Search results for: behavior against washing machine parameters
16098 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 12216097 Seismic Response Mitigation of Structures Using Base Isolation System Considering Uncertain Parameters
Authors: Rama Debbarma
Abstract:
The present study deals with the performance of Linear base isolation system to mitigate seismic response of structures characterized by random system parameters. This involves optimization of the tuning ratio and damping properties of the base isolation system considering uncertain system parameters. However, the efficiency of base isolator may reduce if it is not tuned to the vibrating mode it is designed to suppress due to unavoidable presence of system parameters uncertainty. With the aid of matrix perturbation theory and first order Taylor series expansion, the total probability concept is used to evaluate the unconditional response of the primary structures considering random system parameters. For this, the conditional second order information of the response quantities are obtained in random vibration framework using state space formulation. Subsequently, the maximum unconditional root mean square displacement of the primary structures is used as the objective function to obtain optimum damping parameters Numerical study is performed to elucidate the effect of parameters uncertainties on the optimization of parameters of linear base isolator and system performance.Keywords: linear base isolator, earthquake, optimization, uncertain parameters
Procedia PDF Downloads 43316096 Role of Additional Food Resources in an Ecosystem with Two Discrete Delays
Authors: Ankit Kumar, Balram Dubey
Abstract:
This study proposes a three dimensional prey-predator model with additional food, provided to predator individuals, including gestation delay in predators and delay in supplying the additional food to predators. It is assumed that the interaction between prey and predator is followed by Holling type-II functional response. We discussed the steady states and their local and global asymptotic behavior for the non-delayed system. Hopf-bifurcation phenomenon with respect to different parameters has also been studied. We obtained a range of predator’s tendency factor on provided additional food, in which the periodic solutions occur in the system. We have shown that oscillations can be controlled from the system by increasing the tendency factor. Moreover, the existence of periodic solutions via Hopf-bifurcation is shown with respect to both the delays. Our analysis shows that both delays play an important role in governing the dynamics of the system. It changes the stability behavior into instability behavior. The direction and stability of Hopf-bifurcation are also investigated through the normal form theory and the center manifold theorem. Lastly, some numerical simulations and graphical illustrations have been carried out to validate our analytical findings.Keywords: additional food, gestation delay, Hopf-bifurcation, prey-predator
Procedia PDF Downloads 13016095 The Corrupt Behavior of Local Government Officials and Its Effect: A Case Study of Muang District, Songkhla Province, Thailand
Authors: C. Noknoi, W. Boripunt
Abstract:
This research aims to compare the corrupt behavior of local government officials and the public’s opinion about the effects of this corruption, as classified by the personal factors of the public. It also analyzes the relationship between the corrupt behavior of local government officials and the public’s opinion toward the effects of this corruption. The sample used in this research comprised 322 voters from Songkhla province, with a questionnaire being used to collect the data. The statistics used in the data analysis were the percentage, mean, standard deviation, t-test, ANOVA, and Pearson correlation. The results showed that the corrupt behavior of local government officials was at a high overall level. The sample’s opinion toward the effects of corrupt local government officials was also at a high overall level. Hypothesis testing indicated that samples with different personal factors did not vary in how they regarded the corrupt behavior of local government officials, and the samples’ opinions toward the effects of corrupt local government officials also did not vary. The corrupt behavior of local government officials and the opinions toward the effect of corrupt local government officials are both at consistently high levels and follow the same trend.Keywords: corrupt behavior, local government, official, Thailand
Procedia PDF Downloads 33516094 Customers' Attitudes towards Marketing Mix Affecting Purchasing Behavior of Starbucks Coffee (Thailand) Customers in Bangkok
Authors: Polamorn Tamprateep, Warapong Thakanun
Abstract:
This researchs' objectives are: 1. To study the customer demographics that affects the purchasing behavior; 2. To study the marketing mix that affects the purchasing behavior; 3. To study the relationship between purchasing behavior and customers’ perception of Brand Equity. Population of this research is Starbucks Coffee (Thailand) customers in Bangkok. The tool used in this study was questionnaire created from concepts, theories and related researches. The study showed that, of 400 respondents, overall opinion received high score (xˉ= 3.77). When each item is considered, it was found that ‘Staff are knowledgeable in providing service.’, ‘ Staff are friendly.’, ‘Staff possess good communication skill with customers.’, ‘Staff know all types of coffee well.’, and ‘Staff are enthusiastic in giving service.’, all these items received high score with a mean of 3.92, 3.87, 3.77, 3.71 and 3.63, respectively.Keywords: mix attitude of the product, consumer, buying behavior, Starbucks
Procedia PDF Downloads 26416093 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 48716092 Behavior of a Vertical Pile under the Effect of an Inclined Load
Authors: Fathi Mohamed Abdrabbo, Khaled Elsayed Gaaver, Musab Musa Eldooma
Abstract:
This paper presents an attempt made to investigate the behavior of a single vertical steel hollow pile embedded in sand subjected to compressive inclined load at various inclination angles α through FEM package MIDAS GTS/NX 2019. The effect of the inclination angle and slenderness ratio on the performance of the pile was investigated. Inclined load caring capacity and pile stiffness, as well as lateral deformation profiles along with the pile, were presented. The global, vertical, and horizontal load displacements, as well as the deformation profiles along with the pile and the pile stiffness, are significantly affected by α. Whereas P-Y curves of the pile are independent of α., also the slenderness ratios are markedly affecting the behavior of the pile. In addition, there was a noticeable effect of the horizontal component on the vertical behavior of the pile, whereas there was no influence of the presence of vertical load on the horizontal behavior of the pile.Keywords: deep foundations, piles, inclined load, pile deformations
Procedia PDF Downloads 17316091 Financial Information Transparency on Investor Behavior in the Private Company in Dusit Area
Authors: Yosapon Kidsuntad
Abstract:
The purpose of this dissertation was to explore the relationship between financial transparency and investor behavior. In carrying out this inquiry, the researcher used a questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The results revealed that there are significant differences investor perceptions of the different dimensions of financial information transparency. These differences correspond to demographical variables with the exception of the educational level variable. It was also found that there are relationships between investor perceptions of the dimensions of financial information transparency and investor behavior in the private company in Dusit Area. Finally, the researcher also found that there are differences in investor behavior corresponding to different categories of investor experience.Keywords: financial information transparency, investor behavior, private company, Dusit Area
Procedia PDF Downloads 33016090 Sex Education Training Program Effect on Junior Secondary School Students Knowledge and Practice of Sexual Risk Behavior
Authors: Diyaolu Babajide Olufemi, Oyerinde Oyewole Olusesan
Abstract:
This study examined the effect of sex education training programs on the knowledge and practice of sexual risk behavior among secondary school adolescents in Ibadan North Local Government area of Oyo State. A total of 105 students were sampled from two schools in the Local Government area. Seventy students (70) constituted the experimental group while thirty-five (35) constituted the control group. Pretest-Posttest control group quasi-experimental design was adopted. A self-developed questionnaire was used to test participants’ knowledge and practice of sexual risk behavior before and after the training (α=.62, .82 and .74). Analysis indicated a significant effect of sex education training on participants’ knowledge and practice of sexual risk behavior, a significant gender difference in knowledge of sexual risk behavior but no significant age and gender difference in the practice of sexual risk behavior. It was thus concluded that sex education should be taught in schools and emphasized at homes with no age or gender restrictions.Keywords: early adolescent, health risk, sexual risk behavior, sex education
Procedia PDF Downloads 14216089 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents
Authors: Neha Singh, Shristi Singh
Abstract:
Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning
Procedia PDF Downloads 11316088 Analysis of Roll-Forming for High-Density Wire of Reed
Authors: Yujeong Shin, Seong Jin Cho, Jin Ho Kim
Abstract:
In the textile-weaving machine, the reed is the core component to separate thousands of strands of yarn and to produce the fabric in a continuous high-speed movement. In addition, the reed affects the quality of the fiber. Therefore, the wire forming analysis of the main raw materials of the reed needs to be considered. Roll-forming is a key technology among the manufacturing process of reed wire using textile machine. A simulation of roll-forming line in accordance with the reduction rate is performed using LS-DYNA. The upper roller, fixed roller and reed wire are modeled by finite element. The roller is set to be rigid body and the wire of SUS430 is set to be flexible body. We predict the variation of the cross-sectional shape of the wire depending on the reduction ratio.Keywords: textile machine, reed, rolling, reduction ratio, wire
Procedia PDF Downloads 37516087 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs
Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek
Abstract:
Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds
Procedia PDF Downloads 55516086 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 54116085 A Taxonomy of Behavior for a Medical Coordinator by Utlizing Leadership Styles
Authors: Aryana Collins Jackson, Elisabetta Bevacqua, Pierre De Loor, Ronan Querrec
Abstract:
This paper presents a taxonomy of non-technical skills, communicative intentions, and behavior for an individual acting as a medical coordinator. In medical emergency situations, a leader among the group is imperative to both patient health and team emotional and mental health. Situational Leadership is used to make clear and easy-to-follow guidelines for behavior depending on circumstantial factors. Low-level leadership behaviors belonging to two different styles, directive and supporting, are identified from literature and are included in the proposed taxonomy. The high-level information in the taxonomy consists of the necessary non-technical skills belonging to a medical coordinator: situation awareness, decision making, task management, and teamwork. Finally, communicative intentions, dimensions, and functions are included. Thus this work brings high-level and low-level information - medical non-technical skills, communication capabilities, and leadership behavior - into a single versatile taxonomy of behavior.Keywords: human behavior, leadership styles, medical, taxonomy
Procedia PDF Downloads 15916084 A Design System for Complex Profiles of Machine Members Using a Synthetic Curve
Authors: N. Sateesh, C. S. P. Rao, K. Satyanarayana, C. Rajashekar
Abstract:
This paper proposes a development of a CAD/CAM system for complex profiles of various machine members using a synthetic curve i.e. B-spline. Conventional methods in designing and manufacturing of complex profiles are tedious and time consuming. Even programming those on a computer numerical control (CNC) machine can be a difficult job because of the complexity of the profiles. The system developed provides graphical and numerical representation B-spline profile for any given input. In this paper, the system is applicable to represent a cam profile with B-spline and attempt is made to improve the follower motion.Keywords: plate-cams, cam profile, b-spline, computer numerical control (CNC), computer aided design and computer aided manufacturing (CAD/CAM), R-D-R-D (rise-dwell-return-dwell)
Procedia PDF Downloads 61116083 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers
Authors: Catherine Vasnetsov, Victor Vasnetsov
Abstract:
Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers
Procedia PDF Downloads 7016082 Unseen Classes: The Paradigm Shift in Machine Learning
Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan
Abstract:
Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery
Procedia PDF Downloads 17216081 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 5516080 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 9416079 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers
Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya
Abstract:
In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.Keywords: IVF, embryo, machine learning, time-lapse imaging data
Procedia PDF Downloads 9216078 Developed Text-Independent Speaker Verification System
Authors: Mohammed Arif, Abdessalam Kifouche
Abstract:
Speech is a very convenient way of communication between people and machines. It conveys information about the identity of the talker. Since speaker recognition technology is increasingly securing our everyday lives, the objective of this paper is to develop two automatic text-independent speaker verification systems (TI SV) using low-level spectral features and machine learning methods. (i) The first system is based on a support vector machine (SVM), which was widely used in voice signal processing with the aim of speaker recognition involving verifying the identity of the speaker based on its voice characteristics, and (ii) the second is based on Gaussian Mixture Model (GMM) and Universal Background Model (UBM) to combine different functions from different resources to implement the SVM based.Keywords: speaker verification, text-independent, support vector machine, Gaussian mixture model, cepstral analysis
Procedia PDF Downloads 5816077 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication
Authors: Fuad M. Alkoot
Abstract:
We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation
Procedia PDF Downloads 27816076 Moderating Role of Psychological Contract in Relationship between Moral Disengagement and Counterproductive Work Behavior
Authors: Afsheen Masood, Sumaira Rashid, Nadia Ijaz, Shama Mazahir
Abstract:
The current study examined the relationship between moral disengagement, psychological contract, organizational citizenship behavior and counterproductive work behavior. It is hypothesized that there is likely to be a significant relationship between moral disengagement, psychological contract, organizational citizenship behavior and counterproductive work behavior. It is hypothesized that moral disengagement is likely to significantly predict counterproductive work behavior. It is hypothesized that psychological contract is likely to moderate the relationship between moral disengagement, and counterproductive work behavior. Cross-sectional survey research design was used for the study. The sample consisted of 500 middle managers, age ranging between 30-45 years working in private and public sector. The measures used were Moral Disengagement Scale, Psychological Contract Scale, and Counterproductive Work Behavior. Series of Correlation analyses, Regression analysis, moderation analysis and t-test was run in order to execute descriptive and inferential analyses. The findings revealed that there was a significant positive relationship between moral disengagement and counterproductive work behaviors. Psychological contract significantly mediated the relationship between moral disengagement and counterproductive work behaviors. There were significant gender differences reported in psychological contract and counterproductive work behaviors. The insightful findings carry significant implication for organizational psychologists and organizational stakeholders.Keywords: psychological contract, moral disengagement, counterproductive work behaviors, mediation analysis
Procedia PDF Downloads 31616075 Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting
Authors: Armin Rahmatfam, Mohammad Zehsaz, Farid Vakili Tahami, Nasser Ghassembaglou
Abstract:
In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented.Keywords: combined hardening model, kinematic hardening, isotropic hardening, cyclic tests
Procedia PDF Downloads 47916074 Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements
Authors: Charine Faith H. Lagrimas, Rommel N. Galvan, Rizalinda L. de Leon
Abstract:
An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model.Keywords: Avrami model, isothermal crystallization, lipids kinetics, methyl laurate
Procedia PDF Downloads 34216073 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26016072 Numerical Analysis and Influence of the Parameters on Slope Stability
Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali
Abstract:
A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground.Keywords: slope, shallow foundation, numeric method, FLAC 2D
Procedia PDF Downloads 28516071 Seroprevalence Study of Cystic Echinococcosis and Its Associated Risk Factors in Fars Province, Southern Iran
Authors: Mahmoud Reza Tahamtan, Mohammad Saleh Bahreini
Abstract:
Background and Purpose: Cystic echinococcosis, caused by the larval stage of Echinococcus granulosus, is a common parasitic infection of humans and is endemic in many parts of the world, including Iran. So that, one percent of those admitted to surgery departments are hydatid cyst patients, and using the ELISA method, the infection rate has been reported in different regions of Iran from 1.2% to 21.4%. Therefore, the aim of this study was to investigate the seroepidemiology of human hydatid cysts in Fars province, southern Iran, by ELISA method. Methods: In this cross-sectional study, 600 serum samples of persons who were referred to the laboratory of Nemazi Hospital in Shiraz for normal tests were examined for the presence of specific Anti-IgG antibodies to hydatid cysts by ELISA method. During the sampling, a structured questionnaire was used to obtain social data of individuals with determinants of risk factors for Cystic echinococcosis. Finally, the results of the ELISA test, along with demographic information completed by individuals, were analyzed using SPSS software. Results: The average age of the subjects in this study was 40.01 ± 9.166. The prevalence of hydatidosis was reported as 5.66% (34/600). The disease was more in the age group of 21-30, people living in villages, working in rural areas, and people with a history of other parasitic diseases. Statistically, a significant difference was observed between the prevalence of the disease and two risk factors, contact with dogs (OR= 0.042; 95%CI: 0.014-0.12; P= 0.001) and washing vegetables with water (OR= 0.08; 95%CI: 0.011-0.56; P= 0.012). Conclusion: The present study showed that hydatid cyst disease has a significant prevalence in this area. Also, based on the results, contact with dogs and not properly washing vegetables are two important factors of disease transmission.Keywords: Echinococcus granulosus, Cystic echinococcosis, hydatid cyst, Fars province
Procedia PDF Downloads 9716070 Design, Shielding and Infrastructure of an X-Ray Diagnostic Imaging Area
Authors: D. Diaz, C. Guevara, P. Rey
Abstract:
This paper contains information about designing, shielding and protocols building in order to avoid ionizing radiation in X-Rays imaging areas as generated by X-Ray, mammography equipment, computed tomography equipment and digital subtraction angiography equipment, according to global standards. Furthermore, tools and elements about infrastructure to improve protection over patients, physicians and staff involved in a diagnostic imaging area are presented. In addition, technical parameters about each machine and the architecture designs and maps are described.Keywords: imaging area, X-ray, shielding, dose
Procedia PDF Downloads 44816069 Water Resources and Sanitation in Public Schools of Datu Odin Sinsuat, Maguindanao
Authors: Lahaina U. Dilangalen
Abstract:
Using descriptive-experimental research methods, this study aimed to identify the main resources of water, assessed the water quality, sanitation and hygiene practices, and extent of implementation. Complete enumeration was done in 28 elementary public schools of Datu Odin Sinsuat Municipality. Questionnaires were given to the school advisers. Water samples were obtained from the same schools and were submitted to the Department of Science and Technology (DOST) Region XII for microbial analysis, specifically the presence of fecal coliform bacteria. Four water resources such as hand pump, faucet, deep well and spring were found being used in the 28 schools. Of water resources, the only treated was from the faucet. Most of the schools used the water for drinking and washing. Two schools strongly agreed, nine schools agreed and seventeen schools disagreed that they implemented DepEd Order no.56 s. 2009. In addition, two schools strongly agreed and twenty six agreed that they implemented DepEd Order No. 65 s. 2009. Five schools had water supply that were safe to drink while sixteen schools had water supply that were not safe to drink due to high fecal coliform count and did not undergo chemical treatment. The only safe for drinking were water resources that came from faucet because they were chemically treated. Seven out of 28 schools did not have water supply due to their location in mountainous areas. More than half of the schools did not comply with the DepEd Order No. 56 s. 2009 due to the lack of funds and support from the PTA and LGU. It is recommended that the Department of Education must have an urgent assessment of implementing both DepEd Orders No.56 and 65, to assure that the schoolchildren be protected from water and sanitation related ailments. Also, all water resources that are not treated must be used for washing only. Ideally, all the water resources must be treated to assure the safety of all school constituents. Moreover, the school administrators and teachers in the municipality must be provided copies of the results of this study for reference in implementing the said programs.Keywords: assessment, drinking water, fecal coliform, groundwater
Procedia PDF Downloads 252