Search results for: accidents predictions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1116

Search results for: accidents predictions

456 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams

Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha

Abstract:

The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependence. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.

Keywords: finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, laminated glass, Newton method, Williams-Landel-Ferry equation

Procedia PDF Downloads 423
455 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance

Authors: Shauma L. Tamba

Abstract:

This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.

Keywords: morality, competence, ingroup identification, religion, group norm

Procedia PDF Downloads 404
454 Hazard Alert in Malaysia Related to Occupational Safety and Health

Authors: Atikah Binti Azudin, Nurin Nazlah Binti Muhamad Yani, Nur Alya Nadhirah Binti Naaidith, Nur Amylia Wahida Binti Mat Ayob, Nurshamimi Shakirah Binti Suboh, Nur Auni Batrisyia Binti Md. Zaini, Nur Aziemah Binti Mohamad, Nurul Suffiyah Binti Sa’Dun, Sabrina Sasha Izzati Binti Zubaile, Umi Huwaina Binti Ahmiruddin, Wan Nur Shafawati Binti Wan Ghazali

Abstract:

A hazard alert is intended to provide brief information about significant incidents or existing difficulties in Department workplaces. The alert gives guidelines for proper processes, practices, and controls to be applied. When operated in accordance with the manufacturer's instructions, any machine or tool utilized at work provides a safe and dependable platform for workers to accomplish job duties. However, when not utilized appropriately, the machine might pose a major hazard to employees. Employers have a duty to keep employees safe in this scenario. This Hazard Alert outlines specific occupational dangers and the controls that employers must apply to prevent injury or fatal accidents. There have been several cases of hazard alerts in Malaysia, which have had a negative impact on a few workers. Looking on the bright side, we can overcome every incident in a variety of ways. One of these is that only qualified individuals operate mobile machinery and equipment. In addition, employees may also perform frequent pre-use inspections of machinery to discover and fix flaws. Hazard alert is very important, and this study would cover a variety of subjects, including the methods employed.

Keywords: safe, hazard, impacts, duties.

Procedia PDF Downloads 88
453 Friend or Foe: Decoding the Legal Challenges Posed by Artificial Intellegence in the Era of Intellectual Property

Authors: Latika Choudhary

Abstract:

“The potential benefits of Artificial Intelligence are huge, So are the dangers.” - Dave Water. Artificial intelligence is one of the facet of Information technology domain which despite several attempts does not have a clear definition or ambit. However it can be understood as technology to solve problems via automated decisions and predictions. Artificial intelligence is essentially an algorithm based technology which analyses the large amounts of data and then solves problems by detecting useful patterns. Owing to its automated feature it will not be wrong to say that humans & AI have more utility than humans alone or computers alone.1 For many decades AI experienced enthusiasm as well as setbacks, yet it has today become part and parcel of our everyday life, making it convenient or at times problematic. AI and related technology encompass Intellectual Property in multiple ways, the most important being AI technology for management of Intellectual Property, IP for protecting AI and IP as a hindrance to the transparency of AI systems. Thus the relationship between the two is of reciprocity as IP influences AI and vice versa. While AI is a recent concept, the IP laws for protection or even dealing with its challenges are relatively older, raising the need for revision to keep up with the pace of technological advancements. This paper will analyze the relationship between AI and IP to determine how beneficial or conflictual the same is, address how the old concepts of IP are being stretched to its maximum limits so as to accommodate the unwanted consequences of the Artificial Intelligence and propose ways to mitigate the situation so that AI becomes the friend it is and not turn into a potential foe it appears to be.

Keywords: intellectual property rights, information technology, algorithm, artificial intelligence

Procedia PDF Downloads 82
452 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 48
451 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 41
450 Investigation of Time Pressure and Instinctive Reaction in Moral Dilemmas While Driving

Authors: Jacqueline Miller, Dongyuan Y. Wang, F. Dan Richard

Abstract:

Before trying to make an ethical machine that holds a higher ethical standard than humans, a better understanding of human moral standards that could be used as a guide is crucial. How humans make decisions in dangerous driving situations like moral dilemmas can contribute to developing acceptable ethical principles for autonomous vehicles (AVs). This study uses a driving simulator to investigate whether drivers make utilitarian choices (choices that maximize lives saved and minimize harm) in unavoidable automobile accidents (moral dilemmas) with time pressure manipulated. This study also investigates how impulsiveness influences drivers’ behavior in moral dilemmas. Manipulating time pressure results in collisions that occur at varying time intervals (4 s, 5 s, 7s). Manipulating time pressure helps investigate how time pressure may influence drivers’ response behavior. Thirty-one undergraduates participated in this study using a STISM driving simulator to respond to driving moral dilemmas. The results indicated that the percentage of utilitarian choices generally increased when given more time to respond (from 4 s to 7 s). Additionally, participants in vehicle scenarios preferred responding right over responding left. Impulsiveness did not influence utilitarian choices. However, as time pressure decreased, response time increased. Findings have potential implications and applications on the regulation of driver assistance technologies and AVs.

Keywords: time pressure, automobile moral dilemmas, impulsiveness, reaction time

Procedia PDF Downloads 50
449 Workplace Risk Assessment in a Paint Factory

Authors: Rula D. Alshareef, Safa S. Alqathmi, Ghadah K. Alkhouldi, Reem O. Bagabas, Farheen B. Hasan

Abstract:

Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85.

Keywords: ergonomics, safety, workplace risks, hazards, awkward posture, fatigue, work environment

Procedia PDF Downloads 75
448 Identification of Social Responsibility Factors within Mega Construction Projects

Authors: Ali Alotaibi, Francis Edum-Fotwe, Andrew Price /

Abstract:

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

Keywords: social responsibility, construction projects, economic, social, environmental, indicators

Procedia PDF Downloads 161
447 A Tool to Measure Efficiency and Trust Towards eXplainable Artificial Intelligence in Conflict Detection Tasks

Authors: Raphael Tuor, Denis Lalanne

Abstract:

The ATM research community is missing suitable tools to design, test, and validate new UI prototypes. Important stakes underline the implementation of both DSS and XAI methods into current systems. ML-based DSS are gaining in relevance as ATFM becomes increasingly complex. However, these systems only prove useful if a human can understand them, and thus new XAI methods are needed. The human-machine dyad should work as a team and should understand each other. We present xSky, a configurable benchmark tool that allows us to compare different versions of an ATC interface in conflict detection tasks. Our main contributions to the ATC research community are (1) a conflict detection task simulator (xSky) that allows to test the applicability of visual prototypes on scenarios of varying difficulty and outputting relevant operational metrics (2) a theoretical approach to the explanations of AI-driven trajectory predictions. xSky addresses several issues that were identified within available research tools. Researchers can configure the dimensions affecting scenario difficulty with a simple CSV file. Both the content and appearance of the XAI elements can be customized in a few steps. As a proof-of-concept, we implemented an XAI prototype inspired by the maritime field.

Keywords: air traffic control, air traffic simulation, conflict detection, explainable artificial intelligence, explainability, human-automation collaboration, human factors, information visualization, interpretability, trajectory prediction

Procedia PDF Downloads 153
446 Wave-Assisted Flapping Foil Propulsion: Flow Physics and Scaling Laws From Fluid-Structure Interaction Simulations

Authors: Rajat Mittal, Harshal Raut, Jung Hee Seo

Abstract:

Wave-assisted propulsion (WAP) systems convert wave energy into thrust using elastically mounted hydrofoils. We employ sharp-interface immersed boundary simulations to examine the effect of two key parameters on the flow physics, the fluid-structure interaction, as well as thrust performance of these systems - the stiffness of the torsional spring and the location of the rotational center. The variation in spring stiffness leads to different amplitude of pitch motion, phase difference with respect to heaving motion and thrust coefficient and we show the utility of ‘maps’ of energy exchange between the flow and the hydrofoil system, as a way to understand and predict this behavior. The Force Partitioning Method (FPM) is used to decompose the pressure forces into individual components and understand the mechanism behind increase in thrust. Next, a scaling law is presented for the thrust coefficient generated by heaving and pitching foil. The parameters within the scaling law are calculated based on direct-numerical simulations based parametric study utilized to generate the energy maps. The predictions of the proposed scaling law are then compared with those of a similar model from the literature, showing a noticeable improvement in the prediction of the thrust coefficient.

Keywords: propulsion, flapping foils, hydrodynamics, wave power

Procedia PDF Downloads 51
445 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 97
444 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation

Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone

Abstract:

Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.

Keywords: digital twin, distributed energy resources, remote terminal units, supervisory control and data acquisition system, smart recursive load flow

Procedia PDF Downloads 99
443 Numerical Verification of a Backfill-Rectangular Tank-Fluid System

Authors: Ramazan Livaoğlu, Tufan Çakır

Abstract:

The performance of rectangular tanks during earthquakes has been observed to depend significantly on the existence of water in the container and the presence of the backfill acting on tank wall. Therefore, in design of rectangular tanks, the topics of fluid-structure-backfill interactions and determination of modal characteristics of the interaction system have traditionally been one of the great theoretical and practical controversy. Although finite element method has been and will continue to be used to a significant extent in treating the response of the system, experimental verification of numerical models remains prerequisite for their adoption and reliable application in practice. Thus, in this study, the numerical and experimental investigations were performed on the backfill-exterior wall-fluid interaction system. Firstly, three dimensional finite element model (3D-FEM) was developed to acquire modal frequencies and mode shapes of the system by means of ANSYS. Secondly, a series of in-situ tests were fulfilled to define modal characteristics of same system to determine the applicability of the FEM to a real physical situation under field conditions. Finally, comparing the theoretical predictions from the model to results from experimental measurement, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verification provides strong support for the use of proposed model in further investigations.

Keywords: fluid-structure interaction, modal analysis, rectangular tank, soil structure interaction

Procedia PDF Downloads 387
442 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 499
441 Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility

Authors: Reinhold Kosfeld, Andreas Gohs

Abstract:

In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility.

Keywords: electric mobility, forecasting market diffusion, regional panel data model, spatial interaction

Procedia PDF Downloads 162
440 Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya

Authors: Osama Sassi, Manal Eltorki, Iftikhar Ahmad

Abstract:

Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection.

Keywords: corrosion mitigation on gas transmission pipelines, pipeline integrity management, corrosion management of gas pipelines, prevention and inspection of corrosion

Procedia PDF Downloads 67
439 Finite Element Analysis of Piezolaminated Structures with Both Geometric and Electroelastic Material Nonlinearities

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen, , Jing Bai

Abstract:

Piezoelectric laminated smart structures can be subjected to the strong driving electric field, which may result in large displacements and rotations. In one hand, piezoelectric materials usually behave very significant material nonlinear effects under strong electric fields. On the other hand, thin-walled structures undergoing large displacements and rotations exist nonnegligible geometric nonlinearity. In order to give a precise prediction of piezo laminated smart structures under the large electric field, this paper develops a finite element (FE) model accounting for material nonlinearity (piezoelectric part) and geometric nonlinearity based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is first validated by both experimental and numerical examples from the literature. Afterwards, it is applied to simulate for plate and shell structures with multiple piezoelectric patches under the strong applied electric field. From the simulation results, it shows that large discrepancies occur between linear and nonlinear predictions for piezoelectric laminated structures driving at the strong electric field. Therefore, both material and geometric nonlinearities should be taken into account for piezoelectric structures under strong electric.

Keywords: piezoelectric smart structures, finite element analysis, geometric nonlinearity, electroelastic material nonlinearities

Procedia PDF Downloads 312
438 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, Nile delta, modeling

Procedia PDF Downloads 281
437 Investigating the Pedestrian Willingness to Pay to Choose Appropriate Policies for Improving the Safety of Pedestrian Facilities

Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Fatemeh Mohajeri

Abstract:

Road traffic accidents lead to a higher rate of death and injury, especially in vulnerable road users such as pedestrians. Improving the safety of facilities for pedestrians is a major concern for policymakers because of the high number of pedestrian fatalities and direct and indirect costs which are imposed to the society. This study focuses on the idea of determining the willingness to pay of pedestrians for increasing their safety while crossing the street. In this study, three different scenarios including crossing the street with zebra crossing facilities, crossing the street with zebra crossing facilities and installing a pedestrian traffic light and constructing a pedestrian bridge with escalator are presented. The research was conducted based on stated preferences method. The required data were collected from a questionnaire that consisted of three parts: pedestrian’s demographic characteristics, travel characteristics and scenarios. Four different payment amounts are presented for each scenario and a logit model has been built for each proposed payment. The results show that sex, age, education, average household income and individual salary have significant effect on choosing a scenario. Among the policies that have been mentioned through the questionnaire scenarios, the scenario of crossing the street with zebra crossing facilities and installing a traffic lights is the most frequent, with willingness to pay 10,000 Rials and the scenario of crossing the street with a zebra crossing with a willingness to pay 100,000 Rials having the least frequency. For all scenarios, as the payment is increasing, the willingness to pay decreases.

Keywords: pedestrians, willingness to pay, safety, immunization

Procedia PDF Downloads 148
436 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML

Procedia PDF Downloads 123
435 Ceramic Employees’ Occupational Health and Safety Training Expectations in Turkey

Authors: Erol Karaca

Abstract:

This study aims to analyze ceramic employees’ occupational health and safety training expectations. To that general objective, the study tries to examine whether occupational health and safety training expectations of ceramic employees meaningfully differentiate depending on demographic features and professional, social and economic conditions. For this purpose, the research data was collected through “Questionnaire of Occupational Health and Safety Training Expectation” (QSOHSTE) consisting of 25 open and close-ended questions developed by the researcher on the base of the literature review. QSOHSTE was applied to 125 ceramic employees working in Kutahya, Turkey. Data obtained from questionnaires were analyzed via SPSS 21. The findings, obtained from the study, revealed that employees’ agreement level to occupational health and safety training expectation statements is generally high-level. These findings also reveals that employees have various expectations about occupational health and safety training. These expectations are increasing sensitivity towards occupational health and safety training about the prevention of occupational accidents and diseases, contributing occupational health and safety training in establishing healthy and safe working environment, requiring occupational health and safety training before starting work, in case of changing working equipment and new technological applications, necessity of measurement and evaluation after occupational health and safety training. Besides these findings, employees’ agreement level to occupational health and safety training expectation statements also varies in terms of educational level, professional seniority, income level and perception of economic condition.

Keywords: occupational health and safety, occupational training, occupational expectation, professional seniority

Procedia PDF Downloads 441
434 Analyzing Energy Consumption Behavior of Migrated Population in Turkey Using Bayesian Belief Approach

Authors: Ebru Acuner, Gulgun Kayakutlu, M. Ozgur Kayalica, Sermin Onaygil

Abstract:

In Turkey, emigration, especially from Syria, has been continuously increasing together with rapid urbanization. In parallel to this, total energy consumption has been growing, rapidly. Unfortunately, domestic energy sources could not meet this energy demand. Hence, there is a need for reliable predictions. For this reason, before making a survey study for the migrated people, an informative questionnaire was prepared to take the opinions of the experts on the main drivers that shape the energy consumption behavior of the migrated people. Totally, 17 experts were answered, and they were analyzed by means of Netica program considering Bayesian belief analysis method. In the analysis, factors affecting energy consumption behaviors as well as strategies, institutions, tools and financing methods to change these behaviors towards efficient consumption were investigated. On the basis of the results, it can be concluded that changing the energy consumption behavior of the migrated people is crucial. In order to be successful, electricity and natural gas prices and tariffs in the market should be arranged considering energy efficiency. In addition, support mechanisms by not only the government but also municipalities should be taken into account while preparing related policies. Also, electric appliance producers should develop and implement strategies and action in favor of the usage of more efficient appliances. Last but not least, non-governmental organizations should support the migrated people to improve their awareness on the efficient consumption for the sustainable future.

Keywords: Bayesian belief, behavior, energy consumption, energy efficiency, migrated people

Procedia PDF Downloads 106
433 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 305
432 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 147
431 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd

Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto

Abstract:

Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.

Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle

Procedia PDF Downloads 383
430 Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S

Authors: Gustavo J. Costa, Felipe J. Costa, Bruno L. Coelho, Ronaldo L. Cardoso, Rafael O. Santos, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S.

Keywords: 14-X, hypersonic, scramjet, supersonic combustion

Procedia PDF Downloads 417
429 Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique

Authors: Yingkun Huang, Li Guo, Zekang Lan, Kai Tian

Abstract:

Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing.

Keywords: HDD replacement, failure, CNN-LSTM, oversampling, prediction

Procedia PDF Downloads 75
428 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete

Procedia PDF Downloads 198
427 Analyzing of Speed Disparity in Mixed Vehicle Technologies on Horizontal Curves

Authors: Tahmina Sultana, Yasser Hassan

Abstract:

Vehicle technologies rapidly evolving due to their multifaceted advantages. Adapted different vehicle technologies like connectivity and automation on the same roads with conventional vehicles controlled by human drivers may increase speed disparity in mixed vehicle technologies. Identifying relationships between speed distribution measures of different vehicles and road geometry can be an indicator of speed disparity in mixed technologies. Previous studies proved that speed disparity measures and traffic accidents are inextricably related. Horizontal curves from three geographic areas were selected based on relevant criteria, and speed data were collected at the midpoint of the preceding tangent and starting, ending, and middle point of the curve. Multiple linear mixed effect models (LME) were developed using the instantaneous speed measures representing the speed of vehicles at different points of horizontal curves to recognize relationships between speed variance (standard deviation) and road geometry. A simulation-based framework (Monte Carlo) was introduced to check the speed disparity on horizontal curves in mixed vehicle technologies when consideration is given to the interactions among connected vehicles (CVs), autonomous vehicles (AVs), and non-connected vehicles (NCVs) on horizontal curves. The Monte Carlo method was used in the simulation to randomly sample values for the various parameters from their respective distributions. Theresults show that NCVs had higher speed variation than CVs and AVs. In addition, AVs and CVs contributed to reduce speed disparity in the mixed vehicle technologies in any penetration rates.

Keywords: autonomous vehicles, connected vehicles, non-connected vehicles, speed variance

Procedia PDF Downloads 142