Search results for: generative adversarial networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2963

Search results for: generative adversarial networks

2303 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

Small cell deployment in 5G networks is a promising technology to enhance capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn will result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers, and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision according to Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). In this paper, we propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method shows better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.

Keywords: handover, HetNets, interference, MADM, small cells, TOPSIS, weight

Procedia PDF Downloads 149
2302 Projective Lag Synchronization in Drive-Response Dynamical Networks via Hybrid Feedback Control

Authors: Mohd Salmi Md Noorani, Ghada Al-Mahbashi, Sakhinah Abu Bakar

Abstract:

This paper investigates projective lag synchronization (PLS) behavior in drive response dynamical networks (DRDNs) model with identical nodes. A hybrid feedback control method is designed to achieve the PLS with mismatch and without mismatch terms. The stability of the error dynamics is proven theoretically using the Lyapunov stability theory. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Moreover, the numerical simulations results demonstrate the validity of the proposed method.

Keywords: drive-response dynamical network, projective lag synchronization, hybrid feedback control, stability theory

Procedia PDF Downloads 391
2301 Comparison of Feedforward Back Propagation and Self-Organizing Map for Prediction of Crop Water Stress Index of Rice

Authors: Aschalew Cherie Workneh, K. S. Hari Prasad, Chandra Shekhar Prasad Ojha

Abstract:

Due to the increase in water scarcity, the crop water stress index (CWSI) is receiving significant attention these days, especially in arid and semiarid regions, for quantifying water stress and effective irrigation scheduling. Nowadays, machine learning techniques such as neural networks are being widely used to determine CWSI. In the present study, the performance of two artificial neural networks, namely, Self-Organizing Maps (SOM) and Feed Forward-Back Propagation Artificial Neural Networks (FF-BP-ANN), are compared while determining the CWSI of rice crop. Irrigation field experiments with varying degrees of irrigation were conducted at the irrigation field laboratory of the Indian Institute of Technology, Roorkee, during the growing season of the rice crop. The CWSI of rice was computed empirically by measuring key meteorological variables (relative humidity, air temperature, wind speed, and canopy temperature) and crop parameters (crop height and root depth). The empirically computed CWSI was compared with SOM and FF-BP-ANN predicted CWSI. The upper and lower CWSI baselines are computed using multiple regression analysis. The regression analysis showed that the lower CWSI baseline for rice is a function of crop height (h), air vapor pressure deficit (AVPD), and wind speed (u), whereas the upper CWSI baseline is a function of crop height (h) and wind speed (u). The performance of SOM and FF-BP-ANN were compared by computing Nash-Sutcliffe efficiency (NSE), index of agreement (d), root mean squared error (RMSE), and coefficient of correlation (R²). It is found that FF-BP-ANN performs better than SOM while predicting the CWSI of rice crops.

Keywords: artificial neural networks; crop water stress index; canopy temperature, prediction capability

Procedia PDF Downloads 117
2300 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF)

Procedia PDF Downloads 302
2299 Multi Criteria Authentication Method in Cognitive Radio Networks

Authors: Shokoufeh Monjezi Kouchak

Abstract:

Cognitive radio network (CRN) is future network .Without this network wireless devices can’t work appropriately in the next decades. Today, wireless devices use static spectrum access methods and these methods don’t use spectrums optimum so we need use dynamic spectrum access methods to solve shortage spectrum challenge and CR is a great device for DSA but first of all its challenges should be solved .security is one of these challenges .In this paper we provided a survey about CR security. You can see this survey in tables 1 to 7 .After that we proposed a multi criteria authentication method in CRN. Our criteria in this method are: sensing results, following sending data rules, position of secondary users and no talk zone. Finally we compared our method with other authentication methods.

Keywords: authentication, cognitive radio, security, radio networks

Procedia PDF Downloads 392
2298 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?

Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq

Abstract:

Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.

Keywords: Cox regression, neural networks, survival, cancer.

