Search results for: global navigation satellite network
9741 Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.Keywords: clinoptilolite, loading, modeling, neural network
Procedia PDF Downloads 4159740 Shifting of Global Energy Security: A Comparative Analysis of Indonesia and China’s Renewable Energy Policies
Authors: Widhi Hanantyo Suryadinata
Abstract:
Efforts undertaken by Indonesia and China to shift the strategies and security of renewable energy on a global stage involve approaches through policy construction related to rare minerals processing or value-adding in Indonesia and manufacturing policies through the New Energy Vehicles (NEVs) policy in China. Both policies encompass several practical regulations and policies that can be utilized for the implementation of Indonesia and China's grand efforts and ideas. Policy development in Indonesia and China can be analyzed using a comparative analysis method, as well as employing a pyramid illustration to identify policy construction phases based on the real conditions of the domestic market and implemented policies. This approach also helps to identify the potential integration of policies needed to enhance the policy development phase of a country within the pyramid. It also emphasizes the significance of integration policy to redefine renewable energy strategy and security on the global stage.Keywords: global renewable energy security, global energy security, policy development, comparative analysis, shifting of global energy security, Indonesia, China
Procedia PDF Downloads 709739 Wireless Sensor Networks Optimization by Using 2-Stage Algorithm Based on Imperialist Competitive Algorithm
Authors: Hamid R. Lashgarian Azad, Seyed N. Shetab Boushehri
Abstract:
Wireless sensor networks (WSN) have become progressively popular due to their wide range of applications. Wireless Sensor Network is made of numerous tiny sensor nodes that are battery-powered. It is a very significant problem to maximize the lifetime of wireless sensor networks. In this paper, we propose a two-stage protocol based on an imperialist competitive algorithm (2S-ICA) to solve a sensor network optimization problem. The energy of the sensors can be greatly reduced and the lifetime of the network reduced by long communication distances between the sensors and the sink. We can minimize the overall communication distance considerably, thereby extending the lifetime of the network lifetime through connecting sensors into a series of independent clusters using 2SICA. Comparison results of the proposed protocol and LEACH protocol, which is common to solving WSN problems, show that our protocol has a better performance in terms of improving network life and increasing the number of transmitted data.Keywords: wireless sensor network, imperialist competitive algorithm, LEACH protocol, k-means clustering
Procedia PDF Downloads 1039738 Application of Wireless Sensor Networks: A Survey in Thailand
Authors: Sathapath Kilaso
Abstract:
Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection.Keywords: wireless sensor network, smart city, survey, Adhoc Network
Procedia PDF Downloads 2079737 The Role of Agroforestry Practices in Climate Change Mitigation in Western Kenya
Authors: Humphrey Agevi, Harrison Tsingalia, Richard Onwonga, Shem Kuyah
Abstract:
Most of the world ecosystems have been affected by the effects of climate change. Efforts have been made to mitigate against climate change effects. While most studies have been done in forest ecosystems and pure plant plantations, trees on farms including agroforestry have only received attention recently. Agroforestry systems and tree cover on agricultural lands make an important contribution to climate change mitigation but are not systematically accounted for in the global carbon budgets. This study sought to: (i) determine tree diversity in different agroforestry practices; (ii) determine tree biomass in different agroforestry practices. Study area was determined according to the Land degradation surveillance framework (LSDF). Two study sites were established. At each of the site, a 5km x 10km block was established on a map using Google maps and satellite images. Way points were then uploaded in a GPS helped locate the blocks on the ground. In each of the blocks, Nine (8) sentinel clusters measuring 1km x 1km were randomized. Randomization was done in a common spreadsheet program and later be downloaded to a Global Positioning System (GPS) so that during surveys the researchers were able to navigate to the sampling points. In each of the sentinel cluster, two farm boundaries were randomly identified for convenience and to avoid bias. This led to 16 farms in Kakamega South and 16 farms in Kakamega North totalling to 32 farms in Kakamega Site. Species diversity was determined using Shannon wiener index. Tree biomass was determined using allometric equation. Two agroforestry practices were found; homegarden and hedgerow. Species diversity ranged from 0.25-2.7 with a mean of 1.8 ± 0.10. Species diversity in homegarden ranged from 1-2.7 with a mean of 1.98± 0.14. Hedgerow species diversity ranged from 0.25-2.52 with a mean of 1.74± 0.11. Total Aboveground Biomass (AGB) determined was 13.96±0.37 Mgha-1. Homegarden with the highest abundance of trees had higher above ground biomass (AGB) compared to hedgerow agroforestry. This study is timely as carbon budgets in the agroforestry can be incorporated in the global carbon budgets and improve the accuracy of national reporting of greenhouse gases.Keywords: agroforestry, allometric equations, biomass, climate change
