Search results for: automatic spontaneous speech analysis
28405 Enhance Engineering Learning Using Cognitive Simulator
Authors: Lior Davidovitch
Abstract:
Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed.Keywords: cognitive simulator, decision making, engineering learning, project management
Procedia PDF Downloads 24728404 Video Object Segmentation for Automatic Image Annotation of Ethernet Connectors with Environment Mapping and 3D Projection
Authors: Marrone Silverio Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner, Djamel Fawzi Hadj Sadok
Abstract:
The creation of a dataset is time-consuming and often discourages researchers from pursuing their goals. To overcome this problem, we present and discuss two solutions adopted for the automation of this process. Both optimize valuable user time and resources and support video object segmentation with object tracking and 3D projection. In our scenario, we acquire images from a moving robotic arm and, for each approach, generate distinct annotated datasets. We evaluated the precision of the annotations by comparing these with a manually annotated dataset, as well as the efficiency in the context of detection and classification problems. For detection support, we used YOLO and obtained for the projection dataset an F1-Score, accuracy, and mAP values of 0.846, 0.924, and 0.875, respectively. Concerning the tracking dataset, we achieved an F1-Score of 0.861, an accuracy of 0.932, whereas mAP reached 0.894. In order to evaluate the quality of the annotated images used for classification problems, we employed deep learning architectures. We adopted metrics accuracy and F1-Score, for VGG, DenseNet, MobileNet, Inception, and ResNet. The VGG architecture outperformed the others for both projection and tracking datasets. It reached an accuracy and F1-score of 0.997 and 0.993, respectively. Similarly, for the tracking dataset, it achieved an accuracy of 0.991 and an F1-Score of 0.981.Keywords: RJ45, automatic annotation, object tracking, 3D projection
Procedia PDF Downloads 16628403 A Genre-Based Approach to the Teaching of Pronunciation
Authors: Marden Silva, Danielle Guerra
Abstract:
Some studies have indicated that pronunciation teaching hasn’t been paid enough attention by teachers regarding EFL contexts. In particular, segmental and suprasegmental features through genre-based approach may be an opportunity on how to integrate pronunciation into a more meaningful learning practice. Therefore, the aim of this project was to carry out a survey on some aspects related to English pronunciation that Brazilian students consider more difficult to learn, thus enabling the discussion of strategies that can facilitate the development of oral skills in English classes by integrating the teaching of phonetic-phonological aspects into the genre-based approach. Notions of intelligibility, fluency and accuracy were proposed by some authors as an ideal didactic sequence. According to their proposals, basic learners should be exposed to activities focused on the notion of intelligibility as well as intermediate students to the notion of fluency, and finally more advanced ones to accuracy practices. In order to test this hypothesis, data collection was conducted during three high school English classes at Federal Center for Technological Education of Minas Gerais (CEFET-MG), in Brazil, through questionnaires and didactic activities, which were recorded and transcribed for further analysis. The genre debate was chosen to facilitate the oral expression of the participants in a freer way, making them answering questions and giving their opinion about a previously selected topic. The findings indicated that basic students demonstrated more difficulty with aspects of English pronunciation than the others. Many of the intelligibility aspects analyzed had to be listened more than once for a better understanding. For intermediate students, the speeches recorded were considerably easier to understand, but nevertheless they found it more difficult to pronounce the words fluently, often interrupting their speech to think about what they were going to say and how they would talk. Lastly, more advanced learners seemed to express their ideas more fluently, but still subtle errors related to accuracy were perceptible in speech, thereby confirming the proposed hypothesis. It was also seen that using genre-based approach to promote oral communication in English classes might be a relevant method, considering the socio-communicative function inherent in the suggested approach.Keywords: EFL, genre-based approach, oral skills, pronunciation
Procedia PDF Downloads 12928402 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator
Procedia PDF Downloads 24828401 Linguistic Codes: Food as a Class Indicator
Authors: Elena Valeryevna Pozhidaeva
Abstract:
This linguistic case study is based on an interaction between the social position and foodways. In every culture there is a social hierarchical system in which there can be means to express and to identify the social status of a person. Food serves as a class indicator. The British being a verbal nation use the words as a preferred medium for signalling and recognising the social status. The linguistic analysis reflects a symbolic hierarchy determined by social groups in the UK. The linguistic class indicators of a British hierarchical system are detectable directly – in speech acts. They are articulated in every aspect of a national identity’s life from preferences of the food and the choice to call it to the names of the meals. The linguistic class indicators can as well be detected indirectly – through symbolic meaning or via the choice of the mealtime, its class (e.g the classes of tea or marmalade), the place to buy food (the class of the supermarket) and consume it (the places for eating out and the frequency of such practices). Under analysis of this study are not only food items and their names but also such categories as cutlery as a class indicator and the act of eating together as a practice of social significance and a class indicator. Current social changes and economic developments are considered and their influence on the class indicators appearance and transformation.Keywords: linguistic, class, social indicator, English, food class
Procedia PDF Downloads 39928400 Deep Learning-Based Automated Structure Deterioration Detection for Building Structures: A Technological Advancement for Ensuring Structural Integrity
Authors: Kavita Bodke
Abstract:
Structural health monitoring (SHM) is experiencing growth, necessitating the development of distinct methodologies to address its expanding scope effectively. In this study, we developed automatic structure damage identification, which incorporates three unique types of a building’s structural integrity. The first pertains to the presence of fractures within the structure, the second relates to the issue of dampness within the structure, and the third involves corrosion inside the structure. This study employs image classification techniques to discern between intact and impaired structures within structural data. The aim of this research is to find automatic damage detection with the probability of each damage class being present in one image. Based on this probability, we know which class has a higher probability or is more affected than the other classes. Utilizing photographs captured by a mobile camera serves as the input for an image classification system. Image classification was employed in our study to perform multi-class and multi-label classification. The objective was to categorize structural data based on the presence of cracks, moisture, and corrosion. In the context of multi-class image classification, our study employed three distinct methodologies: Random Forest, Multilayer Perceptron, and CNN. For the task of multi-label image classification, the models employed were Rasnet, Xceptionet, and Inception.Keywords: SHM, CNN, deep learning, multi-class classification, multi-label classification
Procedia PDF Downloads 3528399 Multiple Fault Diagnosis in Digital Circuits using Critical Path Tracing and Enhanced Deduction Algorithm
Authors: Mohamed Mahmoud
Abstract:
This paper has developed an effect-cause analysis technique for fault diagnosis in digital circuits. The main algorithm of our technique is based on the Enhanced Deduction Algorithm, which processes the real response of the CUT to the applied test T to deduce the values of the internal lines. An experimental version of the algorithm has been implemented in C++. The code takes about 7592 lines. The internal values are determined based on the logic values under the permanent stuck-fault model. Using a backtracking strategy guarantees that the actual values are covered by at least one solution, or no solution is found.Keywords: enhanced deduction algorithm, backtracking strategy, automatic test equipment, verfication
Procedia PDF Downloads 11828398 Morphosyntactic Abilities in Speakers with Broca’s Aphasia: A Preliminary Examination
Authors: Mile Vuković, Lana Jerkić Rajić
Abstract:
Introduction: Broca's aphasia is a non-fluent type of aphasic syndrome, which is primarily manifested by impairment of language production. In connected speech, patients with this type of aphasia produce short sentences in which they often omit function words and morphemes or choose inadequate forms. Aim: This research was conducted to examine the morphosyntactic abilities of people with Broca's aphasia, comparing them with neurologically healthy subjects without a language disorder. Method: The sample included 15 patients with Broca's post-stroke aphasia, who had the relatively intact ability of auditory comprehension. The diagnosis of aphasia was based on the Boston Diagnostic Aphasia Examination. The control group comprised 16 neurologically healthy subjects without data on the presence of disorders in speech and language development. The patients' mother tongue was Serbian. The new Serbian Morphosyntactic Abilities Test (SMAT) was used. Descriptive (frequency, percentage, mean, SD, min, max) and inferential (Mann-Whitney U-test) statistics were used in data processing. Results: We noticed statistically significant differences between people with Broca's aphasia and neurotypical subjects on the SMAT (U = 1.500, z = -4.982, p = 0.000). The results showed that people with Broca's aphasia had achieved low scores on the SMAT, regardless of age (ρ = -0.045, p = 0.873) and time post onset (ρ = 0.330, p = 0.229). Conclusion: Preliminary results show that the SMAT has the potential to detect morphosyntactic deficits in Serbian speakers with Broca's aphasia.Keywords: Broca’s aphasia, morphosyntactic abilities, agrammatism, Serbian language
Procedia PDF Downloads 6928397 Braille Lab: A New Design Approach for Social Entrepreneurship and Innovation in Assistive Tools for the Visually Impaired
Authors: Claudio Loconsole, Daniele Leonardis, Antonio Brunetti, Gianpaolo Francesco Trotta, Nicholas Caporusso, Vitoantonio Bevilacqua
Abstract:
Unfortunately, many people still do not have access to communication, with specific regard to reading and writing. Among them, people who are blind or visually impaired, have several difficulties in getting access to the world, compared to the sighted. Indeed, despite technology advancement and cost reduction, nowadays assistive devices are still expensive such as Braille-based input/output systems which enable reading and writing texts (e.g., personal notes, documents). As a consequence, assistive technology affordability is fundamental in supporting the visually impaired in communication, learning, and social inclusion. This, in turn, has serious consequences in terms of equal access to opportunities, freedom of expression, and actual and independent participation to a society designed for the sighted. Moreover, the visually impaired experience difficulties in recognizing objects and interacting with devices in any activities of daily living. It is not a case that Braille indications are commonly reported only on medicine boxes and elevator keypads. Several software applications for the automatic translation of written text into speech (e.g., Text-To-Speech - TTS) enable reading pieces of documents. However, apart from simple tasks, in many circumstances TTS software is not suitable for understanding very complicated pieces of text requiring to dwell more on specific portions (e.g., mathematical formulas or Greek text). In addition, the experience of reading\writing text is completely different both in terms of engagement, and from an educational perspective. Statistics on the employment rate of blind people show that learning to read and write provides the visually impaired with up to 80% more opportunities of finding a job. Especially in higher educational levels, where the ability to digest very complex text is key, accessibility and availability of Braille plays a fundamental role in reducing drop-out rate of the visually impaired, thus affecting the effectiveness of the constitutional right to get access to education. In this context, the Braille Lab project aims at overcoming these social needs by including affordability in designing and developing assistive tools for visually impaired people. In detail, our awarded project focuses on a technology innovation of the operation principle of existing assistive tools for the visually impaired leaving the Human-Machine Interface unchanged. This can result in a significant reduction of the production costs and consequently of tool selling prices, thus representing an important opportunity for social entrepreneurship. The first two assistive tools designed within the Braille Lab project following the proposed approach aims to provide the possibility to personally print documents and handouts and to read texts written in Braille using refreshable Braille display, respectively. The former, named ‘Braille Cartridge’, represents an alternative solution for printing in Braille and consists in the realization of an electronic-controlled dispenser printing (cartridge) which can be integrated within traditional ink-jet printers, in order to leverage the efficiency and cost of the device mechanical structure which are already being used. The latter, named ‘Braille Cursor’, is an innovative Braille display featuring a substantial technology innovation by means of a unique cursor virtualizing Braille cells, thus limiting the number of active pins needed for Braille characters.Keywords: Human rights, social challenges and technology innovations, visually impaired, affordability, assistive tools
Procedia PDF Downloads 27328396 The Evolution of Online Hate: How Decades of Tactical and Technological Innovation Created a Hate Epidemic
Authors: Kashvi Jain, Adam Burston
Abstract:
Right-wing social movements are a dominant force in American politics, as evidenced by the January 6th Insurrection, the prevalence of extremist conspiracy theories, and a nationwide surge in hate crime. Despite an abundance of scholarship on contemporary right-wing extremism, there is little scholarship that explains their rise. This paper examines how the white power movement developed through tactical innovation and strategic use of increasingly powerful digital technologies. Using qualitative content analysis of archived digital bulletin boards and websites, we examine right-wing extremists’ digital communication during three consequential time periods of tactical and technological innovation: pre-internet (1980s), web 1.0 (1990s), and web 2.0 (2000s). Our analysis suggests that right-wing activists innovatively exploited the features and affordances of digital technologies and their knowledge of free speech rights to spread supremacist collective identity and ideology. Beyond our empirical contribution, we offer policy advice that school administrators can employ to limit hate.Keywords: leaderless resistance, technological affordances, anti-defamation league, white power movement, tactical
Procedia PDF Downloads 6628395 Theoretical Study of the Mechanism of the Oxidation of Linoleic Acid by 1O2
Authors: Rayenne Djemil
Abstract:
The mechanism of oxidation reaction of linoleic acid C18: 2 (9 cis12) by singlet oxygen 1O2 were theoretically investigated via using quantum chemical methods. We explored the four reaction pathways at PM3, Hartree-Fock HF and, B3LYP functional associated with the base 6-31G (d) level. The results are in favor of the first and the last reaction ways. The transition states were found by QST3 method. Thus the pathways between the transition state structures and their corresponding minima have been identified by the IRC calculations. The thermodynamic study showed that the four ways of oxidation of linoleic acid are spontaneous, exothermic and, the enthalpy values confirm that conjugate hydroperoxydes are the most favorable products.Keywords: echanism, quantum mechanics, oxidation, linoleic acid H
Procedia PDF Downloads 44428394 Management of Dysphagia after Supra Glottic Laryngectomy
Authors: Premalatha B. S., Shenoy A. M.
Abstract:
Background: Rehabilitation of swallowing is as vital as speech in surgically treated head and neck cancer patients to maintain nutritional support, enhance wound healing and improve quality of life. Aspiration following supraglottic laryngectomy is very common, and rehabilitation of the same is crucial which requires involvement of speech therapist in close contact with head and neck surgeon. Objectives: To examine the functions of swallowing outcomes after intensive therapy in supraglottic laryngectomy. Materials: Thirty-nine supra glottic laryngectomees were participated in the study. Of them, 36 subjects were males and 3 were females, in the age range of 32-68 years. Eighteen subjects had undergone standard supra glottis laryngectomy (Group1) for supraglottic lesions where as 21 of them for extended supraglottic laryngectomy (Group 2) for base tongue and lateral pharyngeal wall lesion. Prior to surgery visit by speech pathologist was mandatory to assess the sutability for surgery and rehabilitation. Dysphagia rehabilitation started after decannulation of tracheostoma by focusing on orientation about anatomy, physiological variation before and after surgery, which was tailor made for each individual based on their type and extent of surgery. Supraglottic diet - Soft solid with supraglottic swallow method was advocated to prevent aspiration. The success of intervention was documented as number of sessions taken to swallow different food consistency and also percentage of subjects who achieved satisfactory swallow in terms of number of weeks in both the groups. Results: Statistical data was computed in two ways in both the groups 1) to calculate percentage (%) of subjects who swallowed satisfactorily in the time frame of less than 3 weeks to more than 6 weeks, 2) number of sessions taken to swallow without aspiration as far as food consistency was concerned. The study indicated that in group 1 subjects of standard supraglottic laryngectomy, 61% (n=11) of them were successfully rehabilitated but their swallowing normalcy was delayed by an average 29th post operative day (3-6 weeks). Thirty three percentages (33%) (n=6) of the subjects could swallow satisfactorily without aspiration even before 3 weeks and only 5 % (n=1) of the needed more than 6 weeks to achieve normal swallowing ability. Group 2 subjects of extended SGL only 47 %( n=10) of them could achieved satisfactory swallow by 3-6 weeks and 24% (n=5) of them of them achieved normal swallowing ability before 3 weeks. Around 4% (n=1) needed more than 6 weeks and as high as 24 % (n=5) of them continued to be supplemented with naso gastric feeding even after 8-10 months post operative as they exhibited severe aspiration. As far as type of food consistencies were concerned group 1 subject could able to swallow all types without aspiration much earlier than group 2 subjects. Group 1 needed only 8 swallowing therapy sessions for thickened soft solid and 15 sessions for liquids whereas group 2 required 14 sessions for soft solid and 17 sessions for liquids to achieve swallowing normalcy without aspiration. Conclusion: The study highlights the importance of dysphagia intervention in supraglottic laryngectomees by speech pathologist.Keywords: dysphagia management, supraglotic diet, supraglottic laryngectomy, supraglottic swallow
Procedia PDF Downloads 22928393 Deep Learning Approach for Colorectal Cancer’s Automatic Tumor Grading on Whole Slide Images
Authors: Shenlun Chen, Leonard Wee
Abstract:
Tumor grading is an essential reference for colorectal cancer (CRC) staging and survival prognostication. The widely used World Health Organization (WHO) grading system defines histological grade of CRC adenocarcinoma based on the density of glandular formation on whole slide images (WSI). Tumors are classified as well-, moderately-, poorly- or un-differentiated depending on the percentage of the tumor that is gland forming; >95%, 50-95%, 5-50% and <5%, respectively. However, manually grading WSIs is a time-consuming process and can cause observer error due to subjective judgment and unnoticed regions. Furthermore, pathologists’ grading is usually coarse while a finer and continuous differentiation grade may help to stratifying CRC patients better. In this study, a deep learning based automatic differentiation grading algorithm was developed and evaluated by survival analysis. Firstly, a gland segmentation model was developed for segmenting gland structures. Gland regions of WSIs were delineated and used for differentiation annotating. Tumor regions were annotated by experienced pathologists into high-, medium-, low-differentiation and normal tissue, which correspond to tumor with clear-, unclear-, no-gland structure and non-tumor, respectively. Then a differentiation prediction model was developed on these human annotations. Finally, all enrolled WSIs were processed by gland segmentation model and differentiation prediction model. The differentiation grade can be calculated by deep learning models’ prediction of tumor regions and tumor differentiation status according to WHO’s defines. If multiple WSIs were possessed by a patient, the highest differentiation grade was chosen. Additionally, the differentiation grade was normalized into scale between 0 to 1. The Cancer Genome Atlas, project COAD (TCGA-COAD) project was enrolled into this study. For the gland segmentation model, receiver operating characteristic (ROC) reached 0.981 and accuracy reached 0.932 in validation set. For the differentiation prediction model, ROC reached 0.983, 0.963, 0.963, 0.981 and accuracy reached 0.880, 0.923, 0.668, 0.881 for groups of low-, medium-, high-differentiation and normal tissue in validation set. Four hundred and one patients were selected after removing WSIs without gland regions and patients without follow up data. The concordance index reached to 0.609. Optimized cut off point of 51% was found by “Maxstat” method which was almost the same as WHO system’s cut off point of 50%. Both WHO system’s cut off point and optimized cut off point performed impressively in Kaplan-Meier curves and both p value of logrank test were below 0.005. In this study, gland structure of WSIs and differentiation status of tumor regions were proven to be predictable through deep leaning method. A finer and continuous differentiation grade can also be automatically calculated through above models. The differentiation grade was proven to stratify CAC patients well in survival analysis, whose optimized cut off point was almost the same as WHO tumor grading system. The tool of automatically calculating differentiation grade may show potential in field of therapy decision making and personalized treatment.Keywords: colorectal cancer, differentiation, survival analysis, tumor grading
Procedia PDF Downloads 13328392 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)
Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj
Abstract:
Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.Keywords: ROP, ridge, multilevel vessel enhancement, biomedical
Procedia PDF Downloads 40728391 Impacts of Applying Automated Vehicle Location Systems to Public Bus Transport Management
Authors: Vani Chintapally
Abstract:
The expansion of modest and minimized Global Positioning System (GPS) beneficiaries has prompted most Automatic Vehicle Location (AVL) frameworks today depending solely on satellite-based finding frameworks, as GPS is the most stable usage of these. This paper shows the attributes of a proposed framework for following and dissecting open transport in a run of the mill medium-sized city and complexities the qualities of such a framework to those of broadly useful AVL frameworks. Particular properties of the courses broke down by the AVL framework utilized for the examination of open transport in our study incorporate cyclic vehicle courses, the requirement for particular execution reports, and so forth. This paper particularly manages vehicle movement forecasts and the estimation of station landing time, combined with consequently produced reports on timetable conformance and other execution measures. Another side of the watched issue is proficient exchange of information from the vehicles to the control focus. The pervasiveness of GSM bundle information exchange advancements combined with decreased information exchange expenses have brought on today's AVL frameworks to depend predominantly on parcel information exchange administrations from portable administrators as the correspondences channel in the middle of vehicles and the control focus. This methodology brings numerous security issues up in this conceivably touchy application field.Keywords: automatic vehicle location (AVL), expectation of landing times, AVL security, data administrations, wise transport frameworks (ITS), guide coordinating
Procedia PDF Downloads 38228390 MCERTL: Mutation-Based Correction Engine for Register-Transfer Level Designs
Authors: Khaled Salah
Abstract:
In this paper, we present MCERTL (mutation-based correction engine for RTL designs) as an automatic error correction technique based on mutation analysis. A mutation-based correction methodology is proposed to automatically fix the erroneous RTL designs. The proposed strategy combines the processes of mutation and assertion-based localization. The erroneous statements are mutated to produce possible fixes for the failed RTL code. A concurrent mutation engine is proposed to mitigate the computational cost of running sequential mutants operators. The proposed methodology is evaluated against some benchmarks. The experimental results demonstrate that our proposed method enables us to automatically locate and correct multiple bugs at reasonable time.Keywords: bug localization, error correction, mutation, mutants
Procedia PDF Downloads 27928389 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English
Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista
Abstract:
The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.Keywords: corpus linguistics, historical linguistics, old English, parallel corpus
Procedia PDF Downloads 21028388 Effect of Phonological Complexity in Children with Specific Language Impairment
Authors: Irfana M., Priyandi Kabasi
Abstract:
Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli.Keywords: coarticulation, minimal contrast, phonological complexity, specific language impairment
Procedia PDF Downloads 14028387 Carl Wernicke and the Origin of Neurolinguistics in Breslau: A Case Study in the Domain of the History of Linguistics
Authors: Aneta Daniel
Abstract:
The subject of the study is the exploration of the origins and dynamics of the development of language studies, which have been labelled as neurolinguistics. It is worth mentioning that the origins of neurolinguistics are to be found in the research conducted by German scientists before the Second World War in Breslau Universität (presently Wroclaw). The dominant figure in these studies was professor Carl Wernicke, whose students continued and creatively developed projects of their master within this area. Professor Carl Wernicke, a German physician, anatomist, psychiatrist, and neuropathologist, is primarily known for his influential research on aphasia. His research, as well as those conducted by professor Paul Broca, has led to breakthroughs in the location of brain functions, particularly speech. Years later the theses of the pioneers of cognitive neurology (Carl Wernicke and Paul Broca) were developed by other neurolinguists. The main objective of the investigation is the reconstruction of the group of scientists –the students of Carl Wernicke– who contributed to the development of neurolinguistics. The scholars were mainly neurologists and psychiatrists and dealt with the branch of science that had not been named neurolinguistics at that time. The profiles of the scholars will be analysed and presented as the members of the group of researchers who have contributed to the breakthroughs in psychology and neuroscience. The research material consists of archival records documenting the research of professor Carl Wernicke and the researchers from Breslau (presently Wroclaw) which is one of the fastest growing cities in Europe. In 1870, when Carl Wernicke became the medical doctor, Breslau was full of cultural events: festivals and circus shows were held in the city center. Today we can come back to these events due to 'Breslauer Zeitung (1870)', which precisely describes all the events that took place on particular days. It is worth noting that those were the beginnings of antisemitism in Breslau. Many theses and articles that have survived in the libraries in Wroclaw and all over the world contribute to the development of neuroscience. The history of research on the brain and speech analysis, including the history of psychology and neuroscience, areas from which neurolinguistics is derived, will be presented.Keywords: Aphasia, brain injury, Carl Wernicke, language, neurolinguistics
Procedia PDF Downloads 39028386 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 34528385 Effect of Automatic Self Transcending Meditation on Perceived Stress and Sleep Quality in Adults
Authors: Divya Kanchibhotla, Shashank Kulkarni, Shweta Singh
Abstract:
Chronic stress and sleep quality reduces mental health and increases the risk of developing depression and anxiety as well. There is increasing evidence for the utility of meditation as an adjunct clinical intervention for conditions like depression and anxiety. The present study is an attempt to explore the impact of Sahaj Samadhi Meditation (SSM), a category of Automatic Self Transcending Meditation (ASTM), on perceived stress and sleep quality in adults. The study design was a single group pre-post assessment. Perceived Stress Scale (PSS) and the Pittsburgh Sleep Quality Index (PSQI) were used in this study. Fifty-two participants filled PSS, and 60 participants filled PSQI at the beginning of the program (day 0), after two weeks (day 16) and at two months (day 60). Significant pre-post differences for the perceived stress level on Day 0 - Day 16 (p < 0.01; Cohen's d = 0.46) and Day 0 - Day 60 (p < 0.01; Cohen's d = 0.76) clearly demonstrated that by practicing SSM, participants experienced reduction in the perceived stress. The effect size of the intervention observed on the 16th day of assessment was small to medium, but on the 60th day, a medium to large effect size of the intervention was observed. In addition to this, significant pre-post differences for the sleep quality on Day 0 - Day 16 and Day 0 - Day 60 (p < 0.05) clearly demonstrated that by practicing SSM, participants experienced improvement in the sleep quality. Compared with Day 0 assessment, participants demonstrated significant improvement in the quality of sleep on Day 16 and Day 60. The effect size of the intervention observed on the 16th day of assessment was small, but on the 60th day, a small to medium effect size of the intervention was observed. In the current study we found out that after practicing SSM for two months, participants reported a reduction in the perceived stress, they felt that they are more confident about their ability to handle personal problems, were able to cope with all the things that they had to do, felt that they were on top of the things, and felt less angered. Participants also reported that their overall sleep quality improved; they took less time to fall asleep; they had less disturbances in sleep and less daytime dysfunction due to sleep deprivation. The present study provides clear evidence of the efficacy and safety of non-pharmacological interventions such as SSM in reducing stress and improving sleep quality. Thus, ASTM may be considered a useful intervention to reduce psychological distress in healthy, non-clinical populations, and it can be an alternative remedy for treating poor sleep among individuals and decreasing the use of harmful sedatives.Keywords: automatic self transcending meditation, Sahaj Samadhi meditation, sleep, stress
Procedia PDF Downloads 13328384 Enhancing Knowledge and Teaching Skills of Grade Two Teachers who Work with Children at Risk of Dyslexia
Authors: Rangika Perera, Shyamani Hettiarachchi, Fran Hagstrom
Abstract:
Dyslexia is the most common reading reading-related difficulty among the school school-aged population and currently, 5-10% are showing the features of dyslexia in Sri Lanka. As there is an insufficient number of speech and language pathologists in the country and few speech and language pathologists working in government mainstream school settings, these children who are at risk of dyslexia are not receiving enough quality early intervention services to develop their reading skills. As teachers are the key professionals who are directly working with these children, using them as the primary facilitators to improve their reading skills will be the most effective approach. This study aimed to identify the efficacy of a two and half a day of intensive training provided to fifteen mainstream government school teachers of grade two classes. The goal of the training was to enhance their knowledge of dyslexia and provide full classroom skills training that could be used to support the development of the students’ reading competencies. A closed closed-ended multiple choice questionnaire was given to these teachers pre and -post-training to measure teachers’ knowledge of dyslexia, the areas in which these children needed additional support, and the best strategies to facilitate reading competencies. The data revealed that the teachers’ knowledge in all areas was significantly poorer prior to the training and that there was a clear improvement in all areas after the training. The gain in target areas of teaching skills selected to improve the reading skills of children was evaluated through peer feedback. Teachers were assigned to three groups and expected to model how they were going to introduce the skills in recommended areas using researcher developed, validated and reliability reliability-tested materials and the strategies which were introduced during the training within the given tasks. Peers and the primary investigator rated teachers’ performances and gave feedback on organizational skills, presentation skills of materials, clarity of instruction, and appropriateness of vocabulary. After modifying their skills according to the feedback the teachers received, they were expected to modify and represent the same tasks to the group the following day. Their skills were re-evaluated by the peers and primary investigator using the same rubrics to measure the improvement. The findings revealed a significant improvement in their teaching skills development. The data analysis of both knowledge and skills gains of the teachers was carried out using quantitative descriptive data analysis. The overall findings of the study yielded promising results that support intensive training as a method for improving teachers’ knowledge and teaching skill development for use with children in a whole class intervention setting who are at risk of dyslexia.Keywords: Dyslexia, knowledge, teaching skills, training program
Procedia PDF Downloads 7228383 A 10-Year In-Depth Follow-up of Post-lingual Hearing Loss Patients with Chinese Domestic Cochlear Implants
Authors: Jianan Li, Lusen Shi, Haiqiao Du, Wei Chen, Qian Wang, Shuoshuo Kang, Shiming Yang
Abstract:
Background: Follow-up of cochlear implant effectiveness is mainly focused on 3 years postoperatively, and studies with more than 5 years of observation are rare, especially for local Chinese brands. Objectives: Nurotron (Chinese domestic cochlear implant brand) CI recipients who participated in the clinical trial in 2009 were followed-up for 10 years prospectively, providing data to guide doctors and patients. Material and Methods: From December 2009 to April 2010, 57 subjects underwent Nurotron Venus CI surgery at multiple centers and were continued to be followed up and assessed at 1, 2, 3, 4, 5, and 10 years after switching on. Results: All recipients were successfully implanted with CIs with no difficulty in subsequent use, with one reported case of re-implantation 9 years after implantation. The aided hearing thresholds were significantly improved one month after switching on (p<0.0001) and remained stable afterward for 10 years. Speech recognition scores were significantly higher than pre-operative results (p<0.05) and continued to improve till 3 years after switching on. At 10 years of post-operation, most subjects had improved QOL scores in most sub-items. Conclusions and Significance: Nurotron Venus CI System provides long-term, stable results in hearing speech assistance capabilities and can improve the quality of life of CI recipients.Keywords: cochlear implantation, hearing loss, post lingual, follow up
Procedia PDF Downloads 1328382 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 58028381 Between Riots and Protests: A Structural Approach to Urban Environmental Uprisings in China
Authors: Zi Zhu
Abstract:
The last decade has witnessed increasing urban environmental uprisings in China, as thousands of citizens swarmed into streets to express their deep concerns about the environmental threat and public health through various collective actions. The prevalent western approaches to collective actions, which usually treat urban riots and social movements as distinct phenomenon, have plagued an adequate analysis of the urban environmental uprisings in China. The increasing urban environmental contention can neither be categorized into riots nor social movements, as they carry the features of both: at first sight, they are spontaneous, disorganized and disruptive with an absence of observable mobilization process; however, unlike riots in the west, these collective actions conveyed explicit demand in a mostly non-destructive way rather than a pure expression of frustration. This article proposes a different approach to urban environmental uprisings in China which concerns the diminishing boundaries between riots and social movements and points to the underlying structural causes to the unique forms of urban environmental contention. Taking the urban anti-PX protests as examples, this article analyzes the societal and political structural environment faced by the Chinese environmental protesters and its influence on the origin and development of their contention.Keywords: urban environmental uprisings, China, anti-PX protests, opportunity structure
Procedia PDF Downloads 28928380 Effect of Drying on the Concrete Structures
Authors: A. Brahma
Abstract:
The drying of hydraulics materials is unavoidable and conducted to important spontaneous deformations. In this study, we show that it is possible to describe the drying shrinkage of the high-performance concrete by a simple expression. A multiple regression model was developed for the prediction of the drying shrinkage of the high-performance concrete. The assessment of the proposed model has been done by a set of statistical tests. The model developed takes in consideration the main parameters of confection and conservation. There was a very good agreement between drying shrinkage predicted by the multiple regression model and experimental results. The developed model adjusts easily to all hydraulic concrete types.Keywords: hydraulic concretes, drying, shrinkage, prediction, modeling
Procedia PDF Downloads 36628379 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay
Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango
Abstract:
The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.Keywords: artificial vision, comet assay, DNA damage, image processing
Procedia PDF Downloads 30928378 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 6428377 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods
Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López
Abstract:
This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.Keywords: Matlab, make up, recognition methods, web application
Procedia PDF Downloads 14328376 Smart Trust Management for Vehicular Networks
Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel
Abstract:
Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.Keywords: active vehicle, cooperation, petri nets, trust management, VANET
Procedia PDF Downloads 404