Search results for: combined loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4081

Search results for: combined loading

3421 Food and Feeding Habit of Clarias anguillaris in Tagwai Reservoir, Minna, Niger State, Nigeria

Authors: B. U. Ibrahim, A. Okafor

Abstract:

Sixty-two (62) samples of Clarias anguillaris were collected from Tagwai Reservoir and used for the study. 29 male and 33 female samples were obtained for the study. Body measurement indicated that different sizes were collected for the study. Males, females and combined sexes had standard length and total length means of 26.56±4.99 and 31.13±6.43, 27.17±5.21 and 30.62±5.43, 26.88±5.08 and 30.86±5.88 cm, respectively. The weights of males, females and combined sexes have mean weights of 241.10±96.27, 225.75±78.66 and 232.93±86.95 gm, respectively. Eight items; fish, insects, plant materials, sand grains, crustaceans, algae, detritus and unidentified items were eaten as food by Clarias anguilarias in Tagwai Reservoir. Frequency of occurrence and numerical methods used in stomach contents analysis indicated that fish was the highest, followed by insect, while the lowest was the algae. Frequency of stomach fullness of Clarias anguillaris showed low percentage of empty stomachs or stomachs without food (21.00%) and high percentage of stomachs with food (79.00%), which showed high abundance of food and high feeding intensity during the period of study. Classification of fish based on feeding habits showed that Clarias anguillaris in this study is an omnivore because it consumed both plant and animal materials.

Keywords: stomach content, feeding habit, Clarias anguillaris, Tagwai Reservoir

Procedia PDF Downloads 592
3420 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area

Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos

Abstract:

We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.

Keywords: computational fluid dynamics, extreme events, loading, tsunami

Procedia PDF Downloads 113
3419 Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets

Authors: H. S. S. Abou El-Mal, H. E. M. Sallam

Abstract:

This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study.

Keywords: CFRP, FRC, repair, shear strengthening

Procedia PDF Downloads 346
3418 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 113
3417 Craniopharyngiomas: Surgical Techniques: The Combined Interhemispheric Sub-Commissural Translaminaterminalis Approach to Tumors in and Around the Third Ventricle: Neurological and Functional Outcome

Authors: Pietro Mortini, Marco Losa

Abstract:

Objective: Resection of large lesions growing into the third ventricle remains a demanding surgery, sometimes at risk of severe post-operative complications. Transcallosal and transcortical routes were considered as approaches of choice to access the third ventricle, however neurological consequences like memory loss have been reported. We report clinical results of the previously described combined interhemispheric sub-commissural translaminaterminalis approach (CISTA) for the resection of large lesions located in the third ventricle. Methods: Authors conducted a retrospective analysis on 10 patients, who were operated through the CISTA, for the resection of lesions growing into the third ventricle. Results: Total resection was achieved in all cases. Cognitive worsening occurred only in one case. No perioperative deaths were recorded and, at last follow-up, all patients were alive. One year after surgery 80% of patients had an excellent outcome with a KPS 100 and Glasgow Outcome score (GOS) Conclusion: The CISTA represents a safe and effective alternative to transcallosal and transcortical routes to resect lesions growing into the third ventricle. It allows for a multiangle trajectory to access the third ventricle with a wide working area free from critical neurovascular structures, without any section of the corpus callosum, the anterior commissure and the fornix.

Keywords: craniopharingioma, surgery, sub-commissural translaminaterminalis approach (CISTA),

Procedia PDF Downloads 290
3416 Dual-Layer Microporous Layer of Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells under Various RH Conditions

Authors: Grigoria Athanasaki, Veerarajan Vimala, A. M. Kannan, Louis Cindrella

Abstract:

Energy usage has been increased throughout the years, leading to severe environmental impacts. Since the majority of the energy is currently produced from fossil fuels, there is a global need for clean energy solutions. Proton Exchange Membrane Fuel Cells (PEMFCs) offer a very promising solution for transportation applications because of their solid configuration and low temperature operations, which allows them to start quickly. One of the main components of PEMFCs is the Gas Diffusion Layer (GDL), which manages water and gas transport and shows direct influence on the fuel cell performance. In this work, a novel dual-layer GDL with gradient porosity was prepared, using polyethylene glycol (PEG) as pore former, to improve the gas diffusion and water management in the system. The microporous layer (MPL) of the fabricated GDL consists of carbon powder PUREBLACK, sodium dodecyl sulfate as a surfactant, 34% wt. PTFE and the gradient porosity was created by applying one layer using 30% wt. PEG on the carbon substrate, followed by a second layer without using any pore former. The total carbon loading of the microporous layer is ~ 3 mg.cm-2. For the assembly of the catalyst layer, Nafion membrane (Ion Power, Nafion Membrane NR211) and Pt/C electrocatalyst (46.1% wt.) were used. The catalyst ink was deposited on the membrane via microspraying technique. The Pt loading is ~ 0.4 mg.cm-2, and the active area is 5 cm2. The sample was ex-situ characterized via wetting angle measurement, Scanning Electron Microscopy (SEM), and Pore Size Distribution (PSD) to evaluate its characteristics. Furthermore, for the performance evaluation in-situ characterization via Fuel Cell Testing using H2/O2 and H2/air as reactants, under 50, 60, 80, and 100% relative humidity (RH), took place. The results were compared to a single layer GDL, fabricated with the same carbon powder and loading as the dual layer GDL, and a commercially available GDL with MPL (AvCarb2120). The findings reveal high hydrophobic properties of the microporous layer of the GDL for both PUREBLACK based samples, while the commercial GDL demonstrates hydrophilic behavior. The dual layer GDL shows high and stable fuel cell performance under all the RH conditions, whereas the single layer manifests a drop in performance at high RH in both oxygen and air, caused by catalyst flooding. The commercial GDL shows very low and unstable performance, possibly because of its hydrophilic character and thinner microporous layer. In conclusion, the dual layer GDL with PEG appears to have improved gas diffusion and water management in the fuel cell system. Due to its increasing porosity from the catalyst layer to the carbon substrate, it allows easier access of the reactant gases from the flow channels to the catalyst layer, and more efficient water removal from the catalyst layer, leading to higher performance and stability.

Keywords: gas diffusion layer, microporous layer, proton exchange membrane fuel cells, relative humidity

Procedia PDF Downloads 119
3415 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys

Authors: Gulcan Ozerim, Gunay Anlas

Abstract:

In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.

Keywords: crack, HRR singularity, shape memory alloys, stress distribution

Procedia PDF Downloads 323
3414 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 229
3413 A Retrospective Analysis of the Use of Vancomycin by Continous Infusion in the Critical Care Setting, Edinburgh

Authors: Sonia Nemakallu, Pota Kalima

Abstract:

Introduction: Vancomycin is a glycopeptide antibiotic, commonly used to treat gram-positive bacteraemia. It has been increasingly used in the critical care setting due to an increased awareness of resistant gram positive organisms. In Edinburgh both tertiary hospitals, The Western General Hospital and The Royal Infirmary Of Edinburgh, commonly use Vancomycin for a variety of infections. Administration of Vancomyicn in these hospitals is by continuous infusion as it is thought to maintain serum concentrations easier and is a simpler monitoring system. Purpose: The aim of the study was to evaluate the efficacy and reliability in which Vancomycin is used. Material and Methods: A retrospective study, over a 6-month period from January 2014 to June 2014. 91 admissions were included, all received Vancomycin by continuous infusion during their critical care stay. Results: The number one use for Vancomycin in critical care settings was in the treatment of ventilator or hospital-acquired pneumonia. Only 3% of population had MRSA. 49% of admissions were not therapeutic on day 1 post loading dose. Of those that were therapeutic on day 1 post loading dose, 39% of admissions showed no organisms in any cultures taken, 42% had organisms sensitive to Vancomycin and 19% had only organisms resistant to Vancomycin. Those that were not therapeutic on day 1 showed similar organism sensitivities. 15% of admissions had Vancomycin levels above 25 (levels should be maintained between 15-25). An increase in creatinine was proportionally seen with an increase in Vancomycin levels. Conclusion: Within Edinburgh Vancomycin is being overused in the critical care setting with only 3% of the population having highly resistant organisms. Continuous infusion have not ruled out the complexity of maintaining therapeutic levels, with a large proportion of patients not being therapeutic on day 1. Further research is also required into the nephrotoxic effects of using higher doses of Vancomycin.

Keywords: Vancomycin, continuous infusion, multi resistant organisms, sepsis, renal toxicity

Procedia PDF Downloads 451
3412 Interlanguage Acquisition of a Postposition ‘e’ in Korean: Analysis of the Korean Novice Learners’ Output

Authors: Eunjung Lee

Abstract:

This study aims to analyze the sentences generated by the beginners who learn ‘e,’ a postposition in Korean and to find out the regularity of learners’ interlanguage upon investigating the usages of ‘e’ that appears by meanings and functions in their interlanguage, and conditions that ‘e’ is used. This study was conducted with mainly two assumptions; first, the learner’s language has the specific type of interlanguage; and second, there is the regularity of interlanguage when students produce ‘e’ under the specific conditions. Learners’ output has various values and can be used as the useful data to understand interlanguage. Therefore, all the sentences containing a postposition ‘e’ by English speaking learners were searched in ‘Learners’ corpus sharing center in The National Institute of Korean Language’ in Korea, and the data were collected upon limiting the levels of learners with Level 1 and 2. 789 sentences that were used with ‘e’ were selected as the final subjects of the analysis. First, to understand the environmental characteristics to be used with a postposition, ‘e’ after summarizing 13 meaning and functions of ‘e’ appeared in three books of Korean dictionary that summarized the Korean grammar, 1) meaning function of ‘e’ that were used in each sentence was classified; 2) the nouns that were combined with ‘e,’ keywords of the sentences, and the characteristics of modifiers, linkers, and predicates appeared in front of ‘e’ were analyzed; 3) the regularity by the novice learners’ meaning and functions were reviewed; and 4) the differences of the regularity by level 1 and 2 learners’ meaning and functions were found. Upon the study results, the novice learners showed 1) they used the nouns related to ‘time(시간), before(전), after(후), next(다음), the next(그다음), then(때), day of the week(요일), and season(계절)’ mainly in front of ‘e’ when they used ‘e’ as the meaning function of time; 2) they used mainly the verbs of ‘go(가다),’ ‘come(오다),’ and ‘go round(다니다)’ as the predicate to match with ‘e’ that was the meaning function of direction and destination; and 3) they used mainly the nouns related to ‘locations or countries’ in front of ‘e,’ a meaning function postposition of ‘place,’ used mainly the verbs ‘be(있다), not be(없다), live(살다), be many(많다)’ after ‘e,’ and ‘i(이) or ka(가)’ was combined mainly in the subject words in case of ‘be(있다), not be(없다)’ or ‘be many(많다),’ and ‘eun(은) or nun(는)’ was combined mainly in the subject words in front of ‘live at’ In addition, 4) they used ‘e’ which indicates ‘cause or reason’ in the form of ‘because( 때문에),’ and 5) used ‘e’ of the subjects as the predicates to match with the predicates such as ‘treat(대하다), like(들다), and catch(걸리다).’ From these results, ‘e’ usage patterns of the Korean novice learners demonstrated very differently by the meaning functions and the learners’ interlanguage regularity could be deducted. However, little difference was found in interlanguage regularity between level 1 and 2. This study has the meaning to try to understand the interlanguage system and regularity in the learners’ acquisition process of postposition ‘e’ and this can be utilized to lessen their errors.

Keywords: interlanguage, interlagnage anaylsis, postposition ‘e’, Korean acquisition

Procedia PDF Downloads 127
3411 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 297
3410 Antibiotic and Fungicide Exposure Reveal the Evolution of Soil-Lettuce System Resistome

Authors: Chenyu Huang, Minrong Cui, Hua Fang, Luqing Zhang, Yunlong Yu

Abstract:

The emergence and spread of antibiotic resistance genes (ARGs) have become a pressing issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the mechanism of ARG propagation within soil-lettuce systems exposed to both fungicides and antibiotics. The results of our study showed that the presence of fungicide and antibiotic stresses had a significant impact on certain bacterial communities. Notably, we observed that ARGs were primarily transferred from the soil to the plant through plasmids. The selective pressure exerted by fungicides and antibiotics contributed to an increase in unique ARGs present on lettuce leaves. Moreover, ARGs located on chromosomes and plasmids followed different transmission patterns. The presence of diverse selective pressures, a result of compound treatments involving antibiotics and fungicides, amplifies this phenomenon. Consequently, there is a higher probability of bacteria developing multi-antibiotic resistance under the combined pressure of fungicides and antibiotics. In summary, our findings highlight that combined fungicide and antibiotic treatments are more likely to drive the acquisition of ARGs within the soil-plant system and may increase the risk of human ingestion.

Keywords: soil-lettuce system, fungicide, antibiotic, ARG, transmission

Procedia PDF Downloads 98
3409 Histological Study on the Effect of Bone Marrow Transplantation Combined with Curcumin on Pancreatic Regeneration in Streptozotocin Induced Diabetic Rats

Authors: Manal M. Shehata, Kawther M. Abdel-Hamid, Nashwa A. Mohamed, Marwa H. Bakr, Maged S. Mahmoud, Hala M. Elbadre

Abstract:

Introduction: The worldwide rapid increase in diabetes poses a significant challenge to current therapeutic approaches. Therapeutic utility of bone marrow transplantation in diabetes is an attractive approach. However, the oxidative stress generated by hyperglycemia may hinder β-cell regeneration. Curcumin, is a dietary spice with antioxidant activity. Aim of work: The present study was undertaken to investigate the therapeutic potential of curcumin, bone marrow transplantation, and their combined effects in the reversal of experimental diabetes. Material and Methods: Fifty adult male healthy albino rats were included in the present study.They were divided into two groups: Group І: (control group) included 10 rats. Group П: (diabetic group): included 40 rats. Diabetes was induced by single intraperitoneal injection of streptozotocin (STZ). Group II will be further subdivided into four groups (10 rats for each): Group II-a (diabetic control). Group II-b: rats were received single intraperitoneal injection of bone marrow suspension (un-fractionated bone marrow cells) prepared from rats of the same family. Group II-c: rats were treated with curcumin orally by gastric intubation for 6 weeks. Group II-d: rats were received a combination of single bone marrow transplantation and curcumin for 6 weeks. After 6 weeks, blood glucose, insulin levels were measured and the pancreas from all rats were processed for Histological, Immunohistochemical and morphometric examination. Results: Diabetic group, showed progressive histological changes in the pancreatic islets. Treatment with either curcumin or bone marrow transplantation improved the structure of the islets and reversed streptozotocin-induced hyperglycemia and hypoinsulinemia. Combination of curcumin and bone marrow transplantation elicited more profound alleviation of streptozotocin-induced changes including islet regeneration and insulin secretion. Conclusion: The use of natural antioxidants combined with bone marrow transplantation to induce pancreatic regeneration is a promising strategy in the management of diabetes.

Keywords: diabtes, panceatic islets, bone marrow transplantation, curcumin

Procedia PDF Downloads 380
3408 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics

Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair

Abstract:

A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.

Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics

Procedia PDF Downloads 73
3407 Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment

Authors: Abdullah Alhajoj, Bassam Alowaiesh

Abstract:

This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia.

Keywords: two-phase, three-phase, olive mill, olive oil, waste treatment, filtration, advanced oxidation, waste plastic bottles

Procedia PDF Downloads 151
3406 A Zero-Flaring Flowback Solution to Revive Liquid Loaded Gas Wells

Authors: Elsayed Amer, Tarek Essam, Abdullah Hella, Mohammed Al-Ajmi

Abstract:

Hydrocarbon production decline in mature gas fields is inevitable, and mitigating these circumstances is essential to ensure a longer production period. Production decline is not only influenced by reservoir pressure and wellbore integrity; however, associated liquids in the reservoir rock have a considerable impact on the production process. The associated liquid may result in liquid loading, near wellbore damage, condensate banking, fine sand migration, and wellhead pressure depletion. Consequently, the producing well will suffocate, and the liquid column will seize the well from flowing. A common solution in such circumstances is reducing the surface pressure by opening the well to the atmospheric pressure and flaring the produced liquids. This practice may not be applicable to many cases since the atmospheric pressure is not low enough to create a sufficient driving force to flow the well. In addition, flaring the produced hydrocarbon is solving the issue on account of the environment, which is against the world's efforts to mitigate the impact of climate change. This paper presents a novel approach and a case study that utilizes a multi-phase mobile wellhead gas compression unit (MMWGC) to reduce surface pressure to the sub-atmospheric level and transfer the produced hydrocarbons to the sales line. As a result, the liquid column will unload in a zero-flaring manner, and the life of the producing well will extend considerably. The MMWGC unit was able to successfully kick off a dead well to produce up to 10 MMSCFD after reducing the surface pressure for 3 hours. Applying such novelty on a broader scale will not only extend the life of the producing wells yet will also provide a zero-flaring, economically and environmentally preferred solution.

Keywords: petroleum engineering, zero-flaring, liquid loading, well revival

Procedia PDF Downloads 96
3405 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 81
3404 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 222
3403 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility

Authors: Yi-Ling Chen, Dung-Ying Lin

Abstract:

In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.

Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence

Procedia PDF Downloads 12
3402 Measuring Oxygen Transfer Coefficients in Multiphase Bioprocesses: The Challenges and the Solution

Authors: Peter G. Hollis, Kim G. Clarke

Abstract:

Accurate quantification of the overall volumetric oxygen transfer coefficient (KLa) is ubiquitously measured in bioprocesses by analysing the response of dissolved oxygen (DO) to a step change in the oxygen partial pressure in the sparge gas using a DO probe. Typically, the response lag (τ) of the probe has been ignored in the calculation of KLa when τ is less than the reciprocal KLa, failing which a constant τ has invariably been assumed. These conventions have now been reassessed in the context of multiphase bioprocesses, such as a hydrocarbon-based system. Here, significant variation of τ in response to changes in process conditions has been documented. Experiments were conducted in a 5 L baffled stirred tank bioreactor (New Brunswick) in a simulated hydrocarbon-based bioprocess comprising a C14-20 alkane-aqueous dispersion with suspended non-viable Saccharomyces cerevisiae solids. DO was measured with a polarographic DO probe fitted with a Teflon membrane (Mettler Toledo). The DO concentration response to a step change in the sparge gas oxygen partial pressure was recorded, from which KLa was calculated using a first order model (without incorporation of τ) and a second order model (incorporating τ). τ was determined as the time taken to reach 63.2% of the saturation DO after the probe was transferred from a nitrogen saturated vessel to an oxygen saturated bioreactor and is represented as the inverse of the probe constant (KP). The relative effects of the process parameters on KP were quantified using a central composite design with factor levels typical of hydrocarbon bioprocesses, namely 1-10 g/L yeast, 2-20 vol% alkane and 450-1000 rpm. A response surface was fitted to the empirical data, while ANOVA was used to determine the significance of the effects with a 95% confidence interval. KP varied with changes in the system parameters with the impact of solid loading statistically significant at the 95% confidence level. Increased solid loading reduced KP consistently, an effect which was magnified at high alkane concentrations, with a minimum KP of 0.024 s-1 observed at the highest solids loading of 10 g/L. This KP was 2.8 fold lower that the maximum of 0.0661 s-1 recorded at 1 g/L solids, demonstrating a substantial increase in τ from 15.1 s to 41.6 s as a result of differing process conditions. Importantly, exclusion of KP in the calculation of KLa was shown to under-predict KLa for all process conditions, with an error up to 50% at the highest KLa values. Accurate quantification of KLa, and therefore KP, has far-reaching impact on industrial bioprocesses to ensure these systems are not transport limited during scale-up and operation. This study has shown the incorporation of τ to be essential to ensure KLa measurement accuracy in multiphase bioprocesses. Moreover, since τ has been conclusively shown to vary significantly with process conditions, it has also been shown that it is essential for τ to be determined individually for each set of process conditions.

Keywords: effect of process conditions, measuring oxygen transfer coefficients, multiphase bioprocesses, oxygen probe response lag

Procedia PDF Downloads 265
3401 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 170
3400 Numerical Simulation of Axially Loaded to Failure Large Diameter Bored Pile

Authors: M. Ezzat, Y. Zaghloul, T. Sorour, A. Hefny, M. Eid

Abstract:

Ultimate capacity of large diameter bored piles is usually determined from pile loading tests as recommended by several international codes and foundation design standards. However, loading of this type of piles till achieving apparent failure is practically seldom. In this paper, numerical analyses are carried out to simulate load test of a large diameter bored pile performed at the location of Alzey highway bridge project (Germany). Test results of pile load settlement relationship till failure as well as results of the base and shaft resistances are available. Apparent failure was indicated in this test by the significant increase of the induced settlement during the last load increment applied on the pile head. Measurements of this pile load test are used to assess the quality of the numerical models investigated. Three different material soil models are implemented in the analyses: Mohr coulomb (MC), Soft soil (SS), and Modified Mohr coulomb (MMC). Very good agreement is obtained between the field measured settlement and the calculated settlement using the MMC model. Results of analysis showed also that the MMC constitutive model is superior to MC, and SS models in predicting the ultimate base and shaft resistances of the large diameter bored pile. After calibrating the numerical model, behavior of large diameter bored piles under axial loads is discussed and the formation of the plastic zone around the pile is explored. Results obtained showed that the plastic zone below the base of the pile at failure extended laterally to about four times the pile diameter and vertically to about three times the pile diameter.

Keywords: ultimate capacity, large diameter bored piles, plastic zone, failure, pile load test

Procedia PDF Downloads 141
3399 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 712
3398 The Effectiveness of Kinesio Taping in Enhancing Early Post-Operative Outcomes Inpatients after Total Knee Replacement or Anterior Cruciate Ligament Reconstruction

Authors: B. A. Alwahaby

Abstract:

Background: The number of Total Knee Replacement (TKR) and Anterior Cruciate Ligament Reconstruction (ACLR) performed every year is increasing. The main aim of physiotherapy early recovery rehabilitation after these surgeries is to control pain and edema and regain Range of Motion (ROM) and physical activity. All of these outcomes need to be managed by safe and effective modalities. Kinesiotaping (KT) is an elastic non-invasive therapeutic tape that has become recognised in different physiotherapy situation as injury prevention, rehabilitation, and performance enhancement and been used with different conditions. However, there is still clinical doubt regarding the effectiveness of KT due to inconclusive supporting evidence. The aim of this systematic review is to collate all the available evidence on the effectiveness of KT in the early rehabilitation of ACLR and TKR patients and analyse whether the use of KT combined with standard rehabilitation would facilitate recovery of postoperative outcome than standard rehabilitation alone. Methodology: A systematic review was conducted. Medline, EMBASE, Scopus, AMED PEDro, CINAHL, and Web of Science databases were searched. Each study was assessed for inclusion and methodological quality appraisal was undertaken by two reviewers using the JBI critical appraisal tools. The studies were then synthesised qualitatively due to heterogeneity between studies. Results: Five moderate to low quality RCTs were located. All five studies demonstrated statistically significant improvements in pain, swelling, ROM, and functional outcomes (p < 0.05). Between group comparison, KT combined with standardised rehabilitation were shown to be significantly more effective than standardised rehabilitation alone for pain and swelling (p < 0.05). However, there were inconstant findings for ROM, and no statistically significant differences reported between groups for functional outcomes (p > 0.05). Conclusion: Research in the area is generally low quality; however, there is consistent evidence to support the use of KT combined with standardised post-operative rehabilitation for reducing pain and swelling. There is also some evidence that KT may be effective in combination with standardised rehabilitation to regain knee extension ROM faster than standardised rehabilitation alone, but further primary research is required to confirm this.

Keywords: anterior cruciate ligament reconstruction, ACLR, kinesio taping, KT, postoperative, total knee replacement, TKR

Procedia PDF Downloads 117
3397 [Keynote Talk]: Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites

Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar

Abstract:

In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.

Keywords: nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method

Procedia PDF Downloads 465
3396 N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy

Authors: Mandeep Kaur, Jitendra K. Bera

Abstract:

The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy.

Keywords: C-C bond formation, hydrogen borrowing, metal ligand cooperation (MLC), n-heterocyclic carbene

Procedia PDF Downloads 177
3395 3D Dentofacial Surgery Full Planning Procedures

Authors: Oliveira M., Gonçalves L., Francisco I., Caramelo F., Vale F., Sanz D., Domingues M., Lopes M., Moreia D., Lopes T., Santos T., Cardoso H.

Abstract:

The ARTHUR project consists of a platform that allows the virtual performance of maxillofacial surgeries, offering, in a photorealistic concept, the possibility for the patient to have an idea of the surgical changes before they are performed on their face. For this, the system brings together several image formats, dicoms and objs that, after loading, will generate the bone volume, soft tissues and hard tissues. The system also incorporates the patient's stereophotogrammetry, in addition to their data and clinical history. After loading and inserting data, the clinician can virtually perform the surgical operation and present the final result to the patient, generating a new facial surface that contemplates the changes made in the bone and tissues of the maxillary area. This tool acts in different situations that require facial reconstruction, however this project focuses specifically on two types of use cases: bone congenital disfigurement and acquired disfiguration such as oral cancer with bone attainment. Being developed a cloud based solution, with mobile support, the tool aims to reduce the decision time window of patient. Because the current simulations are not realistic or, if realistic, need time due to the need of building plaster models, patient rates on decision, rely on a long time window (1,2 months), because they don’t identify themselves with the presented surgical outcome. On the other hand, this planning was performed time based on average estimated values of the position of the maxilla and mandible. The team was based on averages of the facial measurements of the population, without specifying racial variability, so the proposed solution was not adjusted to the real individual physiognomic needs.

Keywords: 3D computing, image processing, image registry, image reconstruction

Procedia PDF Downloads 202
3394 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture

Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne

Abstract:

Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.

Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization

Procedia PDF Downloads 128
3393 Analysing Responses of Intermediate and Expert Karate Athletes towards the Gyaku-Zuki Using Virtual Reality

Authors: Nicole Bandow, Peter Emmermacher, Oliver Wienert, Steffen Masik, Kerstin Witte

Abstract:

Karate-kumite is a fast sport where a good perception and anticipation of movements is needed in order to respond appropriately. Perception and anticipation are therefore essential for an efficient and precise movement control and a limiting factor in karate kumite. Previous studies only used 2D video technologies combined with the occlusion technique to study anticipation in sports. These studies showed limitations in the usage of 2D video footage in regards to realism and the presentation of depth information. To overcome these issues a virtual 3D environment was developed to create a similar to real life environment. The aim of this study was to compare the differences in responses of intermediate and expert karate athletes towards temporally and spatially occluded virtual karate attacks from two attackers. Five male expert and five intermediate karate athletes responded physically to nine (3 temporal combined with 3 spatial) occluded attacks of the Gyaku-Zuki of each attacker in the 3D virtual environment. The responses were evaluated in regards to correct point of time and appropriate response technique. Significant differences between the expertises’ responses for the attackers were found. Experts respond more often correct to early information of attacks than novices.

Keywords: anticipation, karate, occlusion, virtual reality

Procedia PDF Downloads 468
3392 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm

Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu

Abstract:

Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.

Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model

Procedia PDF Downloads 245