Search results for: 3D reconstruction method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19348

Search results for: 3D reconstruction method

18688 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 59
18687 Efficiency of Wood Vinegar Mixed with Some Plants Extract against the Housefly (Musca domestica L.)

Authors: U. Pangnakorn, S. Kanlaya

Abstract:

The efficiency of wood vinegar mixed with each individual of three plants extract such as: citronella grass (Cymbopogon nardus), neem seed (Azadirachta indica A. Juss), and yam bean seed (Pachyrhizus erosus Urb.) were tested against the second instar larvae of housefly (Musca domestica L.). Steam distillation was used for extraction of the citronella grass while neem and yam bean were simple extracted by fermentation with ethyl alcohol. Toxicity test was evaluated in laboratory based on two methods of larvicidal bioassay: topical application method (contact poison) and feeding method (stomach poison). Larval mortality was observed daily and larval survivability was recorded until the survived larvae developed to pupae and adults. The study resulted that treatment of wood vinegar mixed with citronella grass showed the highest larval mortality by topical application method (50.0%) and by feeding method (80.0%). However, treatment of mixed wood vinegar and neem seed showed the longest pupal duration to 25 day and 32 days for topical application method and feeding method respectively. Additional, larval duration on treated M. domestica larvae was extended to 13 days for topical application method and 11 days for feeding method. Thus, the feeding method gave higher efficiency compared with the topical application method.

Keywords: housefly (Musca domestica L.), neem seed (Azadirachta indica), citronella grass (Cymbopogon nardus), yam bean seed (Pachyrhizus erosus), mortality

Procedia PDF Downloads 341
18686 Detection of Image Blur and Its Restoration for Image Enhancement

Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad

Abstract:

Image restoration in the process of communication is one of the emerging fields in the image processing. The motion analysis processing is the simplest case to detect motion in an image. Applications of motion analysis widely spread in many areas such as surveillance, remote sensing, film industry, navigation of autonomous vehicles, etc. The scene may contain multiple moving objects, by using motion analysis techniques the blur caused by the movement of the objects can be enhanced by filling-in occluded regions and reconstruction of transparent objects, and it also removes the motion blurring. This paper presents the design and comparison of various motion detection and enhancement filters. Median filter, Linear image deconvolution, Inverse filter, Pseudoinverse filter, Wiener filter, Lucy Richardson filter and Blind deconvolution filters are used to remove the blur. In this work, we have considered different types and different amount of blur for the analysis. Mean Square Error (MSE) and Peak Signal to Noise Ration (PSNR) are used to evaluate the performance of the filters. The designed system has been implemented in Matlab software and tested for synthetic and real-time images.

Keywords: image enhancement, motion analysis, motion detection, motion estimation

Procedia PDF Downloads 287
18685 Cultivating Responsible AI: For Cultural Heritage Preservation in India

Authors: Varsha Rainson

Abstract:

Artificial intelligence (AI) has great potential and can be used as a powerful tool of application in various domains and sectors. But with the application of AI, there comes a wide spectrum of concerns around bias, accountability, transparency, and privacy. Hence, there is a need for responsible AI, which can uphold ethical and accountable practices to ensure that things are transparent and fair. The paper is a combination of AI and cultural heritage preservation, with a greater focus on India because of the rich cultural legacy that it holds. India’s cultural heritage in itself contributes to its identity and the economy. In this paper, along with discussing the impact culture holds on the Indian economy, we will discuss the threats that the cultural heritage is exposed to due to pollution, climate change and urbanization. Furthermore, the paper reviews some of the exciting applications of AI in cultural heritage preservation, such as 3-D scanning, photogrammetry, and other techniques which have led to the reconstruction of cultural artifacts and sites. The paper eventually moves into the potential risks and challenges that AI poses in cultural heritage preservation. These include ethical, legal, and social issues which are to be addressed by organizations and government authorities. Overall, the paper strongly argues the need for responsible AI and the important role it can play in preserving India’s cultural heritage while holding importance to value and diversity.