Procedia PDF Downloads 3649736 Global Learning Supports Global Readiness with Projects with Purpose
Authors: Brian Bilich
Abstract:
A typical global learning program is a two-week project based, culturally immersive and academically relevant experience built around a project with purpose and catered to student and business groups. Global Learning in Continuing Education at Austin Community College promotes global readiness through projects with purpose with special attention given to balancing learning, hospitality and travel. A recent project involved CommunityFirst! Village; a 51-acre planned community which provides affordable, permanent housing for men and women coming out of chronic homelessness. Global Learning students collaborated with residents and staff at the Community First! Village on a project to produce two-dimensional remodeling plans of residents’ tiny homes with a focus on but not limited to design improvements on elements related to accessibility, increased usability of living and storage space and esthetic upgrades to boost psychological and emotional appeal. The goal of project-based learning in the context of global learning in Continuing Educaiton at Austin Community Collegen general is two fold. One, in rapid fashion we develop a project which gives the learner a hands-on opportunity to exercise soft and technical skills, like creativity and communication and analytical thinking. Two, by basing projects on global social conflict issues, the project of purpose promotes the development of empathy for other people and fosters a sense of corporate social responsibility in future generations of business leadership. In the example provide above the project informed the student group on the topic of chronic homelessness and promoted awareness and empathy for this underserved segment of the community. Project-based global learning based on projects with purpose has the potential to cultivate global readiness by developing empathy and strengthening emotional intelligence for future generations.Keywords: project-based learning, global learning, global readiness, globalization, international exchange, collaboration
Procedia PDF Downloads 649735 The Impact of Information and Communication Technology in Knowledge Fraternization
Authors: Muhammad Aliyu
Abstract:
Significant improvement in Information and Communication Technology (ICT) and the enforced global competition are revolutionizing the way knowledge is managed and the way organizations compete. The emergence of new organizations calls for a new way to fraternize knowledge, which is known as 'knowledge fraternization.' In this modern economy, it is the knowledge if properly managed that can harness the organization's competitive advantage. This competitive advantage is realized through the full utilization of information and data coupled with the harnessing of people’s skills and ideas as well as their commitment and motivations, which can be accomplished through socializing the knowledge management processes. A fraternize network for knowledge management is a web-based system designed using PHP that is Dreamweaver web development tool, with the help of CS4 Adobe Dreamweaver as the PHP code Editor that supports the use of Cascadian Style Sheet (CSS), MySQL with Xamp, Php My Admin (Version 3.4.7) localhost server via TCP/IP for containing the databases of the system to support this in a distributed way, spreading the workload over the whole organization. This paper reviews the technologies and the technology tools to be used in the development of social networks in an organization.Keywords: Information and Communication Technology (ICT), knowledge, fraternization, social network
Procedia PDF Downloads 3949734 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration
Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong
Abstract:
This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation
Procedia PDF Downloads 1889733 Secure Network Coding against Content Pollution Attacks in Named Data Network
Authors: Tao Feng, Xiaomei Ma, Xian Guo, Jing Wang
Abstract:
Named Data Network (NDN) is one of the future Internet architecture, all nodes (i.e., hosts, routers) are allowed to have a local cache, used to satisfy incoming requests for content. However, depending on caching allows an adversary to perform attacks that are very effective and relatively easy to implement, such as content pollution attack. In this paper, we use a method of secure network coding based on homomorphic signature system to solve this problem. Firstly ,we use a dynamic public key technique, our scheme for each generation authentication without updating the initial secret key used. Secondly, employing the homomorphism of hash function, intermediate node and destination node verify the signature of the received message. In addition, when the network topology of NDN is simple and fixed, the code coefficients in our scheme are generated in a pseudorandom number generator in each node, so the distribution of the coefficients is also avoided. In short, our scheme not only can efficiently prevent against Intra/Inter-GPAs, but also can against the content poisoning attack in NDN.Keywords: named data networking, content polloution attack, network coding signature, internet architecture
Procedia PDF Downloads 3379732 An Integrated Approach to Find the Effect of Strain Rate on Ultimate Tensile Strength of Randomly Oriented Short Glass Fiber Composite in Combination with Artificial Neural Network
Authors: Sharad Shrivastava, Arun Jalan
Abstract:
In this study tensile testing was performed on randomly oriented short glass fiber/epoxy resin composite specimens which were prepared using hand lay-up method. Samples were tested over a wide range of strain rate/loading rate from 2mm/min to 40mm/min to see the effect on ultimate tensile strength of the composite. A multi layered 'back propagation artificial neural network of supervised learning type' was used to analyze and predict the tensile properties with strain rate and temperature as given input and output as UTS to predict. Various network structures were designed and investigated with varying parameters and network sizes, and an optimized network structure was proposed to predict the UTS of short glass fiber/epoxy resin composite specimens with reasonably good accuracy.Keywords: glass fiber composite, mechanical properties, strain rate, artificial neural network
Procedia PDF Downloads 4379731 Addressing Scheme for IOT Network Using IPV6
Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher
Abstract:
The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.Keywords: addressing, IoT, IPv6, network, nodes
Procedia PDF Downloads 2939730 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2749729 Enhancing Urban Sustainability through Integrated Green Spaces: A Focus on Tehran
Authors: Azadeh Mohajer Milani
Abstract:
Urbanization constitutes an irreversible global trend, presenting myriad challenges such as heightened energy consumption, pollution, congestion, and the depletion of natural resources. Today's urban landscapes have emerged as focal points for economic, social, and environmental challenges, underscoring the pressing need for sustainable development. This article delves into the realm of sustainable urban development, concentrating on the pivotal role played by integrated green spaces as an optimal solution to address environmental concerns within cities. The study utilizes Tehran as a case study. Our findings underscore the imperative of preserving and expanding green spaces in urban areas, coupled with the establishment of well-designed ecological networks, to enhance environmental quality and elevate the sustainability of cities. Notably, Tehran's urban green spaces exhibit a disjointed design, lacking a cohesive network to connect various patches and corridors, resulting in significant environmental impacts. The results emphasize the necessity of a balanced and proportional distribution of urban green spaces and the creation of a cohesive patch-corridor-matrix network tailored to the ecological and social needs of residents. This approach is crucial for fostering a more sustainable and livable urban environment for all species, with a specific focus on humans.Keywords: ecology, sustainable urban development, sustainable landscape, urban green space network
Procedia PDF Downloads 839728 FreGsd: A Framework for Golbal Software Requirement Engineering
Authors: Alsahli Abdulaziz Abdullah, Hameed Ullah Khan
Abstract:
Software development nowadays is more and more using global ways of development instead of normal development enviroment where development occur in one location. This paper is a aimed to propose a Requirement Engineering framework to support Global Software Development environment with regards to all requirment engineering activities from elicitation to fially magning requirment change. Global software enviroment is more and more gaining better reputation in software developmet with better quality is resulting from developing in this eviroment yet with lower cost.However, failure rate developing in this enviroment is high due to inapproprate requirment development and managment.This paper will add to the software engineering development envrioments discipline and many developers in GSD will benefit from it.Keywords: global software development environment, GSD, requirement engineering, FreGsd, computer engineering
