Search results for: deep wells
1827 Mentha piperita Formulations in Natural Deep Eutectic Solvents: Phenolic Profile and Biological Activity
Authors: Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović, Boris M. Popović
Abstract:
Natural deep eutectic solvents (NADES) represent a class of modern systems that have been developed as a green alternative to toxic organic solvents, which are commonly used as extraction media. It has been considered that hydrogen bonding is the main interaction leading to the formation of NADES. The aim of this study was phytochemical characterization and determination of the antioxidant and antibacterial activity of Mentha piperita leaf extracts obtained by six choline chloride-based NADES. NADES were prepared by mixing choline chloride with different hydrogen bond donors in 1:1 molar ratio following the addition of 30% (w/w) water. The mixtures were then heated (60 °C) and stirred (650 rpm) until the clear homogenous liquids were obtained. The Mentha piperita extracts were prepared by mixing 75 mg of peppermint leaves with 1 mL of NADES following by the heating and stirring (60 °C, 650 rpm) within 30 min. The content of six phenolics in extracts was determined using HPLC-PDA. The dominant compounds presented in peppermint leaves - rosmarinic acid and luteolin 7-O-glucoside, were extracted by NADES at a similar level as 70% ethanol. The microdilution method was applied to test the antibacterial activity of extracts. Compared with 70% ethanol, all NADES systems showed higher antibacterial activity towards Pseudomonas aeruginosa (Gram -), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), and Salmonella enterica (Gram -), especially NADES containing organic acids. The majority of NADES extracts showed a better ability to neutralize DPPH radical than conventional solvent and similar ability to reduce Fe3+ to Fe2+ ions in FRAP assay. The obtained results introduce NADES systems as the novel, sustainable, and low-cost solvents with a variety of applications.Keywords: antibacterial activity, antioxidant activity, green extraction, natural deep eutectic solvents, polyphenols
Procedia PDF Downloads 1861826 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 1121825 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 5821824 Integrating AI into Breast Cancer Diagnosis: Aligning Perspectives for Effective Clinical Practice
Authors: Mehrnaz Mostafavi, Mahtab Shabani, Alireza Azani, Fatemeh Ghafari
Abstract:
Artificial intelligence (AI) can transform breast cancer diagnosis and therapy by providing sophisticated solutions for screening, imaging interpretation, histopathological analysis, and treatment planning. This literature review digs into the many uses of AI in breast cancer treatment, highlighting the need for collaboration between AI scientists and healthcare practitioners. It emphasizes advances in AI-driven breast imaging interpretation, such as computer-aided detection and diagnosis (CADe/CADx) systems and deep learning algorithms. These have shown significant potential for improving diagnostic accuracy and lowering radiologists' workloads. Furthermore, AI approaches such as deep learning have been used in histopathological research to accurately predict hormone receptor status and categorize tumor-associated stroma from regular H&E stains. These AI-powered approaches simplify diagnostic procedures while providing insights into tumor biology and prognosis. As AI becomes more embedded in breast cancer care, it is crucial to ensure its ethical, efficient, and patient-focused implementation to improve outcomes for breast cancer patients ultimately.Keywords: breast cancer, artificial intelligence, cancer diagnosis, clinical practice
Procedia PDF Downloads 721823 Emotion Recognition Using Artificial Intelligence
Authors: Rahul Mohite, Lahcen Ouarbya
Abstract:
This paper focuses on the interplay between humans and computer systems and the ability of these systems to understand and respond to human emotions, including non-verbal communication. Current emotion recognition systems are based solely on either facial or verbal expressions. The limitation of these systems is that it requires large training data sets. The paper proposes a system for recognizing human emotions that combines both speech and emotion recognition. The system utilizes advanced techniques such as deep learning and image recognition to identify facial expressions and comprehend emotions. The results show that the proposed system, based on the combination of facial expression and speech, outperforms existing ones, which are based solely either on facial or verbal expressions. The proposed system detects human emotion with an accuracy of 86%, whereas the existing systems have an accuracy of 70% using verbal expression only and 76% using facial expression only. In this paper, the increasing significance and demand for facial recognition technology in emotion recognition are also discussed.Keywords: facial reputation, expression reputation, deep gaining knowledge of, photo reputation, facial technology, sign processing, photo type