Keywords: responsible AI, cultural heritage, artificial intelligence, biases, transparency

Procedia PDF Downloads 187
18684 A Family of Second Derivative Methods for Numerical Integration of Stiff Initial Value Problems in Ordinary Differential Equations

Authors: Luke Ukpebor, C. E. Abhulimen

Abstract:

Stiff initial value problems in ordinary differential equations are problems for which a typical solution is rapidly decaying exponentially, and their numerical investigations are very tedious. Conventional numerical integration solvers cannot cope effectively with stiff problems as they lack adequate stability characteristics. In this article, we developed a new family of four-step second derivative exponentially fitted method of order six for the numerical integration of stiff initial value problem of general first order differential equations. In deriving our method, we employed the idea of breaking down the general multi-derivative multistep method into predator and corrector schemes which possess free parameters that allow for automatic fitting into exponential functions. The stability analysis of the method was discussed and the method was implemented with numerical examples. The result shows that the method is A-stable and competes favorably with existing methods in terms of efficiency and accuracy.

Keywords: A-stable, exponentially fitted, four step, predator-corrector, second derivative, stiff initial value problems

Procedia PDF Downloads 258
18683 A New Method to Reduce 5G Application Layer Payload Size

Authors: Gui Yang Wu, Bo Wang, Xin Wang

Abstract:

Nowadays, 5G service-based interface architecture uses text-based payload like JSON to transfer business data between network functions, which has obvious advantages as internet services but causes unnecessarily larger traffic. In this paper, a new 5G application payload size reduction method is presented to provides the mechanism to negotiate about new capability between network functions when network communication starts up and how 5G application data are reduced according to negotiated information with peer network function. Without losing the advantages of 5G text-based payload, this method demonstrates an excellent result on application payload size reduction and does not increase the usage quota of computing resource. Implementation of this method does not impact any standards or specifications and not change any encoding or decoding functionality too. In a real 5G network, this method will contribute to network efficiency and eventually save considerable computing resources.

Keywords: 5G, JSON, payload size, service-based interface

Procedia PDF Downloads 180
18682 Determination of Starting Design Parameters for Reactive-Dividing Wall Distillation Column Simulation Using a Modified Shortcut Design Method

Authors: Anthony P. Anies, Jose C. Muñoz

Abstract:

A new shortcut method for the design of reactive-dividing wall columns (RDWC) is proposed in this work. The RDWC is decomposed into its thermodynamically equivalent configuration naming the Petlyuk column, which consists of a reactive prefractionator and an unreactive main fractionator. The modified FUGK(Fenske-Underwood-Gilliland-Kirkbride) shortcut distillation method, which incorporates the effect of reaction on the Underwood equations and the Gilliland correlation, is used to design the reactive prefractionator. On the other hand, the conventional FUGK shortcut method is used to design the unreactive main fractionator. The shortcut method is applied to the synthesis of dimethyl ether (DME) through the liquid phase dehydration of methanol, and the results were used as the starting design inputs for rigorous simulation in Aspen Plus V8.8. A mole purity of 99 DME in the distillate stream, 99% methanol in the side draw stream, and 99% water in the bottoms stream were obtained in the simulation, thereby making the proposed shortcut method applicable for the preliminary design of RDWC.

Keywords: aspen plus, dimethyl ether, petlyuk column, reactive-dividing wall column, shortcut method, FUGK

Procedia PDF Downloads 193
18681 Parameter Estimation for the Mixture of Generalized Gamma Model

Authors: Wikanda Phaphan

Abstract:

Mixture generalized gamma distribution is a combination of two distributions: generalized gamma distribution and length biased generalized gamma distribution. These two distributions were presented by Suksaengrakcharoen and Bodhisuwan in 2014. The findings showed that probability density function (pdf) had fairly complexities, so it made problems in estimating parameters. The problem occurred in parameter estimation was that we were unable to calculate estimators in the form of critical expression. Thus, we will use numerical estimation to find the estimators. In this study, we presented a new method of the parameter estimation by using the expectation – maximization algorithm (EM), the conjugate gradient method, and the quasi-Newton method. The data was generated by acceptance-rejection method which is used for estimating α, β, λ and p. λ is the scale parameter, p is the weight parameter, α and β are the shape parameters. We will use Monte Carlo technique to find the estimator's performance. Determining the size of sample equals 10, 30, 100; the simulations were repeated 20 times in each case. We evaluated the effectiveness of the estimators which was introduced by considering values of the mean squared errors and the bias. The findings revealed that the EM-algorithm had proximity to the actual values determined. Also, the maximum likelihood estimators via the conjugate gradient and the quasi-Newton method are less precision than the maximum likelihood estimators via the EM-algorithm.

