Search results for: HC emission
799 Synthesis of Iron-Based Perovskite Type Catalysts from Rust Wastes as a Source of Iron
Authors: M. P. Joshi, F. Deganello, L. F. Liotta, V. La Parola, G. Pantaleo
Abstract:
For the first time, commercial iron nitrate was replaced by rust wastes, as a source of Iron for the preparation of LaFeO₃ powders by solution combustion synthesis (SCS). A detailed comparison with a reference powder obtained by SCS, starting from a commercial iron nitrate, was also performed. Several techniques such as X-ray diffraction combined with Rietveld refinement, mass plasma atomic emission spectroscopy, nitrogen adsorption measurements, temperature programmed reduction, X-ray photoelectron spectroscopy, Fourier transform analysis and scanning electron microscopy were used for the characterization of the rust wastes as well as of the perovskite powders. The performance of this ecofriendly material was evaluated by testing the activity and selectivity in the propylene oxidation, in order to use it for the benefit of the environment. Characterization and performance results clearly evidenced limitations and peculiarities of this new approach.Keywords: perovskite type catalysts, solution combustion synthesis, X-ray diffraction, rust wastes
Procedia PDF Downloads 330798 Light Car Assisted by PV Panels
Authors: Soufiane Benoumhani, Nadia Saifi, Boubekeur Dokkar, Mohamed Cherif Benzid
Abstract:
This work presents the design and simulation of electric equipment for a hybrid solar vehicle. The new drive train of this vehicle is a parallel hybrid system which means a vehicle driven by a great percentage of an internal combustion engine with 49.35 kW as maximal power and electric motor only as assistance when is needed. This assistance is carried out on the rear axle by a single electric motor of 7.22 kW as nominal power. The motor is driven by 12 batteries connecting in series, which are charged by three PV panels (300 W) installed on the roof and hood of the vehicle. The individual components are modeled and simulated by using the Matlab Simulink environment. The whole system is examined under different load conditions. The reduction of CO₂ emission is obtained by reducing fuel consumption. With the use of this hybrid system, fuel consumption can be reduced from 6.74 kg/h to 5.56 kg/h when the electric motor works at 100 % of its power. The net benefit of the system reaches 1.18 kg/h as fuel reduction at high values of power and torque.Keywords: light car, hybrid system, PV panel, electric motor
Procedia PDF Downloads 119797 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype
Authors: Tine Cencič, Marko Hočevar, Brane Širok
Abstract:
An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics
Procedia PDF Downloads 413796 Comparison of the Performance of GaInAsSb and GaSb Cells under Different Temperature Blackbody Radiations
Authors: Liangliang Tang, Chang Xu, Xingying Chen
Abstract:
GaInAsSb cells probably show better performance than GaSb cells in low-temperature thermophotovoltaic systems due to lower bandgap; however, few experiments proved this phenomenon so far. In this paper, numerical simulation is used to evaluate GaInAsSb and GaSb cells with similar structures under different radiation temperatures. We found that GaInAsSb cells with n-type emitters show slightly higher output power densities compared with that of GaSb cells with n-type emitters below 1,550 K-blackbody radiation, and the power density of the later cells will suppress the formers above this temperature point. During the temperature range of 1,000~2,000 K, the efficiencies of GaSb cells are about twice of GaInAsSb cells if perfect filters are used to prevent the emission of the non-absorbed long wavelength photons. Several parameters that affect the GaInAsSb cell were analyzed, such as doping profiles, thicknesses of GaInAsSb epitaxial layer and surface recombination velocity. The non-p junctions, i.e., n-type emitters are better for GaInAsSb cell fabrication, which is similar to that of GaSb cells.Keywords: thermophotovoltaic cell, GaSb, GaInAsSb, diffused emitters
Procedia PDF Downloads 279795 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications
Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi
Abstract:
In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect
Procedia PDF Downloads 424794 The Impact of Ship Traffic and Harbor Activities on the Atmospheric Pollution in Two Northern Adriatic Ports: Venice and Rijeka
Authors: Elena Barbaro, Elena Gregoris, Rossano Piazza, Boris Mifka, Tatjana Ivošević, Ivo Orlić, Ana Alebić-Juretić, Andrea Gambaro, Daniele Contini
Abstract:
The aim of the POSEIDON project is to quantify the relative contribution of maritime traffic and harbor activities to atmospheric pollutants concentration in four port-cities of the Adriatic Sea. This study focuses on the harbors of Venice and Rijeka. In order to investigate the main pollution sources, emission inventories were used as input for receptor models: PMF (positive matrix factorization) and PCA (principal components analysis); moreover source identification was also conducted using PAHs diagnostic ratios. The ship traffic impact was quantified: i) on gaseous and particulate PAHs, collected using a new method which consisted in a double simultaneous sampling, in different wind sectors; ii) applying PMF to data of metals, PAHs and ions in PM10; iii) using the vanadium concentration according to the Agrawal methodology.Keywords: ship traffic, PMF, harbor, POSEIDON
