Search results for: generating sets
1566 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy
Abstract:
Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.Keywords: fuzzy sets, uncertainty, qualitative factors, decision making
Procedia PDF Downloads 6491565 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 241564 The Exploration Targets of the Nanpu Sag: Insight from Organic Geochemical Characteristics of Source Rocks and Oils
Authors: Lixin Pei, Zhilong Huang, Wenzhe Gang
Abstract:
Organic geochemistry of source rocks and oils in the Nanpu Sag, Bohai Bay basin was studied on the basis of the results of Rock-Eval and biomarker. The possible source rocks consist of the third member (Es₃) and the first member (Es₁) of Shahejie formation and the third member of Dongying Formation (Ed₃) in the Nanpu Sag. The Es₃, Es₁, and Ed₃ source rock intervals in the Nanpu Sag all have high organic-matter richness and are at hydrocarbon generating stage, which are regarded as effective source rocks. The three possible source rock intervals have different biomarker associations and can be differentiated by gammacerane/αβ C₃₀ hopane, ETR ([C₂₈+C₂₉]/ [C₂₈+C₂₉+Ts]), C₂₇ diasterane/sterane and C₂₇/C₂₉ steranes, which suggests they deposited in different environments. Based on the oil-source rock correlation, the shallow oils mainly originated from the Es₃ and Es₁ source rocks in the Nanpu Sag. Through hydrocarbon generation and expulsion history of the source rocks, trap development history and accumulation history, the shallow oils mainly originated from paleo-reservoirs in the Es₃ and Es₁ during the period of Neotectonism, and the residual paleo-reservoirs in the Es₃ and Es₁ would be the focus targets in the Nanpu Sag; Bohai Bay Basin.Keywords: source rock, biomarker association, Nanpu Sag, Bohai Bay Basin
Procedia PDF Downloads 3711563 Geochemical Controls of Salinity in a Typical Acid Mine Drainage Neutralized Groundwater System
Authors: Modreck Gomo
Abstract:
Although the dolomite and calcite carbonates can neutralize Acid Mine Drainage (AMD) and prevent leaching of metals, salinity still remains a huge problem. The study presents a conceptual discussion of geochemical controls of salinity in a typical calcite and dolomite AMD neutralised groundwater systems. Thereafter field evidence is presented to support the conceptual discussions. 1020 field data sets of from a groundwater system reported to be under circumneutral conditions from the neutralization effect of calcite and dolomite is analysed using correlation analysis and bivariate plots. Field evidence indicates that sulphate, calcium and magnesium are strongly and positively correlated to Total Dissolved Solids (TDS) which is used as measure of salinity. In this, a hydrogeochemical system, the dissolution of sulphate, calcium and magnesium form AMD neutralization process contributed 50%, 10% and 5% of the salinity.Keywords: acid mine drainage, carbonates, neutralization, salinity
Procedia PDF Downloads 1401562 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan
Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan
Abstract:
This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.Keywords: Kasur City, resource recovery, thermoelectric power, waste management
Procedia PDF Downloads 1681561 [Keynote Talk]: Animation of Objects on the Website by Application of CSS3 Language
Authors: Vladimir Simovic, Matija Varga, Robert Svetlacic
Abstract:
Scientific work analytically explores and demonstrates techniques that can animate objects and geometric characters using CSS3 language by applying proper formatting and positioning of elements. This paper presents examples of optimum application of the CSS3 descriptive language when generating general web animations (e.g., billiards and movement of geometric characters, etc.). The paper presents analytically, the optimal development and animation design with the frames within which the animated objects are. The originally developed content is based on the upgrading of existing CSS3 descriptive language animations with more complex syntax and project-oriented work. The purpose of the developed animations is to provide an overview of the interactive features of CSS3 descriptive language design for computer games and the animation of important analytical data based on the web view. It has been analytically demonstrated that CSS3 as a descriptive language allows inserting of various multimedia elements into websites for public and internal sites.Keywords: web animation recording, KML GML HTML5 forms, Cascading Style Sheets 3, Google Earth Professional
Procedia PDF Downloads 3351560 An Introduction to Critical Chain Project Management Methodology
Authors: Ranjini Ramanath, Nanjunda P. Swamy
Abstract:
Construction has existed in our lives since time immemorial. However, unlike any other industry, construction projects have their own unique challenges – project type, purpose and end use of the project, geographical conditions, logistic arrangements, largely unorganized manpower and requirement of diverse skill sets, etc. These unique characteristics bring in their own level of risk and uncertainties to the project, which cause the project to deviate from its planned objectives of time, cost, quality, etc. over the many years, there have been significant developments in the way construction projects are conceptualized, planned, and managed. With the rapid increase in the population, increased rate of urbanization, there is a growing demand for infrastructure development, and it is required that the projects are delivered timely, and efficiently. In an age where ‘Time is Money,' implementation of new techniques of project management is required in leading to successful projects. This paper proposes a different approach to project management, which if applied in construction projects, can help in the accomplishment of the project objectives in a faster manner.Keywords: critical chain project management methodology, critical chain, project management, construction management
Procedia PDF Downloads 4211559 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 5341558 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces
Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet
Abstract:
In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.Keywords: dropwise condensation, textured surface, image processing, watershed
Procedia PDF Downloads 2211557 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging
Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee
Abstract:
To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging
Procedia PDF Downloads 2351556 Analysis of Risk-Based Disaster Planning in Local Communities
Authors: R. A. Temah, L. A. Nkengla-Asi
Abstract:
Planning for future disasters sets the stage for a variety of activities that may trigger multiple recurring operations and expose the community to opportunities to minimize risks. Local communities are increasingly embracing the necessity for planning based on local risks, but are also significantly challenged to effectively plan and response to disasters. This research examines basic risk-based disaster planning model and compares it with advanced risk-based planning that introduces the identification and alignment of varieties of local capabilities within and out of the local community that can be pivotal to facilitate the management of local risks and cascading effects prior to a disaster. A critical review shows that the identification and alignment of capabilities can potentially enhance risk-based disaster planning. A tailored holistic approach to risk based disaster planning is pivotal to enhance collective action and a reduction in disaster collective cost.Keywords: capabilities, disaster planning, hazards, local community, risk-based
Procedia PDF Downloads 2041555 A Mechanism of Reusable, Portable, and Reliable Script Generator on Android
Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu
Abstract:
A good automated testing tool could reduce as much as possible the manual work done by testers. Traditional record-replay testing tool provides an automated testing solution by recording mouse coordinates as test scripts, but it will be easily broken if any change of resolutions. Therefore, more and more testers design multiple test scripts to automate the testing process for different devices. In order to improve the traditional record-replay approach and reduce the effort that the testers spending on writing test scripts, we propose an approach for generating the Android application test scripts based on accessibility service without connecting to a computer. This approach simulates user input actions and replays them correctly even at the different conditions such as the internet connection is unstable when the device under test, the different resolutions on Android devices. In this paper, we describe how to generate test scripts automatically and make a comparison with existing tools for Android such as Robotium, Appium, UIAutomator, and MonkeyTalk.Keywords: accessibility service, Appium, automated testing, MonkeyTalk, Robotium, testing, UIAutomator
Procedia PDF Downloads 3771554 Incorporating Information Gain in Regular Expressions Based Classifiers
Authors: Rosa L. Figueroa, Christopher A. Flores, Qing Zeng-Treitler
Abstract:
A regular expression consists of sequence characters which allow describing a text path. Usually, in clinical research, regular expressions are manually created by programmers together with domain experts. Lately, there have been several efforts to investigate how to generate them automatically. This article presents a text classification algorithm based on regexes. The algorithm named REX was designed, and then, implemented as a simplified method to create regexes to classify Spanish text automatically. In order to classify ambiguous cases, such as, when multiple labels are assigned to a testing example, REX includes an information gain method Two sets of data were used to evaluate the algorithm’s effectiveness in clinical text classification tasks. The results indicate that the regular expression based classifier proposed in this work performs statically better regarding accuracy and F-measure than Support Vector Machine and Naïve Bayes for both datasets.Keywords: information gain, regular expressions, smith-waterman algorithm, text classification