Procedia PDF Downloads 201
2297 Lessons-Learned in a Post-Alliance Framework

Authors: Olubukola Olumuyiwa Tokede, Dominic D. Ahiaga-Dagbui, John Morrison

Abstract:

The project environment in construction has been widely criticised for its inability to learn from experience effectively. As each project is bespoke, learning is ephemeral, as it is often confined within its bounds and seldom assimilated with others that are being delivered in the project environment. To engender learning across construction projects, collaborative contractual arrangements, such as alliancing and partnering, have been embraced to aid the transferability of lessons across projects. These cooperative arrangements, however, tend to be costly, and hence construction organisations could revert to less expensive traditional procurement approaches after successful collaborative project delivery. This research, therefore, seeks to assess the lessons-learned in a post-alliance contractual framework. Using a case-study approach, we examine the experiences of a public sector authority who engaged a project facilitator to foster learning during the delivery of a significant piece of critical infrastructure. It was found that the facilitator enabled optimal learning outcomes in post-alliance contractual frameworks by attenuating the otherwise adversarial relationship between clients and contractors. Further research will seek to assess the effectiveness of different knowledge-brokering agencies in construction projects.

Keywords: facilitation, knowledge-brokering, learning, projects

Procedia PDF Downloads 136
2296 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 91
2295 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks

Authors: Wided Abidi, Tahar Ezzedine

Abstract:

Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.

Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency

Procedia PDF Downloads 330
2294 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 156
2293 Power Allocation Algorithm for Orthogonal Frequency Division Multiplexing Based Cognitive Radio Networks

Authors: Bircan Demiral

Abstract:

Cognitive radio (CR) is the promising technology that addresses the spectrum scarcity problem for future wireless communications. Orthogonal Frequency Division Multiplexing (OFDM) technology provides more power band ratios for cognitive radio networks (CRNs). While CR is a solution to the spectrum scarcity, it also brings up the capacity problem. In this paper, a novel power allocation algorithm that aims at maximizing the sum capacity in the OFDM based cognitive radio networks is proposed. Proposed allocation algorithm is based on the previously developed water-filling algorithm. To reduce the computational complexity calculating in water filling algorithm, proposed algorithm allocates the total power according to each subcarrier. The power allocated to the subcarriers increases sum capacity. To see this increase, Matlab program was used, and the proposed power allocation was compared with average power allocation, water filling and general power allocation algorithms. The water filling algorithm performed worse than the proposed algorithm while it performed better than the other two algorithms. The proposed algorithm is better than other algorithms in terms of capacity increase. In addition the effect of the change in the number of subcarriers on capacity was discussed. Simulation results show that the increase in the number of subcarrier increases the capacity.

Keywords: cognitive radio network, OFDM, power allocation, water filling

Procedia PDF Downloads 137
2292 Using AI to Advance Factory Planning: A Case Study to Identify Success Factors of Implementing an AI-Based Demand Planning Solution

Authors: Ulrike Dowie, Ralph Grothmann

Abstract:

Rational planning decisions are based upon forecasts. Precise forecasting has, therefore, a central role in business. The prediction of customer demand is a prime example. This paper introduces recurrent neural networks to model customer demand and combines the forecast with uncertainty measures to derive decision support of the demand planning department. It identifies and describes the keys to the successful implementation of an AI-based solution: bringing together data with business knowledge, AI methods, and user experience, and applying agile software development practices.

Keywords: agile software development, AI project success factors, deep learning, demand forecasting, forecast uncertainty, neural networks, supply chain management

Procedia PDF Downloads 191
2291 Facebook Spam and Spam Filter Using Artificial Neural Networks

Authors: A. Fahim, Mutahira N. Naseem

Abstract:

SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

Keywords: artificial neural networks, facebook spam, social networking sites, spam filter

Procedia PDF Downloads 372
2290 The Women’s Empowerment and Children’s Bell-Being in Italy: An Empirical Research Starting From the Capability Approach

Authors: Alba Francesca Canta

Abstract:

The present is one of those times when what normally seems to constitute a reason for living vanishes, particularly in times of crisis, during which certainties of all times crumble, and critical issues emerge, especially in already problematic areas such as the role of women and children. This paper aims to explore the issue of gender and highlight the importance of education for people’s development and well-being. The study is part of the broader framework of the capability approach, a multidimensional approach based on the need to consider a person’s wealth by virtue of their opportunity and freedom to live a ‘life of worth. The results of empirical research conducted in 2020 will be presented, the main objective of which was to measure, through qualitative (project techniques, focus groups, interviews with key informants) and quantitative (questionnaire) methods, the level of empowerment of women in two Italian territories and the consequent well-being of their children. By means of the relationship study, the present research results show that a higher level of women’s empowerment corresponds to a higher level of children’s well-being in a positive virtuous process. The opportunity structure and education are the main driving guide both to women’s empowerment and children’s well-being, emphasizing the importance of education to gender culture as a key factor for the development of the whole society. Among all the traumatic events that broke the harmony of the world and caused an abrupt turn in all areas of society, the crisis of democracy and education are some of the harshest. Nevertheless, education continues to be a fundamental pillar of Global Development Agendas, and above all, democratic education is the main factor in the development of a generative society, capable of forming people who know how to live in society. In this context, recovering democratic and inclusive education can be the key to a breakthrough. In the capability approach Sen, and other Scholars, point out education from two different perspectives: a. education as a fundamental right capable of influencing other real fields of people’s life (i.e., being educated to prevent illness, to vote, etc.) and b. spread communitarian education, tolerance, inclusive, democratic, and respectful, capable of forming human beings. This kind of educational system can directly lead to a general process of gender education that presupposes respect for essential principles: equality, uniqueness, and the participation of all in the processes of defining a democratic society. Many practices of women and children’s exclusions essentially derive from social factors (norms, values, quality of institutions, relations of power, educational and cultural practices) that can build strong barriers. Respect for these principles and education for gender culture could foster the renewal of society and the acquisition of fundamental skills for a generative and inclusive society, such as critical skills, cosmopolitan skills, and narrative imagination.

Keywords: capability approach, children’s well-being, education, women’s empowerment

Procedia PDF Downloads 66
2289 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 349
2288 Musical Instrument Recognition in Polyphonic Audio Through Convolutional Neural Networks and Spectrograms

Authors: Rujia Chen, Akbar Ghobakhlou, Ajit Narayanan

Abstract:

This study investigates the task of identifying musical instruments in polyphonic compositions using Convolutional Neural Networks (CNNs) from spectrogram inputs, focusing on binary classification. The model showed promising results, with an accuracy of 97% on solo instrument recognition. When applied to polyphonic combinations of 1 to 10 instruments, the overall accuracy was 64%, reflecting the increasing challenge with larger ensembles. These findings contribute to the field of Music Information Retrieval (MIR) by highlighting the potential and limitations of current approaches in handling complex musical arrangements. Future work aims to include a broader range of musical sounds, including electronic and synthetic sounds, to improve the model's robustness and applicability in real-time MIR systems.

Keywords: binary classifier, CNN, spectrogram, instrument

Procedia PDF Downloads 81
2287 Crushing Analysis of Foam-Filled Thin-Walled Aluminum Profiles Subjected to Axial Loading

Authors: Michał Rogala, Jakub Gajewski

Abstract:

As the automotive industry develops, passive safety is becoming an increasingly important aspect when designing motor vehicles. A commonly used solution is energy absorption by thin-walled construction. One such structure is a closed thin-walled profile fixed to the vehicle stringers. The article presents numerical tests of conical thin-walled profiles filled with aluminum foam. The columns were loaded axially with constant energy. On the basis of the results obtained, efficiency indicators were calculated. The efficiency of the foam filling was evaluated. Artificial neural networks were used for data analysis. The application of regression analysis was used as a tool to study the relationship between the quantities characteristic of the dynamic crush.

Keywords: aluminium foam, crashworthiness, neural networks, thin-walled structure

Procedia PDF Downloads 146
2286 Comparative Analysis of Single Versus Multi-IRS Assisted Multi-User Wireless Communication System

Authors: Ayalew Tadese Kibret, Belayneh Sisay Alemu, Amare Kassaw Yimer

Abstract:

Intelligent reflecting surfaces (IRSs) are considered to be a key enabling technology for sixth-generation (6G) wireless networks. IRSs are electromagnetic (EM) surfaces that are fabricated and have integrated electronics, electronically controlled processes, and particularly wireless communication features. IRSs operate without the need for complex signal processing and the encoding and decoding steps that improve the signal quality at the receiver. Improving vital performance parameters such as energy efficiency (EE) and spectral efficiency (SE) have frequently been the primary goals of research in order to meet the increasing requirements for advanced services in the future 6G communications. In this research, we conduct a comparative analysis on single and multi-IRS wireless communication networks using energy and spectrum efficiency. The energy efficiency versus user distance, energy efficiency versus signal to noise ratio, and spectral efficiency versus user distance are the basis for our result with 1, 2, 4, and 6 IRSs. According to the results of our simulation, in terms of energy and spectral efficiency, six IRS perform better than four, two, and single IRS. Overall, our results suggest that multi-IRS-assisted wireless communication systems outperform single IRS systems in terms of communication performance.