Procedia PDF Downloads 599793 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors
Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment
Procedia PDF Downloads 455792 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework
Authors: Annu Sheokand, Vinay Kumar
Abstract:
Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.Keywords: detection limit, doping, MOF, sensitivity, sensor
Procedia PDF Downloads 12791 Performance and Combustion Characteristics of a DI Diesel Engine Fueled with Jatropha Methyl Esters and its Blends
Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare
Abstract:
This study discusses the performance and combustion characteristics of a direct injection diesel engine fueled with Jatropha methyl ester (JME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant speed mode (1500rpm) under the full load condition of the engine on single cylinder 4-stroke CI engine. The result indicated that when the test engine was fuelled with JME, the engine performance slightly weakened, the combustion characteristics slightly changed when compared to petroleum based diesel fuel. The biodiesel caused reduction in carbon monoxide (CO), unburned hydrocarbon (HC) emissions, but they caused to increases in nitrogen oxides (NOx) emissions. The useful brake power obtained is similar to diesel fuel for all loads. Oxygen content in the exhaust is more with JME blend due to the reason that fuel itself contains oxygen. JME as a new Biodiesel and its blends can be used in diesel engines without any engine modification.Keywords: biodiesel, combustion, CI engine, jatropha curcas oil, performance and emission
Procedia PDF Downloads 366790 Simulation of the Performance of the Reforming of Methane in a Primary Reformer
Authors: A. Alkattib, M. Boumaza
Abstract:
Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.Keywords: reforming, methane, performance, hydrogen, parameters
Procedia PDF Downloads 224789 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation
Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent
Abstract:
Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene
Procedia PDF Downloads 206788 Volatile Organic Compounds from Decomposition of Local Food Waste and Potential Health Risk
Authors: Siti Rohana Mohd Yatim, Ku Halim Ku Hamid, Kamariah Noor Ismail, Zulkifli Abdul Rashid
Abstract:
The aim of this study is to investigate odour emission profiles from storage of food waste and to assess the potential health risk caused by exposure to volatile compounds. Food waste decomposition process was conducted for 14 days and kept at 20°C and 30°C in self-made bioreactor. VOCs emissions from both samples were collected at different stages of decomposition starting at day 0, day 1, day 3, day 5, day 7, day 10, day 12 and day 14. It was analyzed using TD-GC/MS. Findings showed that various VOCs were released during decomposition of food waste. Compounds produced were influenced by time, temperature and the physico-chemical characteristics of the compounds. The most abundant compound released was dimethyl disulfide. Potential health risk of exposure to this compound is represented by hazard ratio, HR, calculated at 1.6 x 1011. Since HR equal to or less than 1.0 is considered negligible risk, this indicates that the compound posed a potential risk to human health.Keywords: volatile organic compounds, decomposition process, food waste, health risk
Procedia PDF Downloads 518787 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations
Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino
Abstract:
Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.Keywords: air emissions, baseline, green house gases, shale gas
Procedia PDF Downloads 328786 Towards Optimising Building Information Modelling and Building Management System in Higher Education Institutions Facility Management: A Review
Authors: Zhuoqun Sun, Francisco Sierra, A. Booth
Abstract:
With BIM rapidly implemented in the design and construction stage of a project, researchers begin to focus on improving the operation and maintenance stage with the aid of BIM. Since the increasing amount of electronic equipment installed in the building, building management system becomes mainstream for controlling a building, especially in higher education institutions that can play an important role in terms of reducing carbon emission and improving energy efficiency. Currently, an approach to integrate BIM and BMS to improve HEIs facility management has not been established yet. Thus, this paper aims to analyse the benefits, issues, and trends of BIM and BMS integration and their application in HEIs. A systematic literature review was carried out on SCOPUS by applying the PRISMA methodology. 73 articles have been chosen based on keywords, abstracts, and the full content of the articles. The benefit and existed issues from the articles are analysed. The review shows the need to develop a tool to improve facility management through BIM BMS integration.Keywords: BIM, BMS, HEIs, review
Procedia PDF Downloads 161785 Cell Response on the Ti-15Mo Alloy Surface after Nanotubes Growth
Authors: Ana Paula Rosifini Alves Claro, André Luiz Reis Rangel, Nathan Trujillo, Ketul C. Popat
Abstract:
In the present work, in vitro cytotoxicity was evaluated after nanotubes growth on Ti15Mo alloy surface. TiO2 nanotubes were obtained by anodizing technique at room temperature in an electrolyte with 0.25 %NH4F and glycerol at a constant anodic potential of 20 V for 24 hours. The morphology of nanotubes was observed by field emission scanning electron microscopy (FE-SEM; XL 30 FEG, Philips). Crystal structure was analyzed by wide-angle X-ray diffraction. A cell culture model using human fibroblast-like cells was used to study the effect of TiO2 nanotubes growth on the cytotoxicity of the Ti15Mo alloy for 1, 4 and 7 days culture period. The MTT assay was used to evaluate cell viability and cell adhesion was evaluated by scanning electron microscopy. Results show that Ti15Mo alloy with TiO2 nanotubes on surface is nontoxic and exhibit good interaction with surface.Keywords: titanium alloys, TiO2 nanotubes, cell growth, Ti-15Mo alloy
Procedia PDF Downloads 489784 A Patent Trend Analysis for Hydrogen Based Ironmaking: Identifying the Technology’s Development Phase
Authors: Ebru Kaymaz, Aslı İlbay Hamamcı, Yakup Enes Garip, Samet Ay
Abstract:
The use of hydrogen as a fuel is important for decreasing carbon emissions. For the steel industry, reducing carbon emissions is one of the most important agendas of recent times globally. Because of the Paris Agreement requirements, European steel industry studies on green steel production. Although many literature reviews have analyzed this topic from technological and hydrogen based ironmaking, there are very few studies focused on patents of decarbonize parts of the steel industry. Hence, this study focus on technological progress of hydrogen based ironmaking and on understanding the main trends through patent data. All available patent data were collected from Questel Orbit. The trend analysis of more than 900 patent documents has been carried out by using Questel Orbit Intellixir to analyze a large number of data for scientific intelligence.Keywords: hydrogen based ironmaking, DRI, direct reduction, carbon emission, steelmaking, patent analysis
Procedia PDF Downloads 143783 A Study of Environmental Investment on the Sustainable Development in United States
Authors: K. Y. Chen, Y. N. Jia, H. Chua, C. W. Kan
Abstract:
In United States (US), the environmental policy went through two stages that are government control period and market mechanism period. In the government control period in the 1970s, environmental problems in U.S. are treated by mandatory direct control method, including promulgation of laws, formulation of emission standards and mandatory installation of pollution treatment equipment. After the 1980s, the environmental policy in U.S. went into the second stage, in which the government strengthened the incentives and coordination effects of market. Since then, environmental governance had been partially replaced by means of economic regulation of the market. Green Tax Policy and Marketable Pollution Permits are good examples of government's economic interventions. U.S. Federal Government regards environmental industry as high-tech industry which is promoted in this period. Therefore, in the paper, we aim to analyse the effect of environmental investment on the sustainable development in the US. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: United States, public environmental investment, analysis, sustainable development
Procedia PDF Downloads 247782 Atmospheric Pressure Microwave Plasma System and Its Applications
Authors: Waqas A. Toor, Anis U. Baig, Nuaman Shafqat, Raafia Irfan, Muhammad Ashraf
Abstract:
A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation.Keywords: HFSS high frequency structure simulator, Microwave plasma, UV ultraviolet, WR rectangular waveguide
Procedia PDF Downloads 270781 Long Wavelength GaInNAs Based Hot Electron Light Emission VCSOAs
Authors: Faten Adel Ismael Chaqmaqchee
Abstract:
Optical, electrical and optical-electrical characterisations of surface light emitting VCSOAs devices are reported. The hot electron light emitting and lasing in semiconductor hetero-structure vertical cavity semiconductor optical amplifier (HELLISH VCSOA) device is a surface emitter based on longitudinal injection of electron and hole pairs in their respective channels. Ga0.35In0.65N0.02As0.08/GaAs was used as an active material for operation in the 1.3 μm window of the optical communications. The device has undoped Distributed Bragg Reflectors (DBRs) and the current is injected longitudinally, directly into the active layers and does not involve DBRs. Therefore, problems associated with refractive index contrast and current injection through the DBR layers, which are common with the doped DBRs in conventional VCSOAs, are avoided. The highest gain of around 4 dB is obtained for the 1300 nm wavelength operation.Keywords: HELLISH, VCSOA, GaInNAs, luminescence, gain
Procedia PDF Downloads 359780 Bi-Criteria Objective Network Design Model for Multi Period Multi Product Green Supply Chain
Authors: Shahul Hamid Khan, S. Santhosh, Abhinav Kumar Sharma
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Bi-objective mathematical models for total cost and total emission for the entire forward supply chain are considered. Here five different problems are considered by varying the number of suppliers, manufacturers, and environmental levels, for illustrating the taken mathematical model. GA, and Random search are used for finding the optimal solution. The input parameters of the optimal solution are used to find the tradeoff between the initial investment by the industry and the long term benefit of the environment.Keywords: closed loop supply chain, genetic algorithm, random search, green supply chain