Keywords: conjugate gradient method, quasi-Newton method, EM-algorithm, generalized gamma distribution, length biased generalized gamma distribution, maximum likelihood method

Procedia PDF Downloads 219
18680 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach

Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: chaotic approach, phase space, Cao method, local linear approximation method

Procedia PDF Downloads 331
18679 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
18678 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
18677 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: bottom elevation, MVS, river, SfM

Procedia PDF Downloads 299
18676 Virtual Chemistry Laboratory as Pre-Lab Experiences: Stimulating Student's Prediction Skill

Authors: Yenni Kurniawati

Abstract:

Students Prediction Skill in chemistry experiments is an important skill for pre-service chemistry students to stimulate students reflective thinking at each stage of many chemistry experiments, qualitatively and quantitatively. A Virtual Chemistry Laboratory was designed to give students opportunities and times to practicing many kinds of chemistry experiments repeatedly, everywhere and anytime, before they do a real experiment. The Virtual Chemistry Laboratory content was constructed using the Model of Educational Reconstruction and developed to enhance students ability to predicted the experiment results and analyzed the cause of error, calculating the accuracy and precision with carefully in using chemicals. This research showed students changing in making a decision and extremely beware with accuracy, but still had a low concern in precision. It enhancing students level of reflective thinking skill related to their prediction skill 1 until 2 stage in average. Most of them could predict the characteristics of the product in experiment, and even the result will going to be an error. In addition, they take experiments more seriously and curiously about the experiment results. This study recommends for a different subject matter to provide more opportunities for students to learn about other kinds of chemistry experiments design.

Keywords: virtual chemistry laboratory, chemistry experiments, prediction skill, pre-lab experiences

Procedia PDF Downloads 340
18675 Spectrophotometric Determination of Phenylephrine Hydrochloride by Coupling with Diazotized 2,4-Dinitroaniline

Authors: Sulaiman Gafar Muhamad

Abstract:

A rapid spectrophotometric method for the micro-determination of phenylephrine-HCl (PHE) has been developed. The proposed method involves the coupling of phenylephrine-HCl with diazotized 2,4-dinitroaniline in alkaline medium at λmax 455 nm. Under the present optimum condition, Beer’s law was obeyed in the range of 1.0-20 μg/ml of PHE with molar absorptivity of 1.915 ×104 l. mol-1.cm-1, with a relative error of 0.015 and a relative standard deviation of 0.024%. The current method has been applied successfully to estimate phenylephrine-HCl in pharmaceutical preparations (nose drop and syrup).

Keywords: diazo-coupling, 2, 4-dinitroaniline, phenylephrine-HCl, spectrophotometry

Procedia PDF Downloads 257
18674 Identification and Molecular Profiling of A Family I Cystatin Homologue from Sebastes schlegeli Deciphering Its Putative Role in Host Immunity

Authors: Don Anushka Sandaruwan Elvitigala, P. D. S. U. Wickramasinghe, Jehee Lee

Abstract:

Cystatins are a large superfamily of proteins which act as reversible inhibitors of cysteine proteases. Papain proteases and cysteine cathepsins are predominant substrates of cystatins. Cystatin superfamily can be further clustered into three groups as Stefins, Cystatins, and Kininogens. Among them, stefines are also known as family 1 cystatins which harbors cystatin Bs and cystatin As. In this study, a homologue of family one cystatins more close to cystatin Bs was identified from Korean black rockfish (Sebastes schlegeli) using a prior constructed cDNA (complementary deoxyribonucleic acid) database and designated as RfCyt1. The full-length cDNA of RfCyt1 consisted of 573 bp, with a coding region of 294 bp. It comprised a 5´-untranslated region (UTR) of 55 bp, and 3´-UTR of 263 bp. The coding sequence encodes a polypeptide consisting of 97 amino acids with a predicted molecular weight of 11kDa and theoretical isoelectric point of 6.3. The RfCyt1 shared homology with other teleosts and vertebrate species and consisted conserved features of cystatin family signature including single cystatin-like domain, cysteine protease inhibitory signature of pentapeptide (QXVXG) consensus sequence and N-terminal two conserved neighboring glycine (⁸GG⁹) residues. As expected, phylogenetic reconstruction developed using the neighbor-joining method showed that RfCyt1 is clustered with the cystatin family 1 members, in which more closely with its teleostan orthologues. An SYBR Green qPCR (quantitative polymerase chain reaction) assay was performed to quantify the RfCytB transcripts in different tissues in healthy and immune stimulated fish. RfCyt1 was ubiquitously expressed in all tissue types of healthy animals with gill and spleen being the highest. Temporal expression of RfCyt1 displayed significant up-regulation upon infection with Aeromonas salmonicida. Recombinantly expressed RfCyt1 showed concentration-dependent papain inhibitory activity. Collectively these findings evidence for detectable protease inhibitory and immunity relevant roles of RfCyt1 in Sebastes schlegeli.

Keywords: Sebastes schlegeli, family 1 cystatin, immune stimulation, expressional modulation

Procedia PDF Downloads 136
18673 Visualising Charles Bonnet Syndrome: Digital Co-Creation of Pseudohallucinations

Authors: Victoria H. Hamilton

Abstract:

Charles Bonnet Syndrome (CBS) is when a person experiences pseudohallucinations that fill in visual information from any type of sight loss. CBS arises from an epiphenomenal process, with the physical actions of sight resulting in the mental formations of images. These pseudohallucinations—referred to as visions by the CBS community—manifest in a wide range of forms, from complex scenes to simple geometric shapes. To share these unique visual experiences, a remote co-creation website was created where CBS participants communicated their lived experiences. This created a reflexive process, and we worked to produce true representations of these interesting and little-known phenomena. Digital reconstruction of the visions is utilised as it echoes the vivid, experiential movie-like nature of what is being perceived. This paper critically analyses co-creation as a method for making digital assets. The implications of the participants' vision impairments and the application of ethical safeguards are examined in this context. Important to note, this research is of a medical syndrome for a non-medical, practice-based design. CBS research to date is primarily conducted by the ophthalmic, neurological, and psychiatric fields and approached with the primary concerns of these specialties. This research contributes a distinct approach incorporating practice-based digital design, autoethnography, and phenomenology. Autoethnography and phenomenology combine as a foundation, with the first bringing understanding and insights, balanced by the second philosophical, bigger picture, and established approach. With further refining, it is anticipated that the research may be applied to other conditions. Conditions where articulating internal experiences proves challenging and the use of digital methods could aid communication. Both the research and CBS communities will benefit from the insights regarding the relationship between cognitive perceptions and the vision process. This research combines the digital visualising of visions with interest in the link between metaphor, embodied cognition, and image. The argument for a link between CBS visions and metaphor may appear evident due to the cross-category mapping of images that is necessary for comprehension. They both are— CBS visions and metaphors—the experience of picturing images, often with lateral connections and imaginative associations.

Keywords: Charles Bonnet Syndrome, digital design, visual hallucinations, visual perception

Procedia PDF Downloads 44
18672 Rational Probabilistic Method for Calculating Thermal Cracking Risk of Mass Concrete Structures

Authors: Naoyuki Sugihashi, Toshiharu Kishi

Abstract:

The probability of occurrence of thermal cracks in mass concrete in Japan is evaluated by the cracking probability diagram that represents the relationship between the thermal cracking index and the probability of occurrence of cracks in the actual structure. In this paper, we propose a method to directly calculate the cracking probability, following a probabilistic theory by modeling the variance of tensile stress and tensile strength. In this method, the relationship between the variance of tensile stress and tensile strength, the thermal cracking index, and the cracking probability are formulated and presented. In addition, standard deviation of tensile stress and tensile strength was identified, and the method of calculating cracking probability in a general construction controlled environment was also demonstrated.