Procedia PDF Downloads 1231822 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists
Authors: Sefik Can Karakaya, Ibrahim Demir
Abstract:
In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression
Procedia PDF Downloads 1451821 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students
Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless
Abstract:
This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes
Procedia PDF Downloads 3241820 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures
Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal
Abstract:
The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching
Procedia PDF Downloads 2021819 Deep Brain Stimulation and Motor Cortex Stimulation for Post-Stroke Pain: A Systematic Review and Meta-Analysis
Authors: Siddarth Kannan
Abstract:
Objectives: Deep Brain Stimulation (DBS) and Motor Cortex stimulation (MCS) are innovative interventions in order to treat various neuropathic pain disorders such as post-stroke pain. While each treatment has a varying degree of success in managing pain, comparative analysis has not yet been performed, and the success rates of these techniques using validated, objective pain scores have not been synthesised. The aim of this study was to compare the effect of pain relief offered by MCS and DBS on patients with post-stroke pain and to assess if either of these procedures offered better results. Methods: A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPEROID CRD42021277542). Three databases were searched, and articles published from 2000 to June 2023 were included (last search date 25 June 2023). Meta-analysis was performed using random effects models. We evaluated the performance of DBS or MCS by assessing studies that reported pain relief using the Visual Analogue Scale (VAS). Data analysis of descriptive statistics was performed using SPSS (Version 27; IBM; Armonk; NY; USA). R statistics (Rstudio Version 4.0.1) was used to perform meta-analysis. Results: Of the 478 articles identified, 27 were included in the analysis (232 patients- 117 DBS & 115 MCS). The pooled number of patients who improved after DBS was 0.68 (95% CI, 0.57-0.77, I2=36%). The pooled number of patients who improved after MCS was 0.72 (95% CI, 0.62-0.80, I2=59%). Further sensitivity analysis was done to include only studies with a minimum of 5 patients in order to assess if there was any impact on the overall results. Nine studies each for DBS and MCS met these criteria. There seemed to be no significant difference in results. Conclusions: The use of surgical interventions such as DBS and MCS is an upcoming field for the treatment of post-stroke pain, with limited studies exploring and comparing these two techniques. While our study shows that MCS might be a slightly better treatment option, further research would need to be done in order to determine the appropriate surgical intervention for post-stroke pain.Keywords: post-stroke pain, deep brain stimulation, motor cortex stimulation, pain relief
Procedia PDF Downloads 1391818 Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan
Authors: Zakiullah Kalwar, Shabeer Abbassi
Abstract:
This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned.Keywords: hydrocarbon potential, structural style, reserve calculation, enhance production
Procedia PDF Downloads 4291817 Hate Speech Detection Using Machine Learning: A Survey
Authors: Edemealem Desalegn Kingawa, Kafte Tasew Timkete, Mekashaw Girmaw Abebe, Terefe Feyisa, Abiyot Bitew Mihretie, Senait Teklemarkos Haile
Abstract:
Currently, hate speech is a growing challenge for society, individuals, policymakers, and researchers, as social media platforms make it easy to anonymously create and grow online friends and followers and provide an online forum for debate about specific issues of community life, culture, politics, and others. Despite this, research on identifying and detecting hate speech is not satisfactory performance, and this is why future research on this issue is constantly called for. This paper provides a systematic review of the literature in this field, with a focus on approaches like word embedding techniques, machine learning, deep learning technologies, hate speech terminology, and other state-of-the-art technologies with challenges. In this paper, we have made a systematic review of the last six years of literature from Research Gate and Google Scholar. Furthermore, limitations, along with algorithm selection and use challenges, data collection, and cleaning challenges, and future research directions, are discussed in detail.Keywords: Amharic hate speech, deep learning approach, hate speech detection review, Afaan Oromo hate speech detection