Keywords: sixth-generation (6G), wireless networks, intelligent reflecting surfaces, energy efficiency, spectral efficiency

Procedia PDF Downloads 27
2285 Optimization Method of Dispersed Generation in Electrical Distribution Systems

Authors: Mahmoud Samkan

Abstract:

Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.

Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses

Procedia PDF Downloads 443
2284 Examining the Importance of the Structure Based on Grid Computing Service and Virtual Organizations

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Vast changes and developments achieved in information technology field in recent decades have made the review of different issues such as organizational structures unavoidable. Applying informative technologies such as internet and also vast use of computer and related networks have led to new organizational formations with a nature completely different from the traditional, great and bureaucratic ones; some common specifications of such organizations are transfer of the affairs out of the organization, benefiting from informative and communicative networks and centered-science workers. Such communicative necessities have led to network sciences development including grid computing. First, the grid computing was only to relate some sites for short – time and use their sources simultaneously, but now it has gone beyond such idea. In this article, the grid computing technology was examined, and at the same time, virtual organization concept was discussed.

Keywords: grid computing, virtual organizations, software engineering, organization

Procedia PDF Downloads 333
2283 Smart Web Services in the Web of Things

Authors: Sekkal Nawel

Abstract:

The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.

Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL

Procedia PDF Downloads 71
2282 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 532
2281 Regional Barriers and Opportunities for Developing Innovation Networks in the New Media Industry: A Comparison between Beijing and Bangalore Regional Innovation Systems

Authors: Cristina Chaminade, Mandar Kulkarni, Balaji Parthasarathy, Monica Plechero

Abstract:

The characteristics of a regional innovation system (RIS) and the specificity of the knowledge base of an industry may contribute to create peculiar paths for innovation and development of firms’ geographic extended innovation networks. However, the relative empirical evidence in emerging economies remains underexplored. The paper aims to fill the research gap by means of some recent qualitative research conducted in 2016 in Beijing (China) and Bangalore (India). It analyzes cases studies of firms in the new media industry, a sector that merges different IT competences with competences from other knowledge domains and that is emerging in those RIS. The results show that while in Beijing the new media sector results to be more in line with the existing institutional setting and governmental goals aimed at targeting specific social aspects and social problems of the population, in Bangalore it remains a more spontaneous firms-led process. In Beijing what matters for the development of innovation networks is the governmental setting and the national and regional strategies to promote science and technology in this sector, internet and mass innovation. The peculiarities of recent governmental policies aligned to the domestic goals may provide good possibilities for start-ups to develop innovation networks. However, due to the specificities of those policies targeting the Chinese market, networking outside the domestic market are not so promoted. Moreover, while some institutional peculiarities, such as a culture of collaboration in the region, may be favorable for local networking, regulations related to Internet censorship may limit the use of global networks particularly when based on virtual spaces. Mainly firms with already some foreign experiences and contact take advantage of global networks. In Bangalore, the role of government in pushing networking for the new media industry at the present stage is quite absent at all geographical levels. Indeed there is no particular strategic planning or prioritizing in the region toward the new media industry, albeit one industrial organization has emerged to represent the animation industry interests. This results in a lack of initiatives for sustaining the integration of complementary knowledge into the local portfolio of IT specialization. Firms actually involved in the new media industry face institutional constrains related to a poor level of local trust and cooperation, something that does not allow for full exploitation of local linkages. Moreover, knowledge-provider organizations in Bangalore remain still a solid base for the IT domain, but not for other domains. Initiatives to link to international networks seem therefore more the result of individual entrepreneurial actions aimed at acquiring complementary knowledge and competencies from different domains and exploiting potentiality in different markets. From those cases, it emerges that role of government, soft institutions and organizations in the two RIS differ substantially in the creation of barriers and opportunities for the development of innovation networks and their specific aim.