Procedia PDF Downloads 547779 Valorization of Residues from Forest Industry for the Generation of Energy
Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto
Abstract:
The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity
Procedia PDF Downloads 304778 Anti-Reflective Nanostructured TiO2/SiO2 Multilayer Coatings
Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and also nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm.Keywords: thin films, optical properties, sol-gel, multilayer
Procedia PDF Downloads 419777 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 148776 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period
Procedia PDF Downloads 286775 Status Check: Journey of India’s Energy Sustainability through Renewable Sources
Authors: Santosh Ghosh, Vinod Kumar Yadav, Vivekananda Mukherjee, Ishta Garg
Abstract:
India, akin to the rest of the world today, is grappling with balancing act between ever increasing demand for energy and alarmingly high level of green house gas emission, which is inevitable corollary of energy production in the conventional way. Researchers and energy policy makers around the world are now focusing on renewable energy (RE) technologies to find solution to this crisis. In India various agencies at both national and state level has been set up and bestowed with responsibility of development of renewable energy technologies, viz. Ministry of New Renewable Energy (MNRE), National Vidyut Vyapar Nigam Ltd. (NVVNL), Indian Renewable Energy Development Agency Limited (IREDA) and RE Development Agencies in respective states. In the present work, the preparedness of India in terms of forming institutional and policy frame work briefly discussed. Status of implementation of RE technologies state wise and of India as a whole, critically reviewed.Keywords: energy policy, energy sustainability, renewable energy, IREDA
Procedia PDF Downloads 631774 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology
Authors: Dibyendu Adak, Saroj Mandal
Abstract:
The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures
Procedia PDF Downloads 161773 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms
Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma
Abstract:
Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.Keywords: image fusion, pyramid, wavelets, principal component analysis
Procedia PDF Downloads 282772 Sol-Gel SiO2-TiO2 Multilayer Coatings for Anti-Reflective Applications
Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi
Abstract:
Multilayer structure of thin films by the sol–gel process attracts great attention for antireflection applications. In this paper, antireflective nanometric multilayer SiO2-TiO2 films are formed on both sides of the glass substrates by combining the sol–gel method and the dip-coating technique. SiO2 and TiO2 sols were prepared using tetraethylorthosilicate (TEOS) and tetrabutylorthotitanate (TBOT) as precursors and nitric acid as catalyst. Prepared coatings were investigated by Field-emission scanning electron microscope (FE-SEM), Fourier-transformed infrared spectrophotometer (FT-IR) and UV–visible spectrophotometer. After evaluation, all of SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glass increases due to applied multilayer coating properties. 6-layer sol–gel TiO2-SiO2 shows the highest visible transmittance about 99.25% at the band of 550-650 nm.Keywords: thin films, optical properties, sol-gel, multilayer
Procedia PDF Downloads 401771 Synthesis of Nanosized Amorphous Alumina Particles and Their Use in Electroless Ni-P Coatings
Authors: Preeti Makkar, R. C. Agarwala, Vijaya Agarwala
Abstract:
The present study focuses on the preparation of Al2O3 nanoparticles by top down approach i.e. mechanical milling using high energy planetary ball mill at 250 rpm for 40h. The milled Al2O3 nanoparticles are then used as the second phase to develop electroless (EL) Ni-P- Al2O3 nanocomposite coatings on mild steel substrate. An alkaline bath was used with a suspension of Al2O3 particles (4 g/L) for the synthesis of Ni-P-Al2O3 nanocomposite coating. The surface morphology, size range and phase analysis of as-prepared Al2O3 particles and the coatings were characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coatings were heat treated at 400°C for 1h in argon atmosphere and the hardness of the nanocomposite coatings was investigated with respect to Ni-P before and after heat treatment. The results showed that as milled Al2O3 nanoparticles exhibit irregular shaped and size ranges around 40-45 nm. The Al2O3 particles are uniformly distributed in Ni-P matrix. The microhardness of the coatings is found to be significantly improved after heat treatment (1126 VHN).Keywords: Electroless (EL), Ni-P-Al2O3, nanocomposite, mechanical milling, microhardness
Procedia PDF Downloads 283770 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence
Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz
Abstract:
Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.Keywords: automotive brake, friction material, brake dynamometer, compressibility test
Procedia PDF Downloads 236