Procedia PDF Downloads 3191553 A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles
Authors: Mbadiwe S. Benyeogor, Oladayo O. Olakanmi, Kosisochukwu P. Nnoli, Olusegun I. Lawal, Eric JJ. Gratton
Abstract:
For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation.Keywords: active suspension, autonomous robots, edge computing, navigational sensors, terramechanics
Procedia PDF Downloads 1521552 Rhetorical Features of Research Article Abstracts of Non-Native English-Speaking Novice Student Researchers
Authors: Rita Darmayanti
Abstract:
This study aims at investigating the discourse pattern and structure of research article abstracts. The characteristics of the language used in abstracts written by non-native English-speaking (NNES) novice researchers are mainly examined in terms of rhetorical moves and the degree of variability of the rhetorical features as indicated by the structure of clauses and the linguistic features of the text. To this end, 20 abstracts written by undergraduate students of the accounting department at the State Polytechnic of Malang in 2018-2019 were employed as the data of this study. Findings showed that the most frequently used pattern of the rhetorical move is I(Introduction)-P(Purpose)-M(Method)-Pr(Product or Result)-C(Conclusion) with the significant use of active sentence and present and past tense. The findings of the study are projected to be utilized for evaluating the quality of students’ abstracts and generating a pedagogical proposal of ESP writing course or at least providing a critical review of current practices in ESP program intended for non-native English students at tertiary level.Keywords: rhetorical features, rhetorical moves, non-native English-speaking novice researchers, research abstract
Procedia PDF Downloads 1301551 A Generative Adversarial Framework for Bounding Confounded Causal Effects
Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu
Abstract:
Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning
Procedia PDF Downloads 1911550 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.Keywords: degree, initial cluster center, k-means, minimum spanning tree
Procedia PDF Downloads 4091549 Solid Waste Management Challenges and Possible Solution in Kabul City
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system
Procedia PDF Downloads 3351548 4D Monitoring of Subsurface Conditions in Concrete Infrastructure Prior to Failure Using Ground Penetrating Radar
Authors: Lee Tasker, Ali Karrech, Jeffrey Shragge, Matthew Josh
Abstract:
Monitoring for the deterioration of concrete infrastructure is an important assessment tool for an engineer and difficulties can be experienced with monitoring for deterioration within an infrastructure. If a failure crack, or fluid seepage through such a crack, is observed from the surface often the source location of the deterioration is not known. Geophysical methods are used to assist engineers with assessing the subsurface conditions of materials. Techniques such as Ground Penetrating Radar (GPR) provide information on the location of buried infrastructure such as pipes and conduits, positions of reinforcements within concrete blocks, and regions of voids/cavities behind tunnel lining. This experiment underlines the application of GPR as an infrastructure-monitoring tool to highlight and monitor regions of possible deterioration within a concrete test wall due to an increase in the generation of fractures; in particular, during a time period of applied load to a concrete wall up to and including structural failure. A three-point load was applied to a concrete test wall of dimensions 1700 x 600 x 300 mm³ in increments of 10 kN, until the wall structurally failed at 107.6 kN. At each increment of applied load, the load was kept constant and the wall was scanned using GPR along profile lines across the wall surface. The measured radar amplitude responses of the GPR profiles, at each applied load interval, were reconstructed into depth-slice grids and presented at fixed depth-slice intervals. The corresponding depth-slices were subtracted from each data set to compare the radar amplitude response between datasets and monitor for changes in the radar amplitude response. At lower values of applied load (i.e., 0-60 kN), few changes were observed in the difference of radar amplitude responses between data sets. At higher values of applied load (i.e., 100 kN), closer to structural failure, larger differences in radar amplitude response between data sets were highlighted in the GPR data; up to 300% increase in radar amplitude response at some locations between the 0 kN and 100 kN radar datasets. Distinct regions were observed in the 100 kN difference dataset (i.e., 100 kN-0 kN) close to the location of the final failure crack. The key regions observed were a conical feature located between approximately 3.0-12.0 cm depth from surface and a vertical linear feature located approximately 12.1-21.0 cm depth from surface. These key regions have been interpreted as locations