Keywords: regional innovation system, emerging economies, innovation network, institutions, organizations, Bangalore, Beijing

Procedia PDF Downloads 324
2280 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 150
2279 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms

Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani

Abstract:

This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.

Keywords: tunnel fire, flame length, ANN, genetic algorithm

Procedia PDF Downloads 643
2278 The Use of Correlation Difference for the Prediction of Leakage in Pipeline Networks

Authors: Mabel Usunobun Olanipekun, Henry Ogbemudia Omoregbee

Abstract:

Anomalies such as water pipeline and hydraulic or petrochemical pipeline network leakages and bursts have significant implications for economic conditions and the environment. In order to ensure pipeline systems are reliable, they must be efficiently controlled. Wireless Sensor Networks (WSNs) have become a powerful network with critical infrastructure monitoring systems for water, oil and gas pipelines. The loss of water, oil and gas is inevitable and is strongly linked to financial costs and environmental problems, and its avoidance often leads to saving of economic resources. Substantial repair costs and the loss of precious natural resources are part of the financial impact of leaking pipes. Pipeline systems experts have implemented various methodologies in recent decades to identify and locate leakages in water, oil and gas supply networks. These methodologies include, among others, the use of acoustic sensors, measurements, abrupt statistical analysis etc. The issue of leak quantification is to estimate, given some observations about that network, the size and location of one or more leaks in a water pipeline network. In detecting background leakage, however, there is a greater uncertainty in using these methodologies since their output is not so reliable. In this work, we are presenting a scalable concept and simulation where a pressure-driven model (PDM) was used to determine water pipeline leakage in a system network. These pressure data were collected with the use of acoustic sensors located at various node points after a predetermined distance apart. We were able to determine with the use of correlation difference to determine the leakage point locally introduced at a predetermined point between two consecutive nodes, causing a substantial pressure difference between in a pipeline network. After de-noising the signal from the sensors at the nodes, we successfully obtained the exact point where we introduced the local leakage using the correlation difference model we developed.

Keywords: leakage detection, acoustic signals, pipeline network, correlation, wireless sensor networks (WSNs)

Procedia PDF Downloads 109
2277 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits

Procedia PDF Downloads 366
2276 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
2275 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.

Keywords: honey, fluorescence, PARAFAC, artificial neural networks

Procedia PDF Downloads 954
2274 Statistical Modeling and by Artificial Neural Networks of Suspended Sediment Mina River Watershed at Wadi El-Abtal Gauging Station (Northern Algeria)

Authors: Redhouane Ghernaout, Amira Fredj, Boualem Remini

Abstract:

Suspended sediment transport is a serious problem worldwide, but it is much more worrying in certain regions of the world, as is the case in the Maghreb and more particularly in Algeria. It continues to take disturbing proportions in Northern Algeria due to the variability of rains in time and in space and constant deterioration of vegetation. Its prediction is essential in order to identify its intensity and define the necessary actions for its reduction. The purpose of this study is to analyze the concentration data of suspended sediment measured at Wadi El-Abtal Hydrometric Station. It also aims to find and highlight regressive power relationships, which can explain the suspended solid flow by the measured liquid flow. The study strives to find models of artificial neural networks linking the flow, month and precipitation parameters with solid flow. The obtained results show that the power function of the solid transport rating curve and the models of artificial neural networks are appropriate methods for analysing and estimating suspended sediment transport in Wadi Mina at Wadi El-Abtal Hydrometric Station. They made it possible to identify in a fairly conclusive manner the model of neural networks with four input parameters: the liquid flow Q, the month and the daily precipitation measured at the representative stations (Frenda 013002 and Ain El-Hadid 013004 ) of the watershed. The model thus obtained makes it possible to estimate the daily solid flows (interpolate and extrapolate) even beyond the period of observation of solid flows (1985/86 to 1999/00), given the availability of the average daily liquid flows and daily precipitation since 1953/1954.

Keywords: suspended sediment, concentration, regression, liquid flow, solid flow, artificial neural network, modeling, mina, algeria

Procedia PDF Downloads 103