Procedia PDF Downloads 5499727 Precision Assessment of the Orthometric Heights Determination in the Northern Part of Libya
Authors: Jamal A. Gledan, Akrm H. Algnin
Abstract:
The Global Positioning System (GPS) satellite-based technology has been utilized extensively in the last few years in a wide range of Geomatics and Geographic Information Systems (GIS) applications. One of the main challenges dealing with GPS-based heights consists of converting them into Mean Sea Level (MSL) heights which is used in surveys and mapping. In this research work, differences in heights of 50 points, in northern part of Libya were carried out using both ordinary levelling (in which Geoid is the reference datum) and GPS techniques (in which Ellipsoid is the reference datum). In addition, this study has utilized the EGM2008 model to obtain the undulation values between the ellipsoidal and orthometric heights. From these values with ellipsoidal heights which can be obtained from GPS observations to compute the orthomteric heights. This research presented a suitable alternative, from an economical point of view, to substitute the expensive traditional levelling technique particularly for topographic mapping.Keywords: geoid undulation, GPS, ordinary and geodetic levelling, orthometric height
Procedia PDF Downloads 4469726 A Video Surveillance System Using an Ensemble of Simple Neural Network Classifiers
Authors: Rodrigo S. Moreira, Nelson F. F. Ebecken
Abstract:
This paper proposes a maritime vessel tracker composed of an ensemble of WiSARD weightless neural network classifiers. A failure detector analyzes vessel movement with a Kalman filter and corrects the tracking, if necessary, using FFT matching. The use of the WiSARD neural network to track objects is uncommon. The additional contributions of the present study include a performance comparison with four state-of-art trackers, an experimental study of the features that improve maritime vessel tracking, the first use of an ensemble of classifiers to track maritime vessels and a new quantization algorithm that compares the values of pixel pairs.Keywords: ram memory, WiSARD weightless neural network, object tracking, quantization
Procedia PDF Downloads 3109725 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4479724 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1539723 Development of an Indoor Drone Designed for the Needs of the Creative Industries
Authors: V. Santamarina Campos, M. de Miguel Molina, S. Kröner, B. de Miguel Molina
Abstract:
With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.Keywords: virtual reality, 3D reconstruction, indoor positioning system, RPAS, remotely piloted aircraft systems, aerial film, intelligent navigation, advanced safety measures, creative industries
Procedia PDF Downloads 1979722 Analysis of Spatiotemporal Efficiency and Fairness of Railway Passenger Transport Network Based on Space Syntax: Taking Yangtze River Delta as an Example
Abstract:
Based on the railway network and the principles of space syntax, the study attempts to reconstruct the spatial relationship of the passenger network connections from space and time perspective. According to the travel time data of main stations in the Yangtze River Delta urban agglomeration obtained by the Internet, the topological drawing of railway network under different time sections is constructed. With the comprehensive index composed of connection and integration, the accessibility and network operation efficiency of the railway network in different time periods is calculated, while the fairness of the network is analyzed by the fairness indicators constructed with the integration and location entropy from the perspective of horizontal and vertical fairness respectively. From the analysis of the efficiency and fairness of the railway passenger transport network, the study finds: (1) There is a strong regularity in regional system accessibility change; (2) The problems of efficiency and fairness are different in different time periods; (3) The improvement of efficiency will lead to the decline of horizontal fairness to a certain extent, while from the perspective of vertical fairness, the supply-demand situation has changed smoothly with time; (4) The network connection efficiency of Shanghai, Jiangsu and Zhejiang regions is higher than that of the western regions such as Anqing and Chizhou; (5) The marginalization of Nantong, Yancheng, Yangzhou, Taizhou is obvious. The study explores the application of spatial syntactic theory in regional traffic analysis, in order to provide a reference for the development of urban agglomeration transportation network.Keywords: spatial syntax, the Yangtze River Delta, railway passenger time, efficiency and fairness
Procedia PDF Downloads 1369721 Evaluation of Satellite and Radar Rainfall Product over Seyhan Plain