exhibiting an increased change in pore-space due to increased mechanical loading, or locations displaying an increase in volume of micro-cracks, or locations showing the development of a larger macro-crack. The experiment showed that GPR is a useful geophysical monitoring tool to assist engineers with highlighting and monitoring regions of large changes of radar amplitude response that may be associated with locations of significant internal structural change (e.g. crack development). GPR is a non-destructive technique that is fast to deploy in a production setting. GPR can assist with reducing risk and costs in future infrastructure maintenance programs by highlighting and monitoring locations within the structure exhibiting large changes in radar amplitude over calendar-time.Keywords: 4D GPR, engineering geophysics, ground penetrating radar, infrastructure monitoring
Procedia PDF Downloads 1781547 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning
Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz
Abstract:
Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.Keywords: quantum machine learning, SVM, QSVM, matrix product state
Procedia PDF Downloads 921546 A Project in the Framework “Nextgenerationeu”: Sustainable Photoelectrochemical Hydrogen Evolution - SERGIO
Authors: Patrizia Frontera, Anastasia Macario, Simona Crispi, Angela Malara, Pierantonio De Luca, Stefano Trocino
Abstract:
The exploration of solar energy for the photoelectrochemical splitting of water into hydrogen and oxygen has been extensively researched as a means of generating sustainable H₂ fuel. However, despite these efforts, commercialization of this technology has not yet materialized. Presently, the primary impediments to commercialization include low solar-to-hydrogen efficiency (2-3% in PEC with an active area of up to 10-15 cm²), the utilization of costly and critical raw materials (e.g., BiVO₄), and energy losses during the separation of H₂ from O₂ and H₂O vapours in the output stream. The SERGIO partners have identified an advanced approach to fabricate photoelectrode materials, coupled with an appropriate scientific direction to achieve cost-effective solar-driven H₂ production in a tandem photoelectrochemical cell. This project is designed to reach Technology Readiness Level (TRL) 4 by validating the technology in the laboratory using a cell with an active area of up to 10 cm², boasting a solar-to-hydrogen efficiency of 5%, and ensuring acceptable hydrogen purity (99.99%). Our objectives include breakthroughs in cost efficiency, conversion efficiency, and H₂ purity.Keywords: photoelectrolysis, green hydrogen, photoelectrochemical cell, semiconductors
Procedia PDF Downloads 671545 Max-Entropy Feed-Forward Clustering Neural Network
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models
Procedia PDF Downloads 4331544 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito
Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja
Abstract:
This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor
Procedia PDF Downloads 3651543 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage
Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng
Abstract:
Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning
Procedia PDF Downloads 721542 A Model for Adaptive Online Quiz: QCitra
Authors: Rosilah Hassan, Karam Dhafer Mayoof, Norngainy Mohd Tawil, Shamshubaridah Ramlee
Abstract:
Application of adaptive online quiz system and a design are performed in this paper. The purpose of adaptive quiz system is to establish different questions automatically for each student and measure their competence on a definite area of discipline. This model determines students competencies in cases like distant-learning which experience challenges frequently. Questions are specialized to allow clear deductions about student gains; they are able to identify student competencies more effectively. Also, negative effects of questions requiring higher knowledge than competency over student’s morale and self-confidence are dismissed. The advantage of the system in the quiz management requires less total time for measuring and is more flexible. Self sufficiency of the system in terms of repeating, planning and assessment of the measurement process allows itself to be used in the individual education sets. Adaptive quiz technique prevents students from distraction and motivation loss, which is led by the questions with quite lower hardness level than student’s competency.Keywords: e-learning, adaptive system, security, quiz database
Procedia PDF Downloads 4491541 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network
Authors: Hui Wei, Zheng Dong
Abstract:
Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.Keywords: biological model, feature extraction, multi-layer neural network, object recognition
Procedia PDF Downloads 5401540 The Role of Quality Management Tools and Knowledge Sharing in Improving the Level of Academic Staff: An Empirical Investigation of the Jordanian Universities
Authors: Tasneem Alfalah, Salsabeel Alfalah, Jannat Alfalah
Abstract:
The quality of higher education as a service is fundamental to a country’s development because universities prepare the professionals who will work as managers in companies and manage public and private resources and care for the health and education of new generations. Knowledge sharing involves the interaction of all activities between individuals. Thus, the higher education institutions are aiming to improve and assist their academics in generating new ideas by encouraging them to work as a team, to simplify the exchange of the new knowledge and to further improve the learning process and achieving institutional aims. Moreover, the sources of competitive advantage in universities derive from intellectual capital and innovations in which innovation comes through knowledge sharing. Using quality tools is to define the exact requirements needed to create the concept of knowledge sharing and what are the barriers to achieve this in universities. The purpose of this research is critically evaluating the role of using quality tools to facilitate the concept of knowledge sharing and improve the academic staff level in the Jordanian universities.Keywords: higher education, knowledge sharing, quality, management tools
Procedia PDF Downloads 4611539 Gender Policy in Nigeria: Implications for Sustainable Development in the Fourth Republic
Authors: Adadu Yahaya, Abdullahi Erunke Canice
Abstract:
The study sets out to examine the interface that tends to exist in the relationship between gender policy and Nigeria’s socio-economic development. Despite Nigeria’s ratification of virtually all international instruments on the protection and promotion of gender rights and equality, it appears that the practice is honored in the breach than in observance; hence, these policies have not been adequately domesticated and implemented. The implication of this is that the women folks have generally been isolated from mainstream politics and their political rights and privileges truncated in the scheme of things. The paper observes that gender inequality and marginalization in Nigeria has practically occasioned the unwholesome subjugation of Nigerian women to the background, hence poses more critical questions and challenges to the national question. The consequence of this, to this paper, is that Nigeria’s development process will be adversely affected if this trend is not checked. The paper sums up with appropriate policy options which are believed to have the potentials of giving women the right pride of place in the socio-economic and political dynamics in the 21st century Nigeria and beyond.Keywords: development, equality, gender, policy
Procedia PDF Downloads 4891538 Challenges Affecting the Livelihoods of Small-Scale, Aggregate Miners, Vhembe District, Limpopo Province, South Africa
Authors: Ndivhudzannyi Rembuluwani, Francis Dacosta, Emmanuel Mhlongo
Abstract:
The small-scale rock aggregate sector of the mining industry is a major source of employment for a significant number of people, particularly in remote rural areas, where alternative livelihoods are rare. It contributes to local economy by generating income and producing major and essential materials for the building, construction, and other industries. However, the sector is confronted with many challenges that hamper productivity and growth. The problems that confront this sector includes: health and safety, environmental impacts, low production and low adherence to mining legislations. This study investigated the challenges confronting selected small-scale rock aggregate mines in the Vhembe District of Limpopo province of South Africa, assesses the health, safety, low production and environmental impacts associated with aggregate production and to develop an integrated approach of addressing the multi-faceted challenges.Keywords: health and safety, legislative framework, productivity, rock aggregate, small-scale mining
Procedia PDF Downloads 5031537 Liquidity and Cash Management in Business-A Key to Business Survival and Growth: The Nigerian Case
Authors: Ugbor Raphael Oluchukwu
Abstract:
Focusing on liquidity comes more naturally to a Chief Executive Officer than an Accountant who is trained to practice accrual accounting. When business is just commencing, it is essentially run on a cheque book (cash accounting) and for as long as there is cash in the accounts, the business is solvent. When complexity sets in and the business adopts financial accounting, the effect of liquidity and cash management becomes more pronounced. The management of cash no doubts impacts positively on the survival and growth of firms. What is in doubt is the amount of cash to be held by a firm as enough cash to enable the firm stay “afloat”. The focus of this paper is to determine liquidity and cash management in business, the Nigerian case. The specific objectives of the study are to do a theoretical review of the amount of cash to be held by a firm as enough cash to enable it stay afloat and to do a theoretical analysis to show the effect of cash flow on the survival and growth of firms in Nigeria.Keywords: cash, firm survival, growth, liquidity management
Procedia PDF Downloads 583