in exercise as normative social constructions of neoliberal society. As these binaries emphasize the struggle for recognition of the symbolic value of bodily look, they may shift young men’s attention from risk-taking to issues that traditionally have been female concerns.

Keywords: young people, decline in drinking , health, intoxication, exercise, Bourdieu

Procedia PDF Downloads 98