Authors: Kazım Kaba, Erdem Erdi, M. Akif Erdoğan, H. Mustafa Kandırmaz
Abstract:
Rainfall is crucial data source for very different discipline such as agriculture, hydrology and climate. Therefore rain rate should be known well both spatial and temporal for any area. Rainfall is measured by using rain-gauge at meteorological ground stations traditionally for many years. At the present time, rainfall products are acquired from radar and satellite images with a temporal and spatial continuity. In this study, we investigated the accuracy of these rainfall data according to rain-gauge data. For this purpose, we used Adana-Hatay radar hourly total precipitation product (RN1) and Meteosat convective rainfall rate (CRR) product over Seyhan plain. We calculated daily rainfall values from RN1 and CRR hourly precipitation products. We used the data of rainy days of four stations located within range of the radar from October 2013 to November 2015. In the study, we examined two rainfall data over Seyhan plain and the correlation between the rain-gauge data and two raster rainfall data was observed lowly.Keywords: meteosat, radar, rainfall, rain-gauge, Turkey
Procedia PDF Downloads 3289720 An Enhanced Distributed Weighted Clustering Algorithm for Intra and Inter Cluster Routing in MANET
Authors: K. Gomathi
Abstract:
Mobile Ad hoc Networks (MANET) is defined as collection of routable wireless mobile nodes with no centralized administration and communicate each other using radio signals. Especially MANETs deployed in hostile environments where hackers will try to disturb the secure data transfer and drain the valuable network resources. Since MANET is battery operated network, preserving the network resource is essential one. For resource constrained computation, efficient routing and to increase the network stability, the network is divided into smaller groups called clusters. The clustering architecture consists of Cluster Head(CH), ordinary node and gateway. The CH is responsible for inter and intra cluster routing. CH election is a prominent research area and many more algorithms are developed using many different metrics. The CH with longer life sustains network lifetime, for this purpose Secondary Cluster Head(SCH) also elected and it is more economical. To nominate efficient CH, a Enhanced Distributed Weighted Clustering Algorithm (EDWCA) has been proposed. This approach considers metrics like battery power, degree difference and speed of the node for CH election. The proficiency of proposed one is evaluated and compared with existing algorithm using Network Simulator(NS-2).Keywords: MANET, EDWCA, clustering, cluster head
Procedia PDF Downloads 3989719 HPA Pre-Distorter Based on Neural Networks for 5G Satellite Communications
Authors: Abdelhamid Louliej, Younes Jabrane
Abstract:
Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents EVM improvement by 95.26%. NMSE and ACPR were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.Keywords: satellites, 5G, neural networks, HPA, TWTA, SSPA, EVM, NMSE, ACPR
Procedia PDF Downloads 919718 The Rise of Darknet: A Call for Understanding Online Communication of Terrorist Groups in Indonesia
Authors: Aulia Dwi Nastiti
Abstract:
A number of studies and reports on terrorism have continuously addressed the role of internet and online activism to support terrorist and extremist groups. In particular, they stress on social media’s usage that generally serves for the terrorist’s propaganda as well as justification of their causes. While those analyses are important to understand how social media is a vital tool for global network terrorism, they are inadequate to explain the online communication patterns that enable terrorism acts. Beyond apparent online narratives, there is a deep cyber sphere where the very vein of terrorism movement lies. That is a hidden space in the internet called ‘darknet’. Recent investigations, particularly in Middle Eastern context, have shed some lights that this invisible space in the internet is fundamental to maintain the terrorist activities. Despite that, limited number of research examines darknet within the issue of terrorist movements in Indonesian context—where the country is considered quite a hotbed for extremist groups. Therefore, this paper attempts to provide an insight of darknet operation in Indonesian cases. By exploring how the darknet is used by the Indonesian-based extremist groups, this paper maps out communication patterns of terrorist groups on the internet which appear as an intermingled network. It shows the usage of internet is differentiated in different level of anonymity for distinctive purposes. This paper further argues that the emerging terrorist communication network calls for a more comprehensive counterterrorism strategy on the Internet.Keywords: communication pattern, counterterrorism, darknet, extremist groups, terrorism
Procedia PDF Downloads 2939717 Slums in Casablanca: A Conceptive Approach for Better Implementation of VSB Program, Case Study: ER-Hamna Slum
Authors: Sakina Boufarsi, Mehmet Emre Aysu, Behiye Isik Aksulu
Abstract:
Morocco appears to be on its way to eradicating all of the country's slums by assuring the resettlement and improvement of all affected households' living circumstances through the VSB “Villes sans Bidonvilles” program established in 2004 to eradicate the slums in Morocco. Although many attempts have been made to curb their growth none have proven to be a permanent accomplishment. In Morocco, resettlement projects through satellite towns are perceived as the answer to the problem of the slums. However, the new satellite towns are the good intention of the program VSB, but they are environmentally unsustainable, socially isolated and culturally inappropriate, such conditions imposed continuous readjustments of the slum upgrading program. Although slum research is ongoing, they primarily concentrated on two constructs: exploring socio-economic and policy problems and analyzing physical characteristics. Considering that the two constructs mentioned are crucial, this study will demonstrate that a more systematic approach is needed to eradicate them efficiently. The slums issues in Casablanca are a solution that the poor devise for themselves due to government bureaucracy and failing housing policies, they reflect governments' incapacity to respond to urban development’s requiring decent housing for the vulnerable population. This issue will be addressed by exploring the previous strategies and analyzing in detail the strengths and shortcomings of the recent VSB Program. In addition to a comprehensive overview of the slums' situations by combining the social and physical characteristics through Erhamna case study in Sidi Moumen district for a deeper understanding, and therefore to direct improved and valuable recommendations to address the slum problem at all levels.Keywords: Casablanca slums, resettlement projects, eradication of slums, satellite town, VSB program
Procedia PDF Downloads 1759716 Computation of ΔV Requirements for Space Debris Removal Using Orbital Transfer
Authors: Sadhvi Gupta, Charulatha S.
Abstract:
Since the dawn of the early 1950s humans have launched numerous vehicles in space. Be it from rockets to rovers humans have done tremendous growth in the technology sector. While there is mostly upside for it for humans the only major downside which cannot be ignored now is the amount of junk produced in space due to it i.e. space debris. All this space junk amounts from objects we launch from earth which so remains in orbit until it re-enters the atmosphere. Space debris can be of various sizes mainly the big ones are of the dead satellites floating in space and small ones can consist of various things like paint flecks, screwdrivers, bolts etc. Tracking of small space debris whose size is less than 10 cm is impossible and can have vast implications. As the amount of space debris increases in space the chances of it hitting a functional satellite also increases. And it is extremely costly to repair or recover the satellite once hit by a revolving space debris. So the proposed solution is, Actively removing space debris while keeping space sustainability in mind. For this solution a total of 8 modules will be launched in LEO and in GEO and these models will be placed in their desired orbits through Hohmann transfer and for that calculating ΔV values is crucial. After which the modules will be placed in their designated positions in STK software and thorough analysis is conducted.Keywords: space debris, Hohmann transfer, STK, delta-V
Procedia PDF Downloads 869715 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4049714 Impact of the Photovoltaic Integration in Power Distribution Network: Case Study in Badak Liquefied Natural Gas (LNG)
Authors: David Hasurungan
Abstract:
This paper objective is to analyze the impact from photovoltaic system integration to power distribution network. The case study in Badak Liquefied Natural Gas (LNG) plant is presented in this paper. Badak LNG electricity network is operated in islanded mode. The total power generation in Badak LNG plant is significantly affected to feed gas supply. Meanwhile, to support the Government regulation, Badak LNG continuously implemented the grid-connected photovoltaic system in existing power distribution network. The impact between train operational mode change in Badak LNG plant and the growth of photovoltaic system is also encompassed in analysis. The analysis and calculation are performed using software Power Factory 15.1.Keywords: power quality, distribution network, grid-connected photovoltaic system, power management system
Procedia PDF Downloads 3609713 U Slot Loaded Wearable Textile Antenna
Authors: Varsha Kheradiya, Ganga Prasad Pandey
Abstract:
The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network
Procedia PDF Downloads 909712 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 67