Procedia PDF Downloads 1791816 Dosimetric Application of α-Al2O3:C for Food Irradiation Using TA-OSL
Authors: A. Soni, D. R. Mishra, D. K. Koul
Abstract:
α-Al2O3:C has been reported to have deeper traps at 600°C and 900°C respectively. These traps have been reported to accessed at relatively earlier temperatures (122 and 322 °C respectively) using thermally assisted OSL (TA-OSL). In this work, the dose response α-Al2O3:C was studied in the dose range of 10Gy to 10kGy for its application in food irradiation in low ( upto 1kGy) and medium(1 to 10kGy) dose range. The TOL (Thermo-optically stimulated luminescence) measurements were carried out on RisØ TL/OSL, TL-DA-15 system having a blue light-emitting diodes (λ=470 ±30nm) stimulation source with power level set at the 90% of the maximum stimulation intensity for the blue LEDs (40 mW/cm2). The observations were carried on commercial α-Al2O3:C phosphor. The TOL experiments were carried out with number of active channel (300) and inactive channel (1). Using these settings, the sample is subjected to linear thermal heating and constant optical stimulation. The detection filter used in all observations was a Hoya U-340 (Ip ~ 340 nm, FWHM ~ 80 nm). Irradiation of the samples was carried out using a 90Sr/90Y β-source housed in the system. A heating rate of 2 °C/s was preferred in TL measurements so as to reduce the temperature lag between the heater plate and the samples. To study the dose response of deep traps of α-Al2O3:C, samples were irradiated with various dose ranging from 10 Gy to 10 kGy. For each set of dose, three samples were irradiated. In order to record the TA-OSL, initially TL was recorded up to a temperature of 400°C, to deplete the signal due to 185°C main dosimetry TL peak in α-Al2O3:C, which is also associated with the basic OSL traps. After taking TL readout, the sample was subsequently subjected to TOL measurement. As a result, two well-defined TA-OSL peaks at 121°C and at 232°C occur in time as well as temperature domain which are different from the main dosimetric TL peak which occurs at ~ 185°C. The linearity of the integrated TOL signal has been measured as a function of absorbed dose and found to be linear upto 10kGy. Thus, it can be used for low and intermediate dose range of for its application in food irradiation. The deep energy level defects of α-Al2O3:C phosphor can be accessed using TOL section of RisØ reader system.Keywords: α-Al2O3:C, deep traps, food irradiation, TA-OSL
Procedia PDF Downloads 3011815 Targeting and Developing the Remaining Pay in an Ageing Field: The Ovhor Field Experience
Authors: Christian Ihwiwhu, Nnamdi Obioha, Udeme John, Edward Bobade, Oghenerunor Bekibele, Adedeji Awujoola, Ibi-Ada Itotoi
Abstract:
Understanding the complexity in the distribution of hydrocarbon in a simple structure with flow baffles and connectivity issues is critical in targeting and developing the remaining pay in a mature asset. Subtle facies changes (heterogeneity) can have a drastic impact on reservoir fluids movement, and this can be crucial to identifying sweet spots in mature fields. This study aims to evaluate selected reservoirs in Ovhor Field, Niger Delta, Nigeria, with the objective of optimising production from the field by targeting undeveloped oil reserves, bypassed pay, and gaining an improved understanding of the selected reservoirs to increase the company’s reservoir limits. The task at the Ovhor field is complicated by poor stratigraphic seismic resolution over the field. 3-D geological (sedimentology and stratigraphy) interpretation, use of results from quantitative interpretation, and proper understanding of production data have been used in recognizing flow baffles and undeveloped compartments in the field. The full field 3-D model has been constructed in such a way as to capture heterogeneities and the various compartments in the field to aid the proper simulation of fluid flow in the field for future production prediction, proper history matching and design of good trajectories to adequately target undeveloped oil in the field. Reservoir property models (porosity, permeability, and net-to-gross) have been constructed by biasing log interpreted properties to a defined environment of deposition model whose interpretation captures the heterogeneities expected in the studied reservoirs. At least, two scenarios have been modelled for most of the studied reservoirs to capture the range of uncertainties we are dealing with. The total original oil in-place volume for the four reservoirs studied is 157 MMstb. The cumulative oil and gas production from the selected reservoirs are 67.64 MMstb and 9.76 Bscf respectively, with current production rate of about 7035 bopd and 4.38 MMscf/d (as at 31/08/2019). Dynamic simulation and production forecast on the 4 reservoirs gave an undeveloped reserve of about 3.82 MMstb from two (2) identified oil restoration activities. These activities include side-tracking and re-perforation of existing wells. This integrated approach led to the identification of bypassed oil in some areas of the selected reservoirs and an improved understanding of the studied reservoirs. New wells have/are being drilled now to test the results of our studies, and the results are very confirmatory and satisfying.Keywords: facies, flow baffle, bypassed pay, heterogeneities, history matching, reservoir limit
Procedia PDF Downloads 1291814 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)
Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan
Abstract:
Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.Keywords: qorveh plain, groundwater level, ARMA, PARMA
Procedia PDF Downloads 2861813 Biological Expressions of Hamilton’s Rule in Human Populations: The Deep Psychological Influence of Defensive and Offensive Motivations Found in Human Conflicts and Sporting Events
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need naturally selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Places Dawkins’s selfish gene as the r, relationship variable; 5) Flipping the equation variable themes (close relationship to distant relationship, and benefit to threat) the new equation can now be used to identify the offensive and defensive sides of conflict; 6) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 6) Pathway to reduce human sacrifice through manipulation of variables. This paper discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 521812 Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models
Authors: Gao Youtao, Zhao Tanran, Jin Bingyu, Xu Bo
Abstract:
Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy.Keywords: extended Kalman filter, autonomous orbit determination, quasi-periodic orbit, navigation constellation
Procedia PDF Downloads 2831811 A Comparative Study of Natural Language Processing Models for Detecting Obfuscated Text
Authors: Rubén Valcarce-Álvarez, Francisco Jáñez-Martino, Rocío Alaiz-Rodríguez
Abstract:
Cybersecurity challenges, including scams, drug sales, the distribution of child sexual abuse material, fake news, and hate speech on both the surface and deep web, have significantly increased over the past decade. Users who post such content often employ strategies to evade detection by automated filters. Among these tactics, text obfuscation plays an essential role in deceiving detection systems. This approach involves modifying words to make them more difficult for automated systems to interpret while remaining sufficiently readable for human users. In this work, we aim at spotting obfuscated words and the employed techniques, such as leetspeak, word inversion, punctuation changes, and mixed techniques. We benchmark Named Entity Recognition (NER) using models from the BERT family as well as two large language models (LLMs), Llama and Mistral, on XX_NER_WordCamouflage dataset. Our experiments evaluate these models by comparing their precision, recall, F1 scores, and accuracy, both overall and for each individual class.Keywords: natural language processing (NLP), text obfuscation, named entity recognition (NER), deep learning
Procedia PDF Downloads 101810 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams
Authors: S. Nagheli, N. Samani, D. A. Barry
Abstract:
In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle
Procedia PDF Downloads 4321809 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 1411808 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment
Procedia PDF Downloads 1051807 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction
Authors: Omer Cahana, Ofer Levi, Maya Herman
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning
Procedia PDF Downloads 911806 Implementation of Data Science in Field of Homologation
Authors: Shubham Bhonde, Nekzad Doctor, Shashwat Gawande
Abstract:
For the use and the import of Keys and ID Transmitter as well as Body Control Modules with radio transmission in a lot of countries, homologation is required. Final deliverables in homologation of the product are certificates. In considering the world of homologation, there are approximately 200 certificates per product, with most of the certificates in local languages. It is challenging to manually investigate each certificate and extract relevant data from the certificate, such as expiry date, approval date, etc. It is most important to get accurate data from the certificate as inaccuracy may lead to missing re-homologation of certificates that will result in an incompliance situation. There is a scope of automation in reading the certificate data in the field of homologation. We are using deep learning as a tool for automation. We have first trained a model using machine learning by providing all country's basic data. We have trained this model only once. We trained the model by feeding pdf and jpg files using the ETL process. Eventually, that trained model will give more accurate results later. As an outcome, we will get the expiry date and approval date of the certificate with a single click. This will eventually help to implement automation features on a broader level in the database where certificates are stored. This automation will help to minimize human error to almost negligible.Keywords: homologation, re-homologation, data science, deep learning, machine learning, ETL (extract transform loading)
Procedia PDF Downloads 1631805 F-VarNet: Fast Variational Network for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.Keywords: MRI, deep learning, variational network, computer vision, compress sensing
Procedia PDF Downloads 1631804 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 571803 Shoring System Selection for Deep Excavation
Authors: Faouzi Ahtchi-Ali, Marcus Vitiello
Abstract:
A study was conducted in the east region of the Middle East to assess the constructability of a shoring system for a 12-meter deep excavation. Several shoring systems were considered in this study including secant concrete piling, contiguous concrete piling, and sheet-piling. The excavation was carried out in a very dense sand with the groundwater level located at 3 meters below ground surface. The study included conducting a pilot test for each shoring system listed above. The secant concrete piling included overlapping concrete piles to a depth of 16 meters. Drilling method with full steel casing was utilized to install the concrete piles. The verticality of the piles was a concern for the overlap. The contiguous concrete piling required the installation of micro-piles to seal the gap between the concrete piles. This method revealed that the gap between the piles was not fully sealed as observed by the groundwater penetration to the excavation. The sheet-piling method required pre-drilling due to the high blow count of the penetrated layer of saturated sand. This study concluded that the sheet-piling method with pre-drilling was the most cost effective and recommended a method for the shoring system.Keywords: excavation, shoring system, middle east, Drilling method
Procedia PDF Downloads 4681802 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients
Authors: Bliss Singhal
Abstract:
Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels
Procedia PDF Downloads 861801 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 2031800 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya
Authors: Faraj M. Elkhatri, Hana Ali Alafi
Abstract:
The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.Keywords: fine migration, formation damage, kaolinite, soled bulging.
Procedia PDF Downloads 741799 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 791798 Blocking of Random Chat Apps at Home Routers for Juvenile Protection in South Korea
Authors: Min Jin Kwon, Seung Won Kim, Eui Yeon Kim, Haeyoung Lee
Abstract:
Numerous anonymous chat apps that help people to connect with random strangers have been released in South Korea. However, they become a serious problem for young people since young people often use them for channels of prostitution or sexual violence. Although ISPs in South Korea are responsible for making inappropriate content inaccessible on their networks, they do not block traffic of random chat apps since 1) the use of random chat apps is entirely legal. 2) it is reported that they use HTTP proxy blocking so that non-HTTP traffic cannot be blocked. In this paper, we propose a service model that can block random chat apps at home routers. A service provider manages a blacklist that contains blocked apps’ information. Home routers that subscribe the service filter the traffic of the apps out using deep packet inspection. We have implemented a prototype of the proposed model, including a centralized server providing the blacklist, a Raspberry Pi-based home router that can filter traffic of the apps out, and an Android app used by the router’s administrator to locally customize the blacklist.Keywords: deep packet inspection, internet filtering, juvenile protection, technical blocking
Procedia PDF Downloads 350