Keywords: thermal crack control, mass concrete, thermal cracking probability, durability of concrete, calculating method of cracking probability

Procedia PDF Downloads 346
18671 Short Term Distribution Load Forecasting Using Wavelet Transform and Artificial Neural Networks

Authors: S. Neelima, P. S. Subramanyam

Abstract:

The major tool for distribution planning is load forecasting, which is the anticipation of the load in advance. Artificial neural networks have found wide applications in load forecasting to obtain an efficient strategy for planning and management. In this paper, the application of neural networks to study the design of short term load forecasting (STLF) Systems was explored. Our work presents a pragmatic methodology for short term load forecasting (STLF) using proposed two-stage model of wavelet transform (WT) and artificial neural network (ANN). It is a two-stage prediction system which involves wavelet decomposition of input data at the first stage and the decomposed data with another input is trained using a separate neural network to forecast the load. The forecasted load is obtained by reconstruction of the decomposed data. The hybrid model has been trained and validated using load data from Telangana State Electricity Board.

Keywords: electrical distribution systems, wavelet transform (WT), short term load forecasting (STLF), artificial neural network (ANN)

Procedia PDF Downloads 436
18670 A New Family of Integration Methods for Nonlinear Dynamic Analysis

Authors: Shuenn-Yih Chang, Chiu-LI Huang, Ngoc-Cuong Tran

Abstract:

A new family of structure-dependent integration methods, whose coefficients of the difference equation for displacement increment are functions of the initial structural properties and the step size for time integration, is proposed in this work. This family method can simultaneously integrate the controllable numerical dissipation, explicit formulation and unconditional stability together. In general, its numerical dissipation can be continuously controlled by a parameter and it is possible to achieve zero damping. In addition, it can have high-frequency damping to suppress or even remove the spurious oscillations high frequency modes. Whereas, the low frequency modes can be very accurately integrated due to the almost zero damping for these low frequency modes. It is shown herein that the proposed family method can have exactly the same numerical properties as those of HHT-α method for linear elastic systems. In addition, it still preserves the most important property of a structure-dependent integration method, which is an explicit formulation for each time step. Consequently, it can save a huge computational efforts in solving inertial problems when compared to the HHT-α method. In fact, it is revealed by numerical experiments that the CPU time consumed by the proposed family method is only about 1.6% of that consumed by the HHT-α method for the 125-DOF system while it reduces to be 0.16% for the 1000-DOF system. Apparently, the saving of computational efforts is very significant.

Keywords: structure-dependent integration method, nonlinear dynamic analysis, unconditional stability, numerical dissipation, accuracy

Procedia PDF Downloads 639
18669 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed

Abstract:

This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 202
18668 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling

Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri

Abstract:

Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.

Keywords: magnetic field strength, flow velocity, retention time, barium sulfate

Procedia PDF Downloads 267
18667 Estimation and Validation of Free Lime Analysis of Clinker by Quantitative Phase Analysis Using X ray diffraction

Authors: Suresh Palla, Kalpna Sharma, Gaurav Bhatnagar, S. K. Chaturvedi, B. N. Mohapatra

Abstract:

Determining the content of free lime is especially important to judge reactivity of the raw materials and clinker quality. The free lime limit isn’t the same for all cements; it depends on several factors, especially the temperature reached during the cooking and the grain size distribution in cement after grinding. Estimation of free lime by conventional method is influenced by the presence of portlandite and misleads the actual free lime content in the clinker for quality check up conditions. To ensure the product quality according to the standard specifications in terms of within the quality limits or not, a reliable, precise, and very reproducible method to quantify the relative phase abundances in the Portland Cement clinker and Portland Cements is to use X-ray diffraction (XRD) in combination with the Rietveld method. In the present study, a methodology was proposed using XRD to validate the obtained results of free lime by conventional method. The XRD and TG/DTA results confirm the presence of portlandite in the clinker to take the decision on the obtained free lime results through conventional method.

Keywords: free lime, quantitative phase analysis, conventional method, x ray diffraction

Procedia PDF Downloads 136
18666 Using Derivative Free Method to Improve the Error Estimation of Numerical Quadrature

Authors: Chin-Yun Chen

Abstract:

Numerical integration is an essential tool for deriving different physical quantities in engineering and science. The effectiveness of a numerical integrator depends on different factors, where the crucial one is the error estimation. This work presents an error estimator that combines a derivative free method to improve the performance of verified numerical quadrature.

Keywords: numerical quadrature, error estimation, derivative free method, interval computation

Procedia PDF Downloads 463
18665 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: parallel compressor model (pcm), revised calculation method, inlet distortion, outlet unequal pressure distribution

Procedia PDF Downloads 331
18664 Problems in Computational Phylogenetics: The Germano-Italo-Celtic Clade

Authors: Laura Mclean

Abstract:

A recurring point of interest in computational phylogenetic analysis of Indo-European family trees is the inference of a Germano-Italo-Celtic clade in some versions of the trees produced. The presence of this clade in the models is intriguing as there is little evidence for innovations shared among Germanic, Italic, and Celtic, the evidence generally used in the traditional method to construct a subgroup. One source of this unexpected outcome could be the input to the models. The datasets in the various models used so far, for the most part, take as their basis the Swadesh list, a list compiled by Morris Swadesh and then revised several times, containing up to 207 words that he believed were resistant to change among languages. The judgments made by Swadesh for this list, however, were subjective and based on his intuition rather than rigorous analysis. Some scholars used the Swadesh 200 list as the basis for their Indo-European dataset and made cognacy judgements for each of the words on the list. Another dataset is largely based on the Swadesh 207 list as well although the authors include additional lexical and non-lexical data, and they implement ‘split coding’ to deal with cases of polymorphic characters. A different team of scholars uses a different dataset, IECoR, which combines several different lists, one of which is the Swadesh 200 list. In fact, the Swadesh list is used in some form in every study surveyed and each dataset has three words that, when they are coded as cognates, seemingly contribute to the inference of a Germano-Italo-Celtic clade which could happen due to these clades sharing three words among only themselves. These three words are ‘fish’, ‘flower’, and ‘man’ (in the case of ‘man’, one dataset includes Lithuanian in the cognacy coding and removes the word ‘man’ from the screened data). This collection of cognates shared among Germanic, Italic, and Celtic that were deemed important enough to be included on the Swadesh list, without the ability to account for possible reasons for shared cognates that are not shared innovations, gives an impression of affinity between the Germanic, Celtic, and Italic branches without adequate methodological support. However, by changing how cognacy is defined (ie. root cognates, borrowings vs inherited cognates etc.), we will be able to identify whether these three cognates are significant enough to infer a clade for Germanic, Celtic, and Italic. This paper examines the question of what definition of cognacy should be used for phylogenetic datasets by examining the Germano-Italo-Celtic clade as a case study and offers insights into the reconstruction of a Germano-Italo-Celtic clade.

Keywords: historical, computational, Italo-Celtic, Germanic

Procedia PDF Downloads 50
18663 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC

Authors: Gürol Önal, Kevser Dinçer, Salih Yayla

Abstract:

In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.

Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method

Procedia PDF Downloads 562
18662 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features

Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.

Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction

Procedia PDF Downloads 380
18661 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant

Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park

Abstract:

CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).

Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method

Procedia PDF Downloads 217
18660 The Proposal of Modification of California Pipe Method for Inclined Pipe

Authors: Wojciech Dąbrowski, Joanna Bąk, Laurent Solliec

Abstract:

Nowadays technical and technological progress and constant development of methods and devices applied to sanitary engineering is indispensable. Issues related to sanitary engineering involve flow measurements for water and wastewater. The precise measurement is very important and pivotal for further actions, like monitoring. There are many methods and techniques of flow measurement in the area of sanitary engineering. Weirs and flumes are well–known methods and common used. But also there are alternative methods. Some of them are very simple methods, others are solutions using high technique. The old–time method combined with new technique could be more useful than earlier. Paper describes substitute method of flow gauging (California pipe method) and proposal of modification of this method used for inclined pipe. Examination of possibility of improving and developing old–time methods is direction of the investigation.

Keywords: California pipe, sewerage, flow rate measurement, water, wastewater, improve, modification, hydraulic monitoring, stream

Procedia PDF Downloads 438
18659 Modeling and Tracking of Deformable Structures in Medical Images

Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan

Abstract:

This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.

Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images

Procedia PDF Downloads 342