Search results for: experimental alloy
7214 A Wall Law for Two-Phase Turbulent Boundary Layers
Authors: Dhahri Maher, Aouinet Hana
Abstract:
The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.Keywords: bubbly flows, log law, boundary layer, CFD
Procedia PDF Downloads 2787213 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers
Authors: Mohammad Hassan Ziraksaz
Abstract:
Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer
Procedia PDF Downloads 1617212 Effectiveness of Short-Term Cognitive-Behavioral Group Therapy on Binge Eating Disorder in Females
Authors: Saeed Dehnavi, Ismail Asadallahi, Fatemeh Rahmatian, Elahe Rahimian
Abstract:
Purpose: Due to an increasing prevalence of over eating disorders, this paper aims to investigate the effectiveness of short-term group cognitive-behavioral therapy on reducing binge eating behavior and depression symptoms among females suffered from binge eating disorder (BED) in Qazvin, Iran. Methodology: This is aquasi-experimental study (pre-post testing plan with control group). Using a convenience sampling technique, binge eating scale (BES) and clinical interviews, 30 persons were selected among all clients who had referred to weight loss centers in Qazvin, these persons were randomly placed into two control and experimental groups. The experimental group participated in a seven-session plan on short-term cognitive-behavioral group therapy. Results: The results showed that the short term group cognitive-behavioral therapy results in a significant reduction in binge eating signs and depressive symptoms within the experimental group, compared to the control. Conclusion: Regarding the results, it is known that short-term group cognitive-behavioral therapy is effective in reducing overeating symptoms. Hence, it can be used as an economical and effective treatment method for individuals suffering from BED.Keywords: cognitive-behavioral group therapy, binge eating disorder, depression
Procedia PDF Downloads 2837211 The Design and Implementation of Interactive Storybook Reading to Develop the Reading Comprehension of ESL Learners
Authors: A. van Staden, A. A. van Rhyn
Abstract:
The numerous challenges South African, ESL learners experience were highlighted by the results of several literacy surveys and tests, which demonstrated that our learners’ literacy abilities are far below standard and very weak compared to other international countries. This study developed and implemented an interactive storybook intervention program to support the reading development of ESL learners. The researchers utilized an experimental pre-test/post-test research design, whereby 80 ESL learners from five participating schools, were purposively sampled to take part in this study. This paper, inter alia, discusses the key features of this intervention program whilst also reporting the results of the experimental investigation. Results are promising and show a significant improvement in the mean scores of the learners in the experimental group. Moreover, the results show the value of interactive storybook reading in creating responsive literacy environments to develop the literacy skills of ESL learners.Keywords: ESL learners, reading comprehension, Interactive story book reading, South Africa
Procedia PDF Downloads 1347210 The Impact of Basic TRIZ Training on Psychological Flexibility among University Students
Authors: Bakr M. Saeid
Abstract:
Psychological flexibility is a basic ability that allows people to adapt to a changing, difficult world. TRIZ is a Theory of Solving Inventive Problems that has many applications in both science & technology and creativity development; this research aimed to investigate the impact of basic TRIZ training on psychological flexibility among university students. The research sample included (30) university students divided into two groups: experimental group (n=15) and control group (n=15). The Psychological Flexibility Questionnaire (PFQ) was conducted in the pre-test and post-test on the experimental and control group, as the study treatment was applied to the experimental group only. Data were analyzed statistically by the Mann-Whitney test and Wilcoxon z test; results showed the effectiveness of the TRIZ training program on the development of psychological flexibility and its five factors. Results were interpreted, recommendations were presented.Keywords: psychological flexibility, TRIZ, positive perception of change, self as flexible and innovative, perception of reality
Procedia PDF Downloads 1587209 Hybrid Lubri-Coolants as an Alternatives to Mineral Based Emulsion in Machining Aerospace Alloy Ti-6Al-4V
Authors: Muhammad Jamil, Ning He, Wei Zhao
Abstract:
Ti-6Al-4V has poor thermal conductivity (6.7W/mK) accumulates shear and friction heat at the tool-chip interface zone. To dissipate the heat generation and friction effect, cryogenic cooling, Minimum quantity lubrication (MQL), nanofluids, hybrid cryogenic-MQL, solid lubricants, etc are applied frequently to underscore their significant effect on improving the machinability of Ti-6Al-4V. Nowadays, hybrid lubri-cooling is getting attention from researchers to explore their effect on machining Ti-6Al-4V.Keywords: hybrid lubri-cooling, tool wear, surface roughness, minimum quantity lubrication
Procedia PDF Downloads 1447208 The Application of Lesson Study Model in Writing Review Text in Junior High School
Authors: Sulastriningsih Djumingin
Abstract:
This study has some objectives. It aims at describing the ability of the second-grade students to write review text without applying the Lesson Study model at SMPN 18 Makassar. Second, it seeks to describe the ability of the second-grade students to write review text by applying the Lesson Study model at SMPN 18 Makassar. Third, it aims at testing the effectiveness of the Lesson Study model in writing review text at SMPN 18 Makassar. This research was true experimental design with posttest Only group design involving two groups consisting of one class of the control group and one class of the experimental group. The research populations were all the second-grade students at SMPN 18 Makassar amounted to 250 students consisting of 8 classes. The sampling technique was purposive sampling technique. The control class was VIII2 consisting of 30 students, while the experimental class was VIII8 consisting of 30 students. The research instruments were in the form of observation and tests. The collected data were analyzed using descriptive statistical techniques and inferential statistical techniques with t-test types processed using SPSS 21 for windows. The results shows that: (1) of 30 students in control class, there are only 14 (47%) students who get the score more than 7.5, categorized as inadequate; (2) in the experimental class, there are 26 (87%) students who obtain the score of 7.5, categorized as adequate; (3) the Lesson Study models is effective to be applied in writing review text. Based on the comparison of the ability of the control class and experimental class, it indicates that the value of t-count is greater than the value of t-table (2.411> 1.667). It means that the alternative hypothesis (H1) proposed by the researcher is accepted.Keywords: application, lesson study, review text, writing
Procedia PDF Downloads 2027207 Experimental and Theoretical Study of the Electric and Magnetic Fields Behavior in the Vicinity of High-Voltage Power Lines
Authors: Tourab Wafa, Nemamcha Mohamed, Babouri Abdessalem
Abstract:
This paper consists on an experimental and analytical characterization of the electromagnetic environment in the in the medium surrounding a circuit of two 220 Kv power lines running in parallel. The analysis presented in this paper is divided into two main parts. The first part concerns the experimental study of the behavior of the electric field and magnetic field generated by the selected double-circuit at ground level (0 m). While the second part simulate and calculate the fields profiles generated by the both lines at different levels above the ground, from (0 m) to the level close to the lines conductors (20 m above the ground) using the electrostatic and magneto-static modules of the COMSOL multi-physics software. The implications of the results are discussed and compared with the ICNIRP reference levels for occupational and non occupational exposures.Keywords: HV power lines, low frequency electromagnetic fields, electromagnetic compatibility, inductive and capacitive coupling, standards
Procedia PDF Downloads 4747206 Preventive Effects of Silymarin in Retinal Intoxication with Methanol in Rat: Transmission Electron Microscope Study
Authors: A. Zarenezhad, A. Esfandiari, E. Zarenezhad, M. Mardkhoshnood
Abstract:
The aim of this study was to investigate the ultra-structure of the photoreceptor layer of male rats under the effect of methanol intoxication and protective effect of silymarin against the methanol toxicity. Fifteen adult male rats were divided into three groups: Control group, Experimental group I (received 4g/kg methanol by intraperitoneal injection for five days), Experimental group II (received 4 g/kg methanol by intraperitoneal injection for five days and received 250 mg/kg silymarin orally for three months). At the end of the experiment, the eyes were removed; retina was separated near the optic disc and studied by transmission electron microscope. Results showed that the retina in the experimental group I exhibited loss of outer segments and disorganization in inner segment. Increased extra cellular space, disappearance of outer limiting membrane and pyknotic nuclei were seen in this group. But normal outer segment, organized inner segment and normal outer limiting membrane were obvious after treatment with silymarin in experimental group II. These findings show that methanol causes damage in the photoreceptor layer of the rat retina and silymarin can protect the damage to retina against the methanol intoxication.Keywords: ultra-structure, photoreceptor layer, methanol intoxication, silymarin, rat
Procedia PDF Downloads 2927205 Experimental Study of Upsetting and Die Forging with Controlled Impact
Authors: T. Penchev, D. Karastoyanov
Abstract:
The results from experimental research of deformation by upsetting and die forging of lead specimens wit controlled impact are presented. Laboratory setup for conducting the investigations, which uses cold rocket engine operated with compressed air, is described. The results show that when using controlled impact is achieving greater plastic deformation and consumes less impact energy than at ordinary impact deformation process.Keywords: rocket engine, forging hammer, sticking impact, plastic deformation
Procedia PDF Downloads 3717204 Three-Dimensional Vibration Characteristics of Piezoelectric Semi-Spherical Shell
Authors: Yu-Hsi Huang, Ying-Der Tsai
Abstract:
Piezoelectric circular plates can provide out-of-plane vibrational displacements on low frequency and in-plane vibrational displacements on high frequency. Piezoelectric semi-spherical shell, which is double-curvature structure, can induce three-dimensional vibrational displacements over a large frequency range. In this study, three-dimensional vibrational characteristics of piezoelectric semi-spherical shells with free boundary conditions are investigated using three experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial and azimuthal mode shapes. This optical technique utilizes a full-field and non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously in real time. The second experimental technique used, laser displacement meter is a point-wise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is used to determine the in-plane resonant frequencies of the piezoelectric semi-spherical shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with the result from finite element analysis. Excellent agreement between the experimental measurements and numerical calculation is presented on the three-dimensional vibrational characteristics of the piezoelectric semi-spherical shell.Keywords: piezoelectric semi-spherical shell, mode shape, resonant frequency, electronic speckle pattern interferometry, radial vibration, azimuthal vibration
Procedia PDF Downloads 2347203 An Experimental Investigation of Air Entrainment Due to Water Jets in Crossflows
Authors: Mina Esmi Jahromi, Mehdi Khiadani
Abstract:
Vertical water jets discharging into free surface turbulent cross flows result in the ingression of a large amount of air in the body of water and form a region of two-phase air-water flow with a considerable interfacial area. This research presents an experimental study of the two-phase bubbly flow using image processing technique. The air ingression and the trajectories of bubble swarms under different experimental conditions are evaluated. The rate of air entrainment and the bubble characteristics such as penetration depth, and dispersion pattern were found to be affected by the most influential parameters of water jet and cross flow including water jet-to-crossflow velocity ratio, water jet falling height, and cross flow depth. This research improves understanding of the underwater flow structure due to the water jet impingement in crossflow and advances the practical applications of water jets such as artificial aeration, circulation, and mixing where crossflow is present.Keywords: air entrainment, image processing, jet in cross flow, two-phase flow
Procedia PDF Downloads 3697202 Copper Coil Heat Exchanger Performance for Greenhouse Heating: An Experimental and Theoretical Study
Authors: Maha Bakkari, R.Tadili
Abstract:
The present work is a study of the performance of a solar copper coil heating system in a greenhouse microclimate. Our system is based on the circulation of a Heat transfer fluid, which is water in our case, in a closed loop under the greenhouse's roof in order to store heat all day, and then this heat will supply the greenhouse during the night. In order to evaluate our greenhouse, we made an experimental study in two identical greenhouses, where the first one is equipped with a heating system and the second (without heating) is used for control. The heating system allows the establishment of the thermal balance and determines the mass of water necessary for the process in order to ensure its functioning during the night. The results obtained showed that this solar heating system and the climatic parameters inside the experimental greenhouse were improved, and it presents a significant gain compared to a controlled greenhouse without a heating system. This research is one of the solutions that help to reduce the greenhouse effect of the planet Earth, a problem that worries the world.Keywords: solar energy, energy storage, greenhouse, environment
Procedia PDF Downloads 787201 The Effect of Elastic-Resistance Training on Postural Control in Sedentary Women
Authors: Yagmur Kocaoglu, Nurtekin Erkmen
Abstract:
The aim of this study was to determine effects of elastic resistance band training on body composition and postural control in sedentary women. Thirty-four sedentary females participated voluntarily for this study. Subjects' age was 21.88 ± 1.63 years, height was 161.50 ± 4.45 cm, and weight was 59.47 ± 7.03 kg. Participants were randomly placed into one of two groups (Experimental = 17, Control = 17). The elastic resistance training program lasted 8 weeks with 3 sessions per week. Experimental Group performed elastic resistance band training with red color for first 3 weeks, blue color for second 3 weeks and for last 2 weeks. The subjects carried out exercises 3 set, 10-15 repetitions with 15 seconds rest between exercises. The rest between sets was 30 seconds. The subjects underwent a standard warm-up for 10 minutes in every session. The elastic resistance training lasted 40 minutes for each session. After the training, all subjects performed a standard cool down for 10 minutes in each session. After and before 8 weeks training period, all subjects in experimental group and control group participated body composition and postural control measurements. Independent t-Test and Mann Whitney U Test were conducted to compare differences between experimental and control groups. Paired t-Test and Wilcoxon Z Test were used to compare differences between pre and posttests. There is no significant difference between pre and posttests in BMI (p>0.05). After the elastic resistance training, postural control scores and body fat significantly decreased in experimental group (p<0.05). In conclusion, it can be concluded that elastic resistance training improves postural control and body composition in sedentary women.Keywords: body composition, elastic resistance band, postural control, sedentary women
Procedia PDF Downloads 2727200 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite
Authors: Hyu Sang Jo, Gyo Woo Lee
Abstract:
In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model
Procedia PDF Downloads 2967199 The Effectiveness of Kinesiotaping Methods in Rehabilitation Therapy
Authors: Ana-Katarina Nikich
Abstract:
Background: The kinesiotaping method is often used in physiotherapy and rehabilitation. The purpose of this study was to evaluate the effectiveness of taping in the rehabilitation process of patients. Materials and methods: The study involved 90 male and female patients (the average age was 40-50 years) with various conditions requiring rehabilitation, such as injuries of the musculoskeletal system, sports injuries and other ailments. All patients were divided into two groups: experimental (n=40) and control (n=50). Both groups received 20 days of standard rehabilitation. In the experimental group, kinesiotaping methods were used, taking into account the individual characteristics of each patient. The control group performed regular exercises and physical therapy, but without using kinesiotape. During the study, physical parameters were monitored, interviews were conducted and the conditions of patients from both groups were compared. Results and discussion: The use of the kinesiotaping method in the rehabilitation process led to a significant improvement in physical parameters and pain reduction in patients. Significant improvement (p <0.005) was observed in all evaluated parameters among the patients of the experimental group. The control group also showed sufficient improvement (p <0.005), but the percentage of the experimental group was higher. As a result of the observation, the patients of the experimental group showed faster and more complete rehabilitation compared to the control group. The use of the kinesiotaping method allows to reduce the load on the damaged areas, improve blood circulation and lymphatic drainage, as well as increase stability and coordination of movements. Conclusions: Kinesiotaping as one of the modern therapeutic methods has shown its effectiveness in the rehabilitation process, contributing to the optimal recovery of patients with various conditions requiring rehabilitation. The use of tapes should be included in a comprehensive rehabilitation program to achieve the best results and reduce recovery time.Keywords: kinesiotaping, rehabilitation, therapy, pain
Procedia PDF Downloads 717198 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 3897197 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance
Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec
Abstract:
The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV
Procedia PDF Downloads 1387196 The Effect of Electromagnetic Stirring during Solidification of Nickel Based Alloys
Authors: Ricardo Paiva, Rui Soares, Felix Harnau, Bruno Fragoso
Abstract:
Nickel-based alloys are materials well suited for service in extreme environments subjected to pressure and heat. Some industrial applications for Nickel-based alloys are aerospace and jet engines, oil and gas extraction, pollution control and waste processing, automotive and marine industry. It is generally recognized that grain refinement is an effective methodology to improve the quality of casted parts. Conventional grain refinement techniques involve the addition of inoculation substances, the control of solidification conditions, or thermomechanical treatment with recrystallization. However, such methods often lead to non-uniform grain size distribution and the formation of hard phases, which are detrimental to both wear performance and biocompatibility. Stirring of the melt by electromagnetic fields has been widely used in continuous castings with success for grain refinement, solute redistribution, and surface quality improvement. Despite the advantages, much attention has not been paid yet to the use of this approach on functional castings such as investment casting. Furthermore, the effect of electromagnetic stirring (EMS) fields on Nickel-based alloys is not known. In line with the gaps/needs of the state-of-art, the present research work targets to promote new advances in controlling grain size and morphology of investment cast Nickel based alloys. For such a purpose, a set of experimental tests was conducted. A high-frequency induction furnace with vacuum and controlled atmosphere was used to cast the Inconel 718 alloy in ceramic shells. A coil surrounded the casting chamber in order to induce electromagnetic stirring during solidification. Aiming to assess the effect of the electromagnetic stirring on Ni alloys, the samples were subjected to microstructural analysis and mechanical tests. The results show that electromagnetic stirring can be an effective methodology to modify the grain size and mechanical properties of investment-cast parts.Keywords: investment casting, grain refinement, electromagnetic stirring, nickel alloys
Procedia PDF Downloads 1337195 Experimental Investigation of Counter-Flow Ranque–Hilsch Vortex Tube Using Humid Air
Authors: Hussein M. Maghrabie, M. Attalla, Hany. A. Mohamed, M. Salem, E. Specht
Abstract:
An experimental investigation is carried out on counter-flow Ranque–Hilsch vortex tube (RHVT). The present work is carried out to study the effect of nozzle aspect ratio, tube length and the inlet pressure (P_i) on the coefficient of performance and energy separation of a RHVT. Further, the effect of moist air with different relative humidity (RH) 40, 60, 80 % is also achieved. The air relative humidity is adjusted using air humidification/dehumidification unit. The experimental study accomplished for number of nozzle N=6, with inner diameter D=7.5 mm., and length of the vortex tube (L) 75, 97.5, and 112.5 mm. The results show that the relative humidity has a significant effect on coefficient of performance and energy separation of a RHVT.Keywords: COP, counter-flow Ranque–Hilsch vortex tube, energy separation, humid air
Procedia PDF Downloads 5187194 The Effectiveness of Group Spiritual Therapy on Increasing the Life Expectancy and Mental Health in Elderlies
Authors: Seyed Reza Mirmahdi, Seyedeh Maryam Hashemi Jabali
Abstract:
This research was conducted to evaluate the effects of group spiritual therapy on increasing the life expectancy and mental health among the elderlies. This was a quasi-experimental research using a pretest-posttest design with a control group conducted over a population including all the elderly people of Tehran in 2012-13. A randomized sampling method was used to select 30 elderly people living in Parham nursing home that were then randomly assigned into two control and experimental groups of 15 people each. The instruments used were Miller’s life expectancy and mental health test (SCL.90.R) standard questionnaires. Individuals in experimental group received 12 sessions of group spiritual therapy while those in control group did not receive any kind of therapy. The tests were performed again for all the subjects (30 individuals) at the end of the experiment. To test the hypotheses, the data collected by questionnaires were analyzed using descriptive methods through relevant tables and charts and also inferential methods through the analysis of covariance using the SPSS software. Results showed that group spiritual therapy leads to a significant increase in both mental health and life expectancy in the experimental group of elderlies living in Parham nursing home compared to those in the control group.Keywords: spiritual therapy, life expectancy, mental health, elderlies
Procedia PDF Downloads 5747193 Experimental and Computational Investigations of Baffle Position Effects on the Performance of Oil and Water Separator Tanks
Authors: Haitham A. Hussein, Rozi Abdullah, Md Azlin Md Said
Abstract:
Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase flow. For laboratory measurements, the velocity fields were measured using an acoustic Doppler velocimeter. The measurements were compared with the result of the computational model. The results of the experimental and computational simulations indicate that the best location of a baffle structure is achieved when the standard deviation of the velocity profile and the volume of the circulation zone inside the tank are minimized.Keywords: gravity separator tanks, CFD, baffle position, two phase flow, ADV, oil droplet
Procedia PDF Downloads 3287192 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties
Authors: Niharul Alam
Abstract:
The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis
Procedia PDF Downloads 4317191 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger
Authors: Syukri Himran, Rustan Taraka, Anto Duma
Abstract:
The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.Keywords: latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection
Procedia PDF Downloads 5687190 Computer Simulations of Stress Corrosion Studies of Quartz Particulate Reinforced ZA-27 Metal Matrix Composites
Authors: K. Vinutha
Abstract:
The stress corrosion resistance of ZA-27 / TiO2 metal matrix composites (MMC’s) in high temperature acidic media has been evaluated using an autoclave. The liquid melt metallurgy technique using vortex method was used to fabricate MMC’s. TiO2 particulates of 50-80 µm in size are added to the matrix. ZA-27 containing 2,4,6 weight percentage of TiO2 are prepared. Stress corrosion tests were conducted by weight loss method for different exposure time, normality and temperature of the acidic medium. The corrosion rates of composites were lower to that of matrix ZA-27 alloy under all conditions.Keywords: autoclave, MMC’s, stress corrosion, vortex method
Procedia PDF Downloads 4767189 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling
Procedia PDF Downloads 1557188 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike
Authors: Hong Yu, Dirk Heider, Suresh Advani
Abstract:
Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.Keywords: carbon composite, joule heating, lightning strike, resistor network
Procedia PDF Downloads 2287187 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump
Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison
Abstract:
Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.Keywords: centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm
Procedia PDF Downloads 4107186 Double Fortified Salt-An Effective Measure to Prevent Micronutrient Deficiencies in Indian Pregnant Women
Authors: Kejal Joshi Reddy, Sirimavo Nair
Abstract:
Micronutrient malnutrition affects pregnant women and children extremely with reference to growth manifestations in gestation as well as after birth. Early fetal development affected by iodine and iron deficiency leads to poor life quality. Various researchers have found interesting interrelations between iron and iodine. A few studies on impact assessment of DFS supplementation during pregnancy have been reported in India. Aim To provide meaningful contribution by assessing the efficacy of DFS supplementation on iodine and iron status of pregnant women. Design An interventional study. Setting A semi government hospital of urban Vadodara. Subjects Pregnant women (n=150) enrolled during first trimester (< 12 weeks) and followed up till the end of gestation, n=75 were divided in experimental (DFS supplemented) and control (Non supplemented) group. Results Impact on iron and iodine status was assessed by Hb concentration and UIE respectively. Mean Hb improved significantly (p < 0.001) (+0.42 g/dl) in experimental group and reduced non significantly (-0.20 g/dl) in control group at the end, since DFS provided additional 93 mg of iron within 6 months. Median UIE improved non significantly (278.6 to 299.01µg/L) in experimental group and decreased significantly (p < 0.05) (376.59 to 288.66 µg/L) in control group. Conclusion DFS could improve iron and iodine status of experimental group compared to control group. It is an effective measure to control two essential micronutrient deficiencies together.Keywords: DFS supplementation, anemia, pregnancy, iodine deficiency, iron
Procedia PDF Downloads 4707185 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials
Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates
Abstract:
The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation
Procedia PDF